
VGrADS Activities  1 

I. Project Activities 
 

The “Computational Grid,” as described in The Grid: Blueprint for a New Computing 
Infrastructure and demonstrated by many proof-of-concept applications, promises to 
connect computers, databases, and people in a network to solve problems in scientific 
research and other diverse fields. However, the complexity, unreliability, and overhead 
of low-level operations in today's systems obscure the Grid's potential. The five-year 
Virtual Grid Application Development Software (VGrADS) project is attacking a 
fundamental part of this problemhow to more effectively program these highly 
complex and dynamic systems. It is developing software tools that simplify and 
accelerate the development of Grid applications and services, while delivering high 
levels of performance and resource efficiency. This improved usability will greatly 
expand the community of Grid users and developers. In the process, VGrADS will 
contribute to both the theory and practice of distributed computation. 
 
To address these aims, VGrADS is exploring, defining, and implementing a hierarchy 
of virtual resources and a set of programming models for Grid computing. It is 
conducting research in three key areas: 
 

1. Virtual Grid (VG) architectures, enabling a separation of concerns between 
high-level services and the Grid's inherent complexity.  The Virtual Grid 
Execution System (vgES) implements this architecture. 

2. Programming models, compilers, component libraries, and tools supporting 
creation of Grid applications. 

3. Core software technologies, including performance-efficient scheduling, fault 
tolerance, and economic models for resource management, allowing scalable 
Grid computations. 

 
VGrADS is pursuing this agenda by collaborating with leading scientific applications to 
elicit key challenges, validate results, and disseminate technology. It will distribute 
software that it creates in open-source form for the research community. It is also 
building on its PIs' past successes in human resource development by leveraging 
existing programs to attract and retain women and minorities in computational science. 
 
During the current reporting period (6/1/07 – 5/31/08), VGrADS research focused on 
the three inter-institutional efforts described in the following sections:  Applications 
(Section 1), VGrADS Programming Tools (Section 2), and VGrADS Execution System 
(Section 3).  Project publications and additional information can be found at 
http://vgrads.rice.edu. The project Web site includes a participants-only area where 
VGrADS researchers exchange drafts of project documents and other materials.  The 
management structure of the VGrADS project is described in Management & Structure 
(Section 4).  Annotated VGrADS milestones appear in Project Milestones (Section 5). 



VGrADS Activities  2 

 
1 Applications (Rice, UCSB, UCSD, UH, UNC, UTK) 
 
VGrADS research has always been driven by the needs of actual applications. Initially, 
we selected four applications (EMAN, EOL, GridSAT, and LEAD) based on our 
experience in the GrADS project and from other sources to help derive requirements for 
Virtual Grid (VG) functionality and to serve as tests of new tools methods. We have 
subsequently completed our study of EOL. Some research in the area of fault tolerance 
has been done on another application called GridSolve. To date, these applications have 
been reasonably successful at helping to derive requirements for the VG functionality 
and vgES implementation. We summarize recent work on each application in the 
following four subsections. 
 
1.1 LEAD 
 
VGrADS is closely collaborating with another NSF funded ITR project:  LEAD 
(Linked Environments for Atmospheric Discovery). The goal of LEAD is to build a 
scalable web services workflow infrastructure for meteorological data and models. The 
meteorology and the web services components of LEAD are being developed under a 
separate ITR award (NSF 0315594); the VGrADS team is collaborating with LEAD to 
apply resource selection, scheduling, provisioning techniques, fault-tolerance and 
runtime adaptation from the VGrADS research effort to the LEAD workflow system. 
 
The unique characteristics of LEAD lie in the dynamic workflow orchestration and data 
management, which allow the use of analysis tools, forecast models, and data 
repositories not in fixed configurations or as static recipients of data, as is now the case, 
but as dynamically adaptive, on-demand, Grid-enabled systems that can (a) change 
configuration rapidly and automatically in response to weather; (b) continually be 
steered by new data; (c) respond to decision-driven inputs from users; (d) initiate other 
processes automatically; and (e) steer remote observing technologies to optimize data 
collection for the problem at hand. Toward these goals, LEAD research is focused on 
creating a series of interconnected, heterogeneous virtual IT “Grid environments” that 
are linked at several levels to enable data transport, service chaining, interoperability, 
and distributed computation. 
 
We have collaborated with the LEAD developers to develop integrated plans for the 
two projects. This process has been greatly expedited by the efforts of Lavanya 
Ramakrishnan, a former VGrADS programmer at RENCI who is now a PhD student 
with LEAD PI Dennis Gannon, and Anirban Mandal, who is currently at RENCI. They 
have organized a number of meetings and teleconferences, and generally led the 
development of the LEAD/VGrADS integration. 
 



VGrADS Activities  3 

As noted in previous annual reports, we have had meetings with LEAD personnel to 
map out a collaborative strategy. A number of technical issues had to be resolved, 
mostly relating to how VGrADS would interoperate with LEAD’s existing production 
software. Also, we had to address the fact that LEAD’s definition of workflow is subtly 
different from the definition used by other VGrADS applications. Every component in 
the LEAD architecture is encapsulated into individual services that represent the atomic 
application tasks as well as the resource and instrument monitoring agents that drive the 
workflow.  Thus each workflow step is managed by a web service, whereas tasks in 
other VGrADS applications are not. In addition, there is a need for managing streaming 
data, as opposed to the fixed data collections used in the other applications. 
 
