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Research Objectives

• Easy to use graphical workflow representation tailored for BPEL but not requiring users to know XML
• Enable and explore dynamic aspects of LEAD Orchestration WOORDS in BPEL  

•Workflow Orchestration for On-Demand, Real-Time, Dynamically Adaptive Systems
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Simplified example of generated BPEL XML :

<sequence>
<receive partnerLink="workflowUserPartner" 

variable="workflowInput" />
<assign source-variable  target-variable… /> 
<invoke parnerLink=“decoder” …/>
<assign … /> 
<invoke parnerLink=“thredds” …/>
<assign dest=“workflowOutput”  … /> 
<flow> <!– parallel execution -- >

<invoke parnerLink=“viz1” …/>
<invoke parnerLink=“viz2” …/>

</flow>
<reply partnerLink="workflowUserPartner" 

variable="workflowOutput" />
</sequence>
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Dynamic Aspects

• Execution can be paused on breakpoint
•Debugging and tracing

• If service execution fails an alternative service can be used
• Allow introspection and modification of workflow state (parameter values etc.)
• New services can be added and connected into running workflow
• Running workflow can be “cloned” and alternative path of execution explored

•Allow back-in-time and what-if scenarios
• Allow extensive monitoring of workflow state and any kind of modifications to it

Dynamic workflow example
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Workflow Reuse

• BPEL Workflow is also a service and has WSDL
• Workflow can use other workflow as services
• GUI tool should allow to browse workflow 

template and expand nested sub-workflows

Workflow Composer: GUI on top, XML beneath

• Workflow users should not be required to have a detailed knowledge of BPEL or XML 
• Easy to use – we are developing in an iterative way “good enough” subset of BPEL functionality
• Allow monitoring of workflow execution in graphical environment
• Allow to “replay” history of workflow execution
• Allow to visualize state of running instance by connecting to it

Graph to BPEL XML Translation strategy:

• Composed workflow is a Web Service described in 
WSDL (hierarchical compensability)

•Input nodes forms parts of input message 
•Output nodes form parts of output message

• Workflow receives input message into a variable and sends 
output message based on variable

• Services exchange XML messages represented as variables 
in BPEL. Interspersed <assign> are automatically generated 
to pass relevant message parts between services.

• Services are invoked over asynchronous channel (it is OK for 
service to takes hours to produce response message) using 
one-way or request-response <invoke>

• Concurrency is enabled by <flow>

Future Work and Open Issues

• How to make dynamic workflow capabilities easy 
to use (GUI)?

• Integrating UNC performance analysis and 
monitoring tools into workflow engine to support 
optimal scheduling resources needed during 
workflow execution

• Supporting long running workflows:
•In particular: listening for events and starting 
services

More complex workflow with parallel execution flows:

Simple workflow graph

How to compose a workflow:

• Need only Web Service Description (WSDL) to use a web 
service in a workflow.

• The list of WSDLs are acquired from various places. 
e.g. web page, local file systems, registry services.

• Drop the WSDL of a web service to the composer.  It will 
show you the connections for each input/output.

• Connect an output of a service to an input of another service 
as you want.

• The composer generates a BPEL script and WSDL (workflow 
is a service) based on the graph.
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Example of Dynamic Modifications

Scenario
• Execution of a decoder fails
• User is notified
• User requests re-execution of the failed activity
• User selects an alternative decoder service
• Execution continues
• Execution is paused on thredds (breakpoint)
• New activity is added
• Execution continues
• New output is returned
• Show how to “clone” workflow and services


