
Fault Tolerance in the Virtual
Grid

Lavanya Ramakrishnan, Daniel A. Reed
Renaissance Computing Institute

The Need For Fault Tolerance

Resource Layer
(from PCs to Supercomputers)

Grid Portals

Launch, configure
and control Application Interface

Workflow service

App InstanceApp InstanceApp Instance

SecuritySecurity

Data Management
ServiceData Management

Service

Accounting
ServiceAccounting

Service
LoggingLogging

Event/Message
ServiceEvent/Message

Service

PolicyPolicy
Administration
& MonitoringAdministration

& Monitoring
Grid OrchestrationGrid Orchestration

Registries and
Name bindingRegistries and

Name binding

Reservations
And SchedulingReservations

And Scheduling

Open Grid Service Architecture Layer

Open Grid Service Infrastructure (web service component model)

Source: Dennis Gannon

Change in weather

?

Change in workflow

Change in resources (quantity, quality)

Change in service

Multi-level Fault Tolerance
• Measurement, monitoring and

estimation
– sequential/parallel application

• SvPablo, HPCView, …
– distributed workflow

• BPEL, …
– system/network

• NWS, HAPI, …
– virtual Grid

• MORTAR, …

• Decision making
– application code, runtime library
– workflow engine, task/job

scheduler(s)
– virtual Grid, extrinsic to virtual Grid

Virtual Grid

Extrinsic

Physical
Resources

Workflow

Application

Runtime

M
onitoring &

 Policies

Scheduling

Example – Master Worker [1/2]

• Original request for resources for an mpiBLAST run
mpiBLAST1 = MasterNode = {memory ≥ 4GB, disk > 20GB }

highBW LooseBagOf <WorkerNode> [4:32]; WorkerNode =
{memory >= 4GB}

• Require the network link between the master and the
worker to have “good” reliability.

mpiBLAST2 = MasterNode = {memory ≥ 4GB, disk > 20GB }
goodReliability LooseBagOf <WorkerNode> [4:32];
WorkerNode = {memory >= 4GB}

• In addition to the network being reliable, the request
could specify that the master node be a highly reliable
node

mpiBLAST3 = HighReliabilityBag<MasterNode>
goodReliability LooseBagOf <WorkerNode> [4:32];
WorkerNode = {memory >= 4GB}; MasterNode =
{memory ≥ 4GB, disk > 20GB}

Example - SPMD [2/2]
• For a simple WRF run, the request is for a cluster

with 8 to 32 nodes, each with at least 4 GB of
memory

wrf1= WRFBag = TightBagOf<CNode>[8:32]; CNode =
{memory>=2GB}

• Nodes need to be highly reliable and the network
between them to be very reliable as well.

wrf2= WRFBag = HighReliabilityBag<ManyNodes>[1:1];
ManyNodes = TightBagOf<CNode>[8:32]; CNode =
{memory>=2GB}

• If the model has been running for more than 6
hours, set the expected reliability level to high.

(reliabilityLevel = high) ([runningTime > 6 hours] AND
[reliabilityLevel < Good])

Virtual Grid Interfaces

• Interfaces to support the ability to
– describe collective qualitative reliability

or specific quantitative requirements for
resource selection
• E.g. need high reliability set of nodes

– adjust fault tolerance levels and
expectations at run-time,
• E.g. watch for reliability fluctuations

– register a callback, where application
intervention might be required when
certain constraints are violated.
• E.g. if reliability drops, notify the application

Some Research Questions

• How does one manage potentially
conflicting resource selection goals
such as performance and reliability?

• What performability guarantees can
be made to applications?

• How can one balance multi-level fault
tolerance strategies?

• How can one optimize resource
selection based on performance and
reliability constraints in the context of
a workflow?

Virtual Grid Description Language

• vgDL provides application-level resource abstraction
– aggregates or collections

• ClusterOf (Homogeneous, Tightly Coupled)
• TightBag (Heterogeneous, Tightly Coupled)
• LooseBag (Heterogeneous, Loosely Coupled)

– individual resource attributes (extensible)
• CPU, Speed, Memory, Disk, Software, Hostname, etc

– couplers
• HighBW, LowBW, Close, Far

• Preferences
– scalar ranking function and arithmetic on attributes

• Advanced and extent reservation
– start time, duration

• Resource quantity (service units)

Source: UCSD/ISI

Reliability Extensions to vgDL

• Reliability Associators (Collective for a set
of nodes)
– HighReliabilityBag: (90-100 %)
– GoodReliabilityBag: (80-89%)
– MediumReliabilityBag: (70–79%),
– LowReliabilityBag: (60-69%)
– PoorReliabilityBag: (59-0%)

• Reliability Operators (network link)
– highReliability: (90-100%)
– goodReliability: (80-89%)
– mediumReliability: (70-79%)
– lowReliability: (60-69%)
– poorReliability: (59-0%)

Compound Operator Expressions

• Request a set of nodes with “highBW and good
reliability”
– Not possible today

• BNF for vgDL
– Rdl-expression ::= Rdl-subexpression | [“(“ Rdl-

expression “)” op “(“ Rdl-expression “)”]*
– op := close | far | highBW | lowBW

• Alternatives
– op field needs to support operators such as and, or, etc

to connect operators together.
– develop new operators with compound function

• e.g. closeHighReliability, farHighReliability

Performability

• A composite measure for a system's
performance and dependability

• Combined Analysis [JMeyers 1980]
– "the probability that the system reaches an

accomplishment level y over a utilization
interval (0,t)"

– Markov reward models to define range

High Good Medium Low Poor

Performability Model

• Assumptions
– The reliability degradation

rate and repair rate are
uniform from one state to the
other for one single machine

– A fixed reward for a given
state for a given machine

• Accumulated reward in the
interval [0,t)

t is the time for task from
performance model

• Availability = MTTF / (MTTF +
MTTR)

λ

γ

λ λ λ

γγγ

λ – Failure Rate or reliability
degradation rate
γ – Repair Rate for machine

ττ)dZ()(
0∫=
t

tY

Next Steps

• Language implementation as
extensions to vgDL

• Model application to different
programming model patterns

• Application to LEAD workflows
– Performability as a criteria for resource

selection in the workflow planning
– Evaluation of real-time monitoring and

adaptation
• Using over-provisioning, replication, etc.