In this reporting period, we successfully incorporated fault-tolerance and runtime 
adaptation functionalities into the VGrADS/LEAD integration software stack to enable 
resilient execution of LEAD workflows. Resilient workflow execution is of paramount 
importance to LEAD workflows because of deadline constraints (forecasts have to be 
available by a certain deadline). We demonstrated these resilience features at SC’07. 
This work was built on top of our prototype VGrADS/LEAD integration that we 
demonstrated at SC’06. This work was a true collaboration, involving Lavanya 
Ramakrishnan (originally UNC, later moving to Indiana), Anirban Mandal (UNC), 
Gopi Kandaswamy (UNC), Yang-Suk Kee (ISI), Dan Nurmi (UCSB), Ryan Zhang 
(Rice), and many others. In this exercise we refined the resource slot concept, showed 
how the Virtual Advanced Reservation (VAR) mechanism could be used to 
probabilistically reserve and manage slots, demonstrated slot-based application 
scheduling based on performance models, and showed how different fault-tolerance 
techniques like over-provisioning and migration can improve the reliability of LEAD 
workflow executions. The net effect was that LEAD could produce an abstract 
workflow (as a DAG with constraints) and have the workflow scheduled and reliably 
executed on VGrADS and TeraGrid resources. The figure below shows the relevant 
components of the VGrADS/LEAD integration stack and the invocation flow for 
various components. 



VGrADS Activities  4 

 
 
 
The following steps are executed to generate a fault-tolerant schedule: 
 

1. The Workflow Planner and the Execution Manager serve as the interface 
between the LEAD and VGrADS systems.  The Workflow Planner obtains the 
DAG and constraints (e.g. deadlines) from the LEAD portal and services. 

2. The Workflow Planner passes the DAG, constraints, and a pointer to the 
application performance model to the VGrADS scheduler. 

3. The VGrADS Scheduler queries the performance model for the task’s resource 
requirements to meet the constraints. 

4. The Scheduler requests slots from the Virtual Grid Execution System (vgES) 
using the vgFind command.  

5. vgES queries the Virtual Advanced Reservation (VAR) system for the 
probabilities of getting slots. For reserved resources, the probability is 1 
(ignoring node failures); for other resources, it is a statistical prediction. 

6. Based on VAR data, vgES chooses slots and returns a representation to the 
scheduler. 

7. The Scheduler assigns DAG nodes to slots, using the performance model to 
predict computation and communication time.  

8. The Scheduler consults with the Fault Tolerance and Recovery (FTR) 
component, which determines the degree and resources for over-provisioning. 



VGrADS Activities  5 

9. FTR uses performance models, availability probabilities of resources (via an 
availability prediction service), resource and network models and the DAG 
constraints to determine the best fault tolerance mechanism that induces reliable 
workflow execution. 

10. FTR returns the degree and resources for over-provisioning a workflow step to 
the Scheduler. 

11. The Scheduler iterates with FTR to determine a fault-tolerant plan for the entire 
workflow and returns the plan (mapping of (replicated) tasks to slots) to the 
Workflow Planner.  

12. The Workflow Planner issues a vgBind command to vgES. 
13. For batch-queued resources, vgES queries VAR (repeatedly) for time to submit 

job. 
14. vgES acquires resources at partner sites. For reserved resources, Globus GRAM 

is used to glide in a personalized PBS server; for batch-queued resources, a job 
is submitted to the local PBS queue. This process must be followed for each slot 
to be bound. 

15. Each slot is given a PBS queue, accessible via a Globus gateway. 
16. When all slots are bound, the Workflow Planner annotates the DAG with slots 

and the LEAD workflow is ready for execution.  
 

The following steps are executed for managing execution of the workflow: 
 

17. The Execution Manager sends a vgLaunch command for the current workflow 
task to vgES. 

18. vgES runs the task on the allocated resource gateway. 
19. While the job executes, the Execution Manager issues vgStatus commands to 

monitor progress. 
20. If the Execution Manager detects a failure for a workflow step, a re-scheduling 

is triggered. 
21. The Execution Manager consults the Scheduler and FTR to generate a new fault-

tolerant plan for the remaining portion of the workflow. 
22. The new plan is returned to the Execution Manager and the unfinished portion 

of the workflow begins execution. The failed workflow step may be migrated to 
another resource in the process. 

23. This continues until the entire workflow finishes execution and the data products 
are ready. 

 
Here are some snapshots of a LEAD workflow execution that incorporates the fault-
tolerance features. These snapshots show a LEAD workflow and how it was scheduled 
in a fault-tolerant manner over two TeraGrid resources and two VGrADS resources. 
They also show how different workflow steps have been over-provisioned across 
multiple resources to guarantee a higher probability of meeting the workflow deadline.  
 



VGrADS Activities  6 

 
 
Figure: LEAD workflow and status of workflow steps 
 

 
 
Figure: State of LEAD workflow steps across TeraGrid and VGrADS resources 
 



VGrADS Activities  7 

1.2 EMAN 
 
Much of the early VGrADS application research effort focused on the EMAN software 
(http://ncmi.bcm.tmc.edu/ncmi/homes/stevel/EMAN/doc), which we used as a model 
for workflow-style applications. EMAN is a package for Electron Micrograph Analysis 
developed within the National Center for Macromolecular Imaging at Baylor College of 
Medicine (BCM) by Dr. Steve Ludtke, a senior researcher in Dr. Wah Chiu’s group.  
The package iteratively processes thousands to possibly tens of thousands of 
micrographs from electron microscopes in the determination of a macromolecular 
structure. The application and the iterative nature of the processing are illustrated in the 
following diagram. 
 
 
 

 
 
The lessons of EMAN for virtual grids, scheduling, and workflow management have 
been incorporated into our LEAD developments. To summarize past work in those 
areas: 

• EMAN’s parallel phases are embarrassingly parallel computations (although 
they could, in principle, be reformulated as more tightly-coupled computations), 
coded in some cases to require a shared file system and in some cases with no 
coupling requirement. These motivated the original “TightBag” and “LooseBag” 
features of vgDL. 



