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VGrADS Vision

• Build a National Problem-Solving System on the Grid
—Transparent to the user, who sees a problem-solving system

• Why don’t we have this today?
—Complex application development

– Dynamic resources require adaptivity
– Unreliable resources require fault tolerance
– Uncoordinated resources require management

—Weak programming tools and models
– Tied to physical resources
– If programming is hard, the Grid will not not reach its potential

• What do we propose as a solution?
—Virtual Grids (vgrids) raise level of abstraction
—Tools exploit vgrids, provide better user interface



VGrADS Vision
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Lessons from GrADS

• Mapping for MPI Jobs is Hard
— Much easier to schedule to single clusters

– Although we were able to do some interesting experiments

• Performance Model construction is hard
— Hybrid static/dynamic schemes are best
— Difficult for application developers to do by hand

• Heterogeneity Adds Complexity
— We completely revised the Binder mechanisms to support this
— Scheduling is more critical

• Rescheduling/Migration is Hard
— N-N is possible with pre-allocation
— N-M rescheduling requires application collaboration (generalized

checkpointing)
— Both require performance models to determine when it is profitable



Programming Tools

• Integration of Grid Applications from Abstract Descriptions
—Abstract Component Machine

– Components preinstalled on various resources
– Applications defined by scripting languages

 EMAN: Python
– Conversion of scripts to workflows

• Workflow Scheduling
—Based on performance models and data movement costs
—Full graph scheduling

– Avoid getting stuck at certain resources

• Automatic Construction of Performance Models
—Work of Gabriel Marin, John Mellor-Crummey and Bo Liu



Workflow Applications

• Application consists of a collection of components to be
executed in a certain partial order for successful execution
—Ordering typically based on data dependences

• Workflow applications can be represented by a DAG (Directed
Acyclic Graph)
—Nodes in the DAG denote application components

– Types: Sequential, parameter sweep, embarrassingly ||, tightly-
coupled etc.

– May access/update datasets and databases, control nodes for
data movements

—Edges represent data and control dependencies
– Data dependences typically involve file transfer
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Workflow Scheduling Strategy

• Base Work on Performance Model Construction
—Estimate: operation counts and memory delays

– Operation counts based on profiling
– Memory estimates based on construction of reuse-distance

estimation function

• Look at Whole DAG
—Use performance models as surrogates for execution
—Apply heuristics to match resources to workflow steps

– Both computation and data movement costs considered
– Selection of most critical requests first

 Work backward and forward from those
—Preprocess workflow to make scheduling easier

– Fusing adjacent vertices that have high data transfer volume



• Simulation results for workflow completion times for different
“Montage” workflows

• Improvement of >20% for homogeneous platform

Homogeneous Platform
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Heuristic Workflow Scheduling: Results

Preliminary results from joint work with Ewa Deelman et. al. at USC ISI



• By using heuristic workflow scheduling, workflow completion times
improve by an order of magnitude[>20 times] over random scheduling
for heterogeneous platform

• Workflow completion time is within 10% of that using a very
expensive AI scheduler that doesn’t scale to 2047 jobs

Heterogeneous Platform: 2047 jobs
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Heterogeneous Platform: 157 jobs
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Heuristic Workflow Scheduling: Results



Issues

• Division of Labor between Vgrid and Programming Tools
—Rescheduling in GrADS

– Work illustrated the difficulties associated with rescheduling
– Should it be done at all?

—Scheduling under uncertainty
– Current scheduler: assumes stable resources
– Problems: varying load on processors

 Makes scheduling inaccurate
– How can Vgrid and Ptools collaborate on this?

• Making Peace with Community Efforts
—Do we really need Globus?
—What about Grid services?



Issues

• Dynamic versus Static Workflow Scheduling
—Current Condor/DAGMan: dynamic

– Schedule when all inputs are ready
– Problem: computations stuck at inappropriate resources

—Current GrADS/VGrADS: completely static for a single DAG
– Schedule entire DAG using performance models in place of

actual executions
– Problems: accurate performance models, load variability

—Hybrid Scheme: adjust static schedules dynamically
– Monitor accuracy of performance prediction and loads
– Reschedule remaining parts of DAG based thereon
– Do we need system support for milestone notification?



Programming Tools Futures
• Translation from High-Level Abstractions

—Construction of workflows from Python
– Future: other scripting languages

—What are the scientific problems?

• Scheduling
—Global workflow scheduling

– Future: partial dynamic adaptation
—Validation of new scheduling algorithms
—Scheduling in the presence of load

– Dependence on prediction

• Performance Model Construction
—Fully automatic methods
—Composition of performance models from components
—Performance models for parallel applications (LACSI)



Other Issues

• Fault Tolerance
—Fault tolerance in DAGS

– Should be easier: duplicate copies of files and rescheduling
—Support for checkpoint construction

• Scheduling to minimize variability of makespans
—Application: real-time



Education, Outreach, and Training

• Started activity at Rice
—Lectures at CS CAMP (high school girls, their teachers & principals)
—Will sponsor student(s) traveling to Grace Hopper Celebration of

Women in Computing (Chicago, October 6-9)

• Working to recruit/identify Summer 2005 students
—AGEP students (undergraduate Juniors/Seniors, mostly

underrepresented groups) to work on grid computing projects
—Add more content for CS CAMP 2005

– Seeking funding for future CS CAMP activities

• Germ of idea: grid computing experiment for high school
—Leverage CS CAMP participants’ experience
—Provide canned software to schools, run an “interesting” application
—Could be great project to build on or glorious failure


