
User Friendly BPEL and Dynamic Workflow
Execution in LEAD Grid

Aleksander Slominski, Satoshi Shirasuna
Indiana University

This work is supported primarily by the National Science Foundation under the following cooperative agreements: ATM03-31574, 31578, 31579, 31480,
31586, 31587, 31591, and 31594. Any opinions, findings, conclusions, or recommendations expressed in this material are those of the authors and do
not necessarily reflect those of the National Science Foundation.

Research Objectives

• Easy to use graphical workflow representation tailored for BPEL but not requiring users to know XML
• Enable and explore dynamic aspects of LEAD Orchestration WOORDS in BPEL

•Workflow Orchestration for On-Demand, Real-Time, Dynamically Adaptive Systems

P21

GRAPH REP
Input
node

Input
node

Simplified example of generated BPEL XML :

<sequence>
<receive partnerLink="workflowUserPartner"

variable="workflowInput" />
<assign source-variable target-variable… />
<invoke parnerLink=“decoder” …/>
<assign … />
<invoke parnerLink=“thredds” …/>
<assign dest=“workflowOutput” … />
<flow> <!– parallel execution -- >

<invoke parnerLink=“viz1” …/>
<invoke parnerLink=“viz2” …/>

</flow>
<reply partnerLink="workflowUserPartner"

variable="workflowOutput" />
</sequence>

Output
node

Decoder

Thredds

Dynamic Aspects

• Execution can be paused on breakpoint
•Debugging and tracing

• If service execution fails an alternative service can be used
• Allow introspection and modification of workflow state (parameter values etc.)
• New services can be added and connected into running workflow
• Running workflow can be “cloned” and alternative path of execution explored

•Allow back-in-time and what-if scenarios
• Allow extensive monitoring of workflow state and any kind of modifications to it

Dynamic workflow example

Input Input

Output

Decoder

Visualizer

Output

Workflow Reuse

• BPEL Workflow is also a service and has WSDL
• Workflow can use other workflow as services
• GUI tool should allow to browse workflow

template and expand nested sub-workflows

Workflow Composer: GUI on top, XML beneath

• Workflow users should not be required to have a detailed knowledge of BPEL or XML
• Easy to use – we are developing in an iterative way “good enough” subset of BPEL functionality
• Allow monitoring of workflow execution in graphical environment
• Allow to “replay” history of workflow execution
• Allow to visualize state of running instance by connecting to it

Graph to BPEL XML Translation strategy:

• Composed workflow is a Web Service described in
WSDL (hierarchical compensability)

•Input nodes forms parts of input message
•Output nodes form parts of output message

• Workflow receives input message into a variable and sends
output message based on variable

• Services exchange XML messages represented as variables
in BPEL. Interspersed <assign> are automatically generated
to pass relevant message parts between services.

• Services are invoked over asynchronous channel (it is OK for
service to takes hours to produce response message) using
one-way or request-response <invoke>

• Concurrency is enabled by <flow>

Future Work and Open Issues

• How to make dynamic workflow capabilities easy
to use (GUI)?

• Integrating UNC performance analysis and
monitoring tools into workflow engine to support
optimal scheduling resources needed during
workflow execution

• Supporting long running workflows:
•In particular: listening for events and starting
services

More complex workflow with parallel execution flows:

Simple workflow graph

How to compose a workflow:

• Need only Web Service Description (WSDL) to use a web
service in a workflow.

• The list of WSDLs are acquired from various places.
e.g. web page, local file systems, registry services.

• Drop the WSDL of a web service to the composer. It will
show you the connections for each input/output.

• Connect an output of a service to an input of another service
as you want.

• The composer generates a BPEL script and WSDL (workflow
is a service) based on the graph.

Thredds

Example of Dynamic Modifications

Scenario
• Execution of a decoder fails
• User is notified
• User requests re-execution of the failed activity
• User selects an alternative decoder service
• Execution continues
• Execution is paused on thredds (breakpoint)
• New activity is added
• Execution continues
• New output is returned
• Show how to “clone” workflow and services