VGrADS Activities  8 

• EMAN parallel phases (without shared file systems) lent themselves to 
distribution between multiple clusters. This fact led to both the hierarchical 
vgDL structure (“LooseBag of Cluster”) and two-phase scheduling. It was also 
the primary motivation for our development of Batch Queue Scheduling. 

• EMAN workflow implementations require schedulers to be aware of both 
computation and communication, which has been a cornerstone of our work.  

• EMAN was also the genesis of our early emphasis (as far back as GrADS) on 
performance models. The fact that certain phases of EMAN were extremely 
sensitive to the processor architecture (a factor of 3 difference, if clock speeds 
were the same) motivated much of our work in this area. 

 
EMAN was also used as the test case for Batch Queue Prediction scheduling. The crux 
of this work was that our older scheduling methods assumed that all resources were 
dedicated to VGrADS work, which was not true even for our own experimental 
machines. Our solutions to these issues formed the basis of demonstrations at SC05 and 
thereafter, and are a large part of Ryan Zhang’s thesis. 
 
It also bears mentioning that EMAN workflow DAGs continue to be useful in our 
experiments, whether simulations or real-world runs. For example, EMAN was one of 
two actual application DAGs used in Ryan Zhang et al.’s CCGrid ’07 paper and many 
of the conclusions therein were based on it. 
 
1.3 GridSAT 
 
The UCSB VGrADS application work has focused on GridSAT, a parallel and 
complete Boolean satisfiability (SAT) solver used to solve non-trivial SAT problems in 
a grid environment.  The application uses a parallel solver algorithm based on Chaff to 
(attempt to) solve SAT problems of the form ‘given a large, non-trivial Boolean 
expression, is there a variable configuration (and what are the variable values) that 
results in the expression evaluating to TRUE?’  The system stands apart from other 
SAT solvers in the sense that it was designed explicitly to run in grid environments, and 
has built-in intelligent parallelism scheduling mechanisms.  As a result of this design, 
the system has been used successfully and quickly to solve several previously unknown 
problems by utilizing vast amounts of computational resources. 
 
GridSAT represents a grid application with resource requirements that are substantially 
different from EMAN.  Since it was designed as a grid program from first principles 
(rather than as an adaptation of a parallel implementation) it includes many fault 
tolerance, latency tolerance, and resource-aware scheduling features that are necessary 
for grid application performance as explicit structural components.  Thus, while it is a 
code of some complexity, it represents the "high end" of grid application development 
as evidenced by its performance. 
 



VGrADS Activities  9 

As a VGrADS driving application, GridSAT motivates both the functionality and the 
performance of the virtualized resource discovery and allocation mechanisms.  The 
GridSAT scheduler considers resources abstractly, strictly in terms of their performance 
characteristics.  VGs can, in principle, handle this task more scalably.  However, as 
GridSAT is already highly tuned for grid environments, incorporating VGs would be a 
strong test of vgES efficiency. 
 
Finally, GridSAT's resource usage model is substantially more dynamic than that of the 
other VGrADS driving applications.  It acquires resources only when it determines they 
will benefit execution (as opposed to having a maximal set specified when it is 
launched) and releases them as quickly as possible to prevent waste and promote 
allocation stability.  To do so, the valuation of resources at any given moment in a 
GridSAT execution is related to the resources GridSAT is currently holding.  This 
incremental form of resource discovery in which the currently held resources 
parameterize the resource search is unique among the VGrADS test codes, and 
motivates many of the dynamic features in the Virtual Grid Execution System (vgES) 
design outlined elsewhere. 
 
GridSAT has fallen out-of-date as the student developer graduated.  
 
1.4 FT-LA: Fault Tolerant Linear Algebra 
 
UTK is exploring scalable techniques to tolerate a small number of process failures in 
large-scale computing. The goal is to develop scalable fault tolerance techniques to help 
to make future high performance computing applications self-adaptive and fault 
survivable. The fundamental challenge in this research is scalability. To approach this 
challenge, we are (1) extending existing diskless checkpointing techniques to enable 
them to better scale in large-scale high performance computing systems; (2) designing 
checkpoint-free fault tolerance techniques for linear algebra computations to survive 
process failures without checkpoint or rollback recovery; and (3) developing coding 
approaches and novel erasure correcting codes to help applications to survive multiple 
simultaneous process failures.  The fault tolerance schemes we are developing are 
scalable in the sense that the overhead to tolerate a failure of a fixed number of 
processes does not increase as the number of total processes in a parallel system 
increases. 
 
Various high performance distributed linear algebra routines are being examined to 
determine how to best support process fault tolerance.  FT-MPI (a fault-tolerant 
implementation of MPI 1.2 developed at UTK) is used for communications, and 
recovery techniques are incorporated into the libraries to allow them to recover from 
errors in a fast and scalable fashion. 
 



VGrADS Activities  10 

1.5 GridSolve 
 
UTK has a long-term interest in providing mathematical solvers to enable 
computational science. The latest of these software systems is GridSolve, an attempt to 
provide (through middleware) a seamless bridge between the simple, standard 
programming interfaces and desktop systems that dominate the work of computational 
scientists and the rich supply of services supported by the Grid. This allows 
computational scientists running Matlab on their desktops to reap the benefits (shared 
processing, storage, software, data resources, etc.) of supercomputers. GridSolve’s 
design and implementation use a layered approach to manage interactions between the 
Grid’s diverse management software (e.g. local schedulers) and the user community’s 
equally diverse application structures (e.g. parameter sweeps, workflows, etc.). This 
design relies on a GridSolve agent to translate the user’s high-level request into specific 
instructions for the grid resources, as shown in the figure below. 
 

