
VGrADS Programming Tools Overview

VGrADS Knoxville Workshop 2004

Ken Kennedy
Center for High Performance Software Research

(HiPerSoft)
Rice University

http://www.hipersoft.rice.edu/vgrads/

National Distributed Problem Solving

Database

Supercomputer

Database

Supercomputer

VGrADS Vision

• Build a National Problem-Solving System on the Grid
—Transparent to the user, who sees a problem-solving system

• Why don’t we have this today?
—Complex application development

– Dynamic resources require adaptivity
– Unreliable resources require fault tolerance
– Uncoordinated resources require management

—Weak programming tools and models
– Tied to physical resources
– If programming is hard, the Grid will not not reach its potential

• What do we propose as a solution?
—Virtual Grids (vgrids) raise level of abstraction
—Tools exploit vgrids, provide better user interface

VGrADS Vision

GrADSoft Architecture

Config-
urable
Object

Program

Execution EnvironmentProgram Preparation System
Performance

Feedback

Whole-
Program
Compiler

Librar ies

Source
Appli-
cation

Software
Components

Binder

Performance
Problem

Real-time
Performance

Monitor

Resource
Negotiator

Scheduler

Gr id
Runtime
System

Negotiation

Lessons from GrADS

• Mapping for MPI Jobs is Hard
— Much easier to schedule to single clusters

– Although we were able to do some interesting experiments

• Performance Model construction is hard
— Hybrid static/dynamic schemes are best
— Difficult for application developers to do by hand

• Heterogeneity Adds Complexity
— We completely revised the Binder mechanisms to support this
— Scheduling is more critical

• Rescheduling/Migration is Hard
— N-N is possible with pre-allocation
— N-M rescheduling requires application collaboration (generalized

checkpointing)
— Both require performance models to determine when it is profitable

Programming Tools

• Integration of Grid Applications from Abstract Descriptions
—Abstract Component Machine

– Components preinstalled on various resources
– Applications defined by scripting languages

 EMAN: Python
– Conversion of scripts to workflows

• Workflow Scheduling
—Based on performance models and data movement costs
—Full graph scheduling

– Avoid getting stuck at certain resources

• Automatic Construction of Performance Models
—Work of Gabriel Marin, John Mellor-Crummey and Bo Liu

Workflow Applications

• Application consists of a collection of components to be
executed in a certain partial order for successful execution
—Ordering typically based on data dependences

• Workflow applications can be represented by a DAG (Directed
Acyclic Graph)
—Nodes in the DAG denote application components

– Types: Sequential, parameter sweep, embarrassingly ||, tightly-
coupled etc.

– May access/update datasets and databases, control nodes for
data movements

—Edges represent data and control dependencies
– Data dependences typically involve file transfer

Grid Applications

2MASS images

Mosaic

mProject

mDiff

mFitplane
mConcat

mBgModel

mBackground

mAdd

Montage

LIGO

EOL

MPI job

Input Data

Parameter Sweep

Access DB

Write DB

Result

Grid Workflow Application Representation

Workflow Scheduling Strategy

• Base Work on Performance Model Construction
—Estimate: operation counts and memory delays

– Operation counts based on profiling
– Memory estimates based on construction of reuse-distance

estimation function

• Look at Whole DAG
—Use performance models as surrogates for execution
—Apply heuristics to match resources to workflow steps

– Both computation and data movement costs considered
– Selection of most critical requests first

 Work backward and forward from those
—Preprocess workflow to make scheduling easier

– Fusing adjacent vertices that have high data transfer volume

• Simulation results for workflow completion times for different
“Montage” workflows

• Improvement of >20% for homogeneous platform

Homogeneous Platform

0

50000

100000

150000

200000

250000

300000

350000

400000

Workflow with 157 jobs Workflow with 2047 jobs

Different Workflows

W
o

r
k
fl

o
w

 C
o

m
p

le
ti

o
n

 T
im

e

min-min

max-min

sufferage

random

Heuristic Workflow Scheduling: Results

Preliminary results from joint work with Ewa Deelman et. al. at USC ISI

• By using heuristic workflow scheduling, workflow completion times
improve by an order of magnitude[>20 times] over random scheduling
for heterogeneous platform

• Workflow completion time is within 10% of that using a very
expensive AI scheduler that doesn’t scale to 2047 jobs

Heterogeneous Platform: 2047 jobs

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

Workflow with 2047 jobs

W
o

r
k
fl

o
w

 C
o

m
p

le
t
io

n
 T

im
e

min-min

max-min

sufferage

random

Heterogeneous Platform: 157 jobs

0

100000

200000

300000

400000

500000

600000

700000

800000

Workflow with 157 jobs

W
o

r
k
f
lo

w
 C

o
m

p
le

t
io

n
 T

im
e

min-min

max-min

sufferage

random

Heuristic Workflow Scheduling: Results

Issues

• Division of Labor between Vgrid and Programming Tools
—Rescheduling in GrADS

– Work illustrated the difficulties associated with rescheduling
– Should it be done at all?

—Scheduling under uncertainty
– Current scheduler: assumes stable resources
– Problems: varying load on processors

 Makes scheduling inaccurate
– How can Vgrid and Ptools collaborate on this?

• Making Peace with Community Efforts
—Do we really need Globus?
—What about Grid services?

Issues

• Dynamic versus Static Workflow Scheduling
—Current Condor/DAGMan: dynamic

– Schedule when all inputs are ready
– Problem: computations stuck at inappropriate resources

—Current GrADS/VGrADS: completely static for a single DAG
– Schedule entire DAG using performance models in place of

actual executions
– Problems: accurate performance models, load variability

—Hybrid Scheme: adjust static schedules dynamically
– Monitor accuracy of performance prediction and loads
– Reschedule remaining parts of DAG based thereon
– Do we need system support for milestone notification?

Programming Tools Futures
• Translation from High-Level Abstractions

—Construction of workflows from Python
– Future: other scripting languages

—What are the scientific problems?

• Scheduling
—Global workflow scheduling

– Future: partial dynamic adaptation
—Validation of new scheduling algorithms
—Scheduling in the presence of load

– Dependence on prediction

• Performance Model Construction
—Fully automatic methods
—Composition of performance models from components
—Performance models for parallel applications (LACSI)

Other Issues

• Fault Tolerance
—Fault tolerance in DAGS

– Should be easier: duplicate copies of files and rescheduling
—Support for checkpoint construction

• Scheduling to minimize variability of makespans
—Application: real-time

Education, Outreach, and Training

• Started activity at Rice
—Lectures at CS CAMP (high school girls, their teachers & principals)
—Will sponsor student(s) traveling to Grace Hopper Celebration of

Women in Computing (Chicago, October 6-9)

• Working to recruit/identify Summer 2005 students
—AGEP students (undergraduate Juniors/Seniors, mostly

underrepresented groups) to work on grid computing projects
—Add more content for CS CAMP 2005

– Seeking funding for future CS CAMP activities

• Germ of idea: grid computing experiment for high school
—Leverage CS CAMP participants’ experience
—Provide canned software to schools, run an “interesting” application
—Could be great project to build on or glorious failure

