
Fault Tolerance in the Virtual 
Grid

Lavanya Ramakrishnan, Daniel A. Reed
Renaissance Computing Institute



The Need For Fault Tolerance
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Multi-level Fault Tolerance
• Measurement, monitoring and 

estimation 
– sequential/parallel application

• SvPablo, HPCView, …
– distributed workflow

• BPEL, …
– system/network

• NWS, HAPI, …
– virtual Grid

• MORTAR, …

• Decision making
– application code, runtime library
– workflow engine, task/job 

scheduler(s)
– virtual Grid, extrinsic to virtual Grid
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Example – Master Worker [1/2]

• Original request for resources for an mpiBLAST run 
mpiBLAST1 = MasterNode = {memory ≥ 4GB, disk > 20GB } 

highBW LooseBagOf <WorkerNode> [4:32]; WorkerNode = 
{memory >= 4GB}

• Require the network link between the master and the 
worker to have “good” reliability. 

mpiBLAST2 = MasterNode = {memory ≥ 4GB, disk > 20GB } 
goodReliability LooseBagOf <WorkerNode> [4:32]; 
WorkerNode = {memory >= 4GB}

• In addition to the network being reliable, the request 
could specify that the master node be a highly reliable 
node

mpiBLAST3 = HighReliabilityBag<MasterNode> 
goodReliability LooseBagOf <WorkerNode> [4:32]; 
WorkerNode = {memory >= 4GB}; MasterNode = 
{memory ≥ 4GB, disk > 20GB}



Example - SPMD [2/2]
• For a simple WRF run, the request is for a cluster 

with 8 to 32 nodes, each with at least 4 GB of 
memory

wrf1= WRFBag = TightBagOf<CNode>[8:32]; CNode = 
{memory>=2GB}

• Nodes need to be highly reliable and the network 
between them to be very reliable as well. 

wrf2= WRFBag = HighReliabilityBag<ManyNodes>[1:1]; 
ManyNodes = TightBagOf<CNode>[8:32]; CNode = 
{memory>=2GB}

• If the model has been running for more than 6 
hours, set the expected reliability level to high. 

(reliabilityLevel = high) ([runningTime > 6 hours] AND 
[reliabilityLevel < Good]) 



Virtual Grid Interfaces

• Interfaces to support the ability to 
– describe collective qualitative reliability 

or specific quantitative requirements for 
resource selection
• E.g. need high reliability set of nodes   

– adjust fault tolerance levels and 
expectations at run-time,
• E.g. watch for reliability fluctuations 

– register a callback, where application 
intervention might be required when 
certain constraints are violated.
• E.g. if reliability drops, notify the application



Some Research Questions

• How does one manage potentially 
conflicting resource selection goals 
such as performance and reliability?

• What performability guarantees can 
be made to applications?

• How can one balance multi-level fault 
tolerance strategies?

• How can one optimize resource 
selection based on performance and 
reliability constraints in the context of 
a workflow?



Virtual Grid Description Language

• vgDL provides application-level resource abstraction
– aggregates or collections

• ClusterOf (Homogeneous, Tightly Coupled)
• TightBag (Heterogeneous, Tightly Coupled)
• LooseBag (Heterogeneous, Loosely Coupled)

– individual resource attributes (extensible)
• CPU, Speed, Memory, Disk, Software, Hostname, etc

– couplers
• HighBW, LowBW, Close, Far

• Preferences 
– scalar ranking function and arithmetic on attributes

• Advanced and extent reservation
– start time, duration

• Resource quantity (service units)

Source: UCSD/ISI



Reliability Extensions to vgDL

• Reliability Associators (Collective for a set 
of nodes)
– HighReliabilityBag: (90-100 %)
– GoodReliabilityBag: (80-89%) 
– MediumReliabilityBag: (70–79%),
– LowReliabilityBag: (60-69%)  
– PoorReliabilityBag: (59-0%)

• Reliability Operators (network link)
– highReliability: (90-100%)
– goodReliability: (80-89%)
– mediumReliability: (70-79%)  
– lowReliability: (60-69%)  
– poorReliability: (59-0%)



Compound Operator Expressions 

• Request a set of nodes with “highBW and good 
reliability”
– Not possible today 

• BNF for vgDL
– Rdl-expression ::= Rdl-subexpression | [ “(“ Rdl-

expression “)” op “(“ Rdl-expression “)” ]*
– op := close | far | highBW | lowBW

• Alternatives 
– op field needs to support operators such as and, or, etc 

to connect operators together.  
– develop new operators with compound function 

• e.g. closeHighReliability, farHighReliability



Performability

• A composite measure for a system's 
performance and dependability

• Combined Analysis [JMeyers 1980]
– "the probability that the system reaches an 

accomplishment level y over a utilization 
interval (0,t)"

– Markov reward models to define range



High Good Medium Low Poor

Performability Model

• Assumptions
– The reliability degradation 

rate and repair rate are 
uniform from one state to the 
other for one single machine 

– A fixed reward for a given 
state for a given machine 

• Accumulated reward in the 
interval [0,t)

t is the time for task from 
performance model 

• Availability = MTTF / (MTTF + 
MTTR) 
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Next Steps

• Language implementation as 
extensions to vgDL

• Model application to different 
programming model patterns 

• Application to LEAD workflows 
– Performability as a criteria for resource 

selection in the workflow planning 
– Evaluation of real-time monitoring and 

adaptation 
• Using over-provisioning, replication, etc.