 
 
This design integrates well with virtual grids since, from the agent’s point of view, 
vgES can be considered just another resource manager. However, using vgES rather 
than lower-level managers (e.g. Condor, PBS) allows the agent to collect resource 
information more accurately, and allows the agent to leverage VGrADS research. The 
investigations of GridSolve scheduling have been influential in our more general work 
on vgES, particularly in the area of managing fault tolerance. 



VGrADS Activities  11 

 
2 VGrADS Programming Tools (Rice, UCSB, UCSD, UH, UTK) 
 
The broad vision of the programming tools thrust is to provide for application users 
high-level interfaces that allow automatic construction of capabilities that are 
(currently) hard to achieve in a Grid environment.  At the core of this work is our 
attempt to take advantage of the virtual grid (VG) abstraction and tools to provide more 
application-specific abstractions. 
 
More specifically, we have followed four research thrusts this year: 

1. Improved scheduling for workflow computations on VGs in a variety of 
situations, 

2. Developing economic methods for resource allocation, 
3. Compiling and optimizing node programs for use in a Grid environment, and 
4. Fault-tolerant libraries for MPI. 

The following subsections discuss each thrust in turn. 
 
2.1 Scheduling Workflows on Virtual Grids 
 
As we have previously reported, researchers at Rice, UCSD, and UNC have developed 
scheduling strategies for EMAN, EOL, and other workflow applications. These 
applications are modeled by directed acyclic graphs (DAGs), where the nodes are 
computations (which may themselves be parallel structures) and the edges are data 
communication. A key part of this has been the study of the  “two-phase” scheduling 
strategy, where the first phase is selecting a VG for an application, and the second phase 
is mapping the application onto the chosen VG. This has been so successful that we 
have adopted it in nearly all of our ongoing work. 
 
Last year we reported that our paper on this topic “Performance of Scheduling 
Algorithms in Grid Environments” by Ryan Zhang and VGrADS PIs Charles Koelbel 
and Ken Kennedy (all from Rice University) had been nominated as best paper at the 
CCGrid’07 conference. In the end, the conference committee presented a special “Best 
Sustained Technical Contribution Award to Prof. Ken Kennedy and his team at Rice 
University.” This honored not only the 2007 paper, but also an entire series of papers (at 
least one accepted in every year of CCGrid since its inception) published by the 
VGrADS and GrADS projects. Scheduling methods studied in the 2007 paper were 
used in the SC07 demonstrations detailed elsewhere in this report. 
 
Zhang and Koelbel have continued their work on workflow schedulers, having 
submitted a new paper to the Grid2008 Conference. Although this work has not yet 
been accepted for publication, we see it as an important step forward in VGrADS. A 
serious limitation of our previous work—and a source of concern for some reviewers—
has been the static nature of the schedules versus the dynamic nature of Grid resources. 
The new work addresses this by developing a class of hybrid static/dynamic schedulers 



VGrADS Activities  12 

that combine performance-model based a priori scheduling (as in our prior work) with 
dynamic performance monitoring and rescheduling. The chart below, taken from the 
submission, shows the improvement of the new method (“Hybrid resche”)  over our 
previous purely static method (“Static”), a greedy dynamic scheduler (“Dynamic”), and 
a static schedule with periodic rescheduling (“Static resche”). The methods are 
compared by the Schedule Length Ratio (SLR), a comparison to the estimated critical 
path length of the computation; higher SLR is better. The smaller bars show the 
standard deviation of the SLR.  All computations were run multiple times on a real 
Grid. 

 
 
Perhaps even more telling is the following chart from the same paper. This shows a 
subset of the runs in which we introduced an artificial load on the Grid by submitting 
extra jobs to the same batch-queued resources. Unsurprisingly, this produces very poor 
performance for the purely static method. However, it also affects the dynamic 
scheduling dramatically, perhaps because our dynamic method does not adequately 
consider queue wait times. In any case, these tests demonstrate that a hybrid method 
based on continuously updated performance models is worthy of continued study. 



VGrADS Activities  13 

 
 
In addition to the new scheduling method, Zhang also presented his thesis proposal on 
scheduling Grid computations. New work in that proposal promises to unify the 
schedulers we have developed for batch-queued resources and scheduling for fault 
tolerance. If all goes well, Zhang should complete his thesis in the 2008-2009 school 
year. 
 
 
2.2 Resource Allocation via Grid Economies 
 
As reported in previous annual reports, researchers at UCSB have embarked on a study 
of economics-based methods for resource allocation and scheduling on grids. The 
inspiration for this study was Ken Kennedy’s observation that application performance 
models (also developed under GrADS and VGrADS) provide a measure of “value” of a 
resource to an application. He suggested that we use this as input to economic models 
that Rich Wolski and collaborators were developing. 
 
Our current approach to this idea is the development of auction mechanisms for control 
of batch queued resources. A key problem in this space is extracting accurate 
information about the performance and importance of the individual jobs. Because the 
execution of one job prevents all others in the queue from using it, the economic 
“externalities” of scheduling a resource give users a great incentive to lie in order to get 
to the front of the queue. Even without evil intent, fallible humans often provide 
inaccurate information, either due to the difficulty of estimating performance or because 



VGrADS Activities  14 

they do not fully understand the pricing mechanism. Such inaccuracies, of course, 
destroy any optimality properties of the scheduler.  
 
Andrew Mutz, a student working under VGrADS PI Rich Wolski, has been 
investigating this problem. Their paper “Eliciting Honest Value Information in a  
Batch-Queue Environment”, presented in the 8th Grid Computing Conference, describes 
a new scheduler based on the Expected Externality auction mechanism for scheduling 
jobs on batch-queued resources. In this scheduler, each job specifies its importance (v, 
in “currency” units), its execution time (t) and its wait tolerance (d, in “currency” per 
time). Whenever the system can accept a job, the head of the queue is examined. If its 
value vi is greater than or equal to the tolerances of the remaining jobs in the queue 
(

! 

ti " d j

j# i

$ ), then the job runs and pays (transfers currency) to the others based on their 

expected tolerance values (i.e. the mean ti⋅dj over the distribution of parameter values 
for the task). If the value vi is lower, then the job is dropped without transfer of 
currency. The user may choose to resubmit the job, possibly with different v and d 
values. (Note that while the job was waiting in the queue, it acquired currency from the 
jobs that ran before it; this would allow it truthfully to claim a higher value, for 
example.) This pricing mechanism has two useful theoretical properties. Truth-telling 
(i.e. accurately setting t, d, v values) is a Nash equilibrium strategy; that is, if all other 
users are telling the truth, one user cannot improve her situation by providing false 
information. Also, the currency budget is balanced; that is, payments from the executed 
jobs equal the accruals by the waiting jobs. This implies that the system administrators 
can set user priorities simply by their initial distribution of currency. The graphs below, 
reproduced from the paper, demonstrate the former property in a simulation experiment. 
One simulated user gave inaccurate parameters for job value (left graph) or delay 
tolerance (right graph). The red dots track the outcome (actual value of work) for the 
users; black dots are individual simulations that create these averages. Note that the best 
outcome – i.e. the highest average final value – occurs when the parameter is correct. 

 
 
In unpublished (to date) work, Mutz has also explored another approach to economics-
based scheduling based on auctioning reservation slots. In this work, the user supplies 
the job value (v), run time (t), and deadline (d). Dynamic programming can then 
construct a provably optimal (with respect to value of executed jobs) schedule. Mutz 
has integrated this method with a PBS queue system, computing the reservations once 



VGrADS Activities  15 

per day. Like the expected externality method, users get the best outcomes when they 
announce accurate parameters for their jobs. The graphs below show this. 

 

 
 

 
2.3 Compiling and Optimizing Node Programs 
 
In past reports we have discussed activities at Rice University to use Just-in-Time (JIT) 
compilers to improve the efficiency of node programs. As the student involved in those 
efforts graduated, the node compiler activity moved to the University of Houston. 
 
Ayaz Ali, a student of VGrADS PI Lennart Johnsson, has published a series of papers 
about compilation of the Fast Fourier Transform algorithm for modern computer 
architectures. Because the FFT uses very particular data access patterns and non-
nearest-neighbor communications, many compiler techniques developed for linear 
algebra and mesh relaxation do not produce good results. However, the variety of 
implementation options available (corresponding to recombinations of the Kroenecker 
product formulation of the FFT) allows many opportunities for optimization. In 
“Empirical Auto-tuning Code Generator for FFT and Trigonometric Transforms” Ali, 
Johnsson, and Dragan Mirkovic present a code generator framework for exploiting 
these opportunities. Their three-stage scheme first generates codelets (straight-line 
program blocks) for the basic FFT butterfly operation, then schedules the order of the 
codelets by considering them as a DAG computation, and finally chooses the formats 



VGrADS Activities  16 

for the input and output arrays to produce the best running time. Each stage selects 
appropriate parameters for the code it generates using a heuristic search strategy, in 
which  possible parameters are evaluated by empirically testing the code. As the graph 
below (taken from the paper) shows, this can result in significant improvements over an 
older strategy based only on heuristically choosing few parameters without empirical 
testing. 

  
 
2.4 Fault tolerant MPI: FT-MPI / OpenMPI 
 
Fault Tolerant MPI (FT-MPI) is a full MPI 1.2 specification implementation developed 
at UTK that provides process-level fault tolerance at the MPI API level. It is one of 
several fault tolerance techniques being incorporated into the OpenMPI project. This 
umbrella project is combining technologies and resources from several other projects 
(FT-MPI, LA-MPI, LAM/MPI, and PACX-MPI) in order to build the best MPI library 
available. VGrADS has supported this work (in cooperation with other grants) since its 
inception. 
 
During the past year, VGrADS PI Jack Dongarra led a team including Thara Angskun, 
George Bosilca, Graham Fagg, and Jelena Pješcivac–Grbović in investigations of self-
healing network topologies. In a series of papers, they have investigated the fault 
tolerance properties of networks through discrete event simulation (rather than the more 
common approach of combinatorial analysis). For example, in “Self-Healing in 
Binomial Graph Networks” they study the connectivity of the family of binomial graphs 



VGrADS Activities  17 

(those in which each node n is connected to nodes (n±2k) MOD m for all 2k<m where m 
is the size of the graph). They find that the graph is δ-connected, where δ is the degree 
of each node, and that the average number of disconnected nodes and average hop count 
increase significantly when the number of node failures rises to 50% of the graph size. 
However, by using the efficient methods for self-healing the binomial graph (which 
may be triggered automatically, it is possible to create a new, smaller binomial graph. 
Illustration (a) below shows how this is done on a 10-node binomial graph when node 3 
fails. First the links to node 3 (blue dotted lines) are eliminated; then other superfluous 
links (red dashed lines) are removed; finally, new links (green solid lines) are added to 
rebuild the topology. The resulting graph – the binomial graph of size 9 – is shown in 
illustration (b).  
 

 
 
A significant contribution of the paper is showing how these links can be identified 
locally, rather than causing a global synchronization. Dongarra and his team are 
investigating incorporating these fault tolerance methods in a future implementation of 
FT-MPI and OpenMPI. 
  



VGrADS Activities  18 

3 VGrADS Execution System (UCSB, UCSD, UNC, USC/ISI) 
 
As in past reports, our execution system research directions address the continuing 
development of vgES (Virtual Grid Execution System) to support complex, adaptive 
workflow applications. Section 3.1 describes the basic capabilities of vgES, which 
might be considered the software infrastructure for VGrADS. Other sections expand on 
research that extends parts of this system. 
 
While basic development and improvement of vgES has occurred, much of our effort is 
now directed at integrating “cloud computing” resources into vgES and the VGrADS 
testbed.  Section 3.2 describes this new research thrust. Such support will be the focus 
of the No Cost Extension that was recently granted.  
 
We have also refined our support for temporal reasoning for resource characterization. 
This work appears in full in Emma Buneci’s thesis, and in greatly abbreviated form in 
Section 3.3. 
 
In addition to the above, we have conducted research in the four areas described in 
detail in the indicated sections:  predication based methods for virtual reservations 
(Section 3.4), algorithms for optimal slot selection (Section 3.5), fault tolerance in the 
Virtual Grid (Section 3.6), and Grid resource specification generation (Section 3.7). 
 
As it has been for the past several years, vgES formed the basis for a VGrADS 
demonstration at the annual SC conference (SC07 in Reno). Multiple members of the 
execution system team presented these demonstrations at the GCAS (Gulf Coast 
Academic Supercomputing, a consortium including Rice and UH), SDSC, and RENCI 
booths. The innovation this year was the addition of fault tolerance to the end-to-end 
demonstration. While we had expected (due to time constraints) to only be able to show 
this as a simple movie of a previous experiment, fate intervened. During our live 
demonstrations, various glitches (including a city-wide power outage) created actual 
failures in the presentation. However, since these only affected the local area, our own 
grid software withstood the challenge. 
 
3.1 vgES Fundamentals 
 
As it has been from the beginning of the project, vgES provides VGrADS with a 
framework for resource management and an execution environment for grid 
applications. Here, we briefly describe the current core concepts of that framework. 
 
3.1.1 A Generic Framework for Resource Allocation and Execution 
 
Since many Grid resource managers were designed for time-sharing or dedicated 
resources, the resource acquisition process has been ignored or, at most, been simple 
and naive. In the real world, however, most resource providers employ a resource 



VGrADS Activities  19 

manager for efficient utilization and better services, which makes the resource 
acquisition process complex. As a solution, we implemented a new resource acquisition 
mechanism called resource actualization that consists of orchestration to make a 
resource bound and personalization to configure the bound resources with appropriate 
execution environments. 
 
Resource orchestration coordinates distributed resources and transparently acquires a 
resource collection for a resource specification, isolating the user from the heterogeneity 
and dynamics of the underlying resources. In essence, it defines the meanings and the 
mechanisms of binding a resource collection for a specification. A resource collection is 
called bound when it is made available. vgES orchestrates multiple resources 
simultaneously against binding failures and determines the best one among the bound 
resources, considering the characteristics of application and resource. 
 
Resource personalization implicitly configures the bound resources with an execution 
environment, based on the application characteristics. In essence, resource 
personalization leverages commodity tools for task scheduling, resource management, 
communication, etc, to simplify application development and exploit the features of the 
tools. A fundamental difference from conventional approaches such as Plush and 
Condor-G, which configure a predetermined execution environment, is that resource 
personalization enables arbitrary coupling of resources and execution environment. 
Moreover, any commodity tools can be plugged in as long as they conform to the 
external APIs for extension. 
 
3.1.2 Slot Allocation over Advance Reservation and Virtual Reservation 
 
Initially, vgES had a crude method to allow vgDL requests to specify when resources 
should be made available; that version dealt exclusively with time-sharing or dedicated 
resources that were made immediately available to the user. This was inadequate for 
real applications, such as the LEAD workflow (see Section 1.1). Its requirements are 
indicative of the complicated machinations required for adaptive, real-time applications. 
We addressed this shortcoming by refining the time notion in vgES to accommodate 
batch queues. The resulting construct was termed a slot. 
 
A slot is a high level representation of resources in time and space. It is a set of 
resources available in a certain time range. It can be expressed by a tuple <size, start 
time, duration>. Different from the slot used in a batch system that describes one 
resource allocation across time and space for the single resource from the system 
viewpoint, the slot in vgES is a resource collection in time and space across multiple 
resources from the application viewpoint.  
 
We implemented this slot concept against advance reservations provided by some batch 
systems and virtual reservation using batch queue prediction (see Section 3.4). Further, 
we are working on allowing the users to apply operations to slots to set slot properties 



VGrADS Activities  20 

(e.g., dependency between slots) or to change time constraints (e.g., modify start time 
and/or duration). 
 
3.1.3 Resource Equivalence for Flexible Resource Discovery 
 
Users can experience resource discovery failures due to a variety of causes such as 
resource scarcity or resource conflicts. With these search failures, users can just repeat 
the same request until the resources are available or modify their requests, anticipating 
successful search. As an alternative, the system can provide more flexibility in resource 
discovery to improve the likeliness of search success. A popular feature that the 
traditional resource brokering systems provide is a range search. Compared to exact 
matching techniques, it can explore more candidates. 
 
However, range search provides flexibility to only a single attribute. To provide more 
flexibility across attributes, we extended the vgDL language to enable the users to find 
the resources successfully even in case of discovery failures. The user can define a set 
of equivalent resource configurations that have precedence and expect to achieve 
similar performance on a per-application basis. For instance, the developers can specify 
that an Opteron processor achieves three times better performance than an Itanium 2 
processor for a given application as follows: Opteron <> 3 * Itaniutm2. Resource 
equivalence as well as range search is reactive to search failures and makes the system 
resilient to the discovery failures. Both of them increase the number of resource 
candidates in the resource pool and consequently improve the likeliness of successful 
research discovery. This extension introduces another dimension in resource selection, 
which makes the selection more complex. We are exploring the tradeoff between 
resource quality and selection cost. 
 
3.2 Cloud Computing Local Cluster Resources 
 
During the reporting period, the UCSB team headed by Dan Nurmi and Graziano 
Obertelli began developing EUCALYPTUS – An Elastic Utility Computing 
Architecture for Linking Your Programs to Useful Systems.  Eucalyptus is an open-
source reverse-engineered implementation of Amazon’s EC2 cloud computing 
infrastructure that can be deployed on local cluster resources.  Using SDSC Rocks as a 
deployment tool, any site installing Eucalyptus can offer cloud-computing services from 
its resources using the user-interface and command-line tools available from 
Amazon.com.  It is EC2@home. 
 
The intention is to include cloud computing in the portfolio of systems that vgES can 
amalgamate automatically beneath the VGrADS slot abstraction.  Various VGrADS 
sites (UCSB, RENCI, Rice, UH) will run Eucalyptus, each exporting its own cloud, 
which will then be integrated into a single set of slots by vgES.  In addition, because 
Eucalyptus uses the Amazon.com interface tools, vgES will be able to use EC2 itself 
(although there will be an occupancy charge).  The project intends to explore how 



VGrADS Activities  21 

commercial “for-fee” cloud computing services (EC2), collaborative locally installed 
cloud-computing services (Eucalyptus), and NSF center services (TeraGrid) can be 
profitably combined for workflow applications via the slot abstraction. 
 
3.3 Qualitative Performance Analysis Framework For Scientific Workflows  
 
We have continued the development of a qualitative temporal reasoning framework to 
support performance validation and diagnosis of long-running scientific Grid 
applications for Virtual Grids (VGs). Our goal is to reason about temporal events to 
differentiate between severe, persistent behavioral violations and transient ones, and to 
output a qualitative answer to a workflow user or fault-tolerance service. The 
framework’s qualitative performance output can help bind the expectations of 
applications with the resource behavior in the VG execution system.  
 
The qualitative performance analysis framework supports Grid environments in (a) 
monitoring and validating the temporal behavior of long-running scientific workloads, 
(b) diagnosing possible sources of behavior changes, and (c) providing reasoning 
support for applications to adapt to behaviors associated with degraded application 
performance. 
  
3.3.1 Framework Overview 
 
We have developed a novel performance analysis framework that reasons temporally 
and qualitatively about performance data from multiple monitoring levels and sources. 
The framework periodically analyzes application performance states by generating and 
interpreting signatures containing structural and temporal features from time-series data. 
Signatures are compared to expected behaviors and, in case of mismatches, the 
framework hints at causes of degraded performance, based on unexpected behavior 
characteristics previously learned by application exposure to known performance stress 
factors. 
 
3.3.2 Progress 
 
In the reporting period (June 2007 – May 2008), we have focused on expanding 
experimental validation to more Grid computing resources and applications, refining 
algorithms and methodologies used, and validating the efficacy of our framework on the 
collected experimental data. 
 
We have expanded experiments with two Grid workflows from meteorology (LEAD) 
and astronomy (Montage).  We have run long-running tasks within these workflows 
with two different input data sets, and on four different Grid computational resources 
(NCSA TeraGrid Mercury clusters and RENCI’s Dante cluster). Performance 
monitoring data captured during these executions reveal common qualitative temporal 
signatures characterizing successful and well-performing execution for both 



VGrADS Activities  22 

applications. This allows the framework to learn and store the signatures of typical, 
healthy temporal behaviors. Furthermore, we collected and analyzed temporal 
signatures generated from performance data captured during known degraded-
performance application states. The resulting signatures are significantly different from 
the expected, healthy behavioral signatures previously learned during well-performing 
application executions. The ability to automatically and compactly generate signatures 
capturing fundamental differences between good and poor application performance 
states is essential to improving the quality of service for Grid applications.  
 
We have refined the algorithms used for time series pattern recognition, employing an 
improved heuristic based on a combination of statistical hypothesis testing with 
properties of the autocorrelation function. Also, we have studied several approaches for 
a better visualization of the multi-dimensional data contained in the behavioral 
signatures generated. We have employed star-coordinates as a technique to support and 
guide the analysis and characteristics of groups of temporal signatures, and we have 
also developed a visualization of temporal signatures based on coloring of the vector 
values of the signature. 
 
We have evaluated the efficacy of our framework based on the primary methodology of 
use: classification of new temporal signatures generated from on-line performance 
monitoring data. We have employed the balanced accuracy as a measure of the ability 
to accurately identify both signatures from the expected performance states and from 
the unexpected/diagnostic performance states. Our results indicate that our qualitative 
framework has the ability to identify correctly performance problem states over time 
with accuracies ranging from [61% - 99%], depending on the application analyzed and 
various transformations applied to the performance data. The obtained accuracies are 
sufficient to indicate potential problems during the execution of long-running 
workflows, especially considering the very small temporal signature and analysis 
overhead incurred by our qualitative performance analysis framework. 
 
 
3.4 Predication Based Methods for Virtual Reservations 
 
The slot based vgES can construct a virtual grid from service level agreements (i.e. 
advanced reservations) or, in the situation that advanced reservations are not supported 
by a resource provider, it can exploit predictions of future resource availability, or 
virtual reservations.  To this end, we developed VARQ -- Virtual Advanced 
Reservations for Queues -- to support the vgES slot abstraction in best-effort batch 
environments.  The vgES slot abstraction allows vgES clients to specify when a specific 
resource set should be made available to them, and for how long.  In environments 
where advanced reservations are supported, vgES simply uses the local reservation 
infrastructure.  In the majority of grid settings VGrADS is currently targeting, however, 
no advanced reservation capability is supported.  On these systems, VARQ implements 
a "virtual" reservation by making statistical predictions of the queue delay associated 



VGrADS Activities  23 

with different possible submissions.  It then chooses the submission time and format 
most likely to provision vgES by the reservation time.  The VARQ implementation is in 
the form of a library that has been bundled together with vgES and is part of any 
standard vgES installation. 
 
VARQ depends critically on another VGrADS contribution: the QBETS system.  
QBETS (Queue Bounds Estimation from Time Series) uses a new time series prediction 
method to estimate the instantaneous bounds on queue delay an individual job will 
experience.  Using newly developed Network Weather Service queue delay monitors 
(also a VGrADS-funded innovation), QBETS constantly monitors the delay response 
exhibited by a target machine.  As jobs pass through the system, it identifies and 
updates the historical information necessary to make predictions for individual jobs.  In 
particular, it automatically identifies change-points in each historical series (so that only 
relevant data is considered) and model-based clustering to categorize jobs into service 
classes.  The effect is an instantaneous prediction that automatically takes into account 
service-class specific priorities such as those implied by back filling.  Together, VARQ 
and QBETS provide vgES and the HPC community as a whole with the ability to 
specify start time deadlines for jobs requesting time on batch controlled resources: a 
new and important functionality for the Grid computing community. 
 
VARQ, using QBETS, successfully provided virtual advance reservations on VGrADS 
site machines (SDSC’s ia64 TeraGrid Cluster, Rice’s RTC Cluster, RENCI's Dante 
Cluster, and UCSB's Mayhem Cluster) to vgES as part of the LEAD VGrADS 
demonstrations every year since SC06. It is also analyzed in several papers listed in the 
bibliography and in submission. QBETS research has resulted in infrastructure (not 
supported by VGrADS) that is currently deployed across the TeraGrid as a user 
advisory tool and also as part of the TeraGrid user portal. 
 
3.5 Algorithms for Optimal Slot Selection 
 
One of the next steps in the evolution of vgES is to enable it to choose intelligently 
between alternative slots when implementing a VG.  Such selection requires that vgES 
be able to balance the costs and benefits of alternative resource providers and take into 
account the fact that the cost of an advanced reservation will not be uniform across all 
resource providers.  The work on application-level resource provisioning addresses 
these issues and describes a framework for resource allocation and scheduling in 
provisioning based systems. We model the resource availability as a set of resource 
slots where each slot implies the availability of certain resource capability for a certain 
timeframe for a certain price. In a real system, a slot can be implemented as a 
reservation. Given this resource model, the problem we solve is to select a set of slots, 
called the resource plan, for the application that optimizes the application performance 
while minimizing the resource costs. The problem is difficult to solve exactly because 
of the large number of feasible resource plans that could be used to execute the 
application. Thus we use heuristics such as Multi-Objective Genetic Algorithms to 



VGrADS Activities  24 

search the solution space and create a small set of potential candidates. Then a user 
specified preference factor is used to select one solution from these candidates. The 
application performance that we seek to optimize is the completion time of the 
application, also known as the makespan. In addition to the resource plan, the makespan 
also depends on the heuristic for scheduling the application over the slots in the 
resource plan. In this work, we use the well-known Heterogeneous Earliest Finish Time 
(HEFT) scheduling algorithm.    
 
3.6 Fault Tolerance in the Virtual Grid  
 
Grid applications have diverse requirements for performance and reliability that are 
difficult to enforce, given variability across grid resources. Although there are tools and 
mechanisms to monitor performance and ensure reliability (e.g., via replication and over 
provisioning, checkpoint/restart and other schemes), few tools allow users to express 
reliability policies from the application’s perspective, map these to resource capabilities, 
and then coordinate and enforce strategies. We have designed extensions to the Virtual 
Grid API to allow users to clearly articulate reliability expectations in addition to 
performance, in qualitative terms, when specifying resource requirements.  
 
Specifically, this year we implemented the fault tolerance extensions to the virtual grid 
description language.  In addition, we are using the idea of performability as a metric 
for resource selection and workflow scheduling. Performability is the joint treatment of 
performance and reliability introduced by Meyer in 1978. Performability provides a 
composite measure of a system’s performance and reliability and gives the system a 
chance to qualify system performance in the event of failures. Performability analysis 
has been applied to computer networks and communication systems, but has not been 
applied to higher-level workflow representation and/or programming models.  
 
We conducted an experimental evaluation of the system with two application examples: 
a) Balancing performance and reliability in scheduling workflow components: A multi-
level scheduling approach uses reliability as a criterion for resource selection in addition 
to performance. In addition, based on the priority of workflow tasks, parts of the 
workflow are replicated appropriately.  b) Multi-level fault tolerance mechanism at the 
vgES and workflow level: We use a simple cost model to balance workflow replication 
with checkpoint frequency to demonstrate the choices applicable based on different 
programming models.  
 
Our current activities include comparison of two prevalent fault-tolerance 
mechanisms—over-provisioning and simple restart (simple form of migration) in terms 
of time taken to successful completion in the presence of failures. We are also working 
on algorithms to determine (a) the degree of over-provisioning:  how many copies of the 
application need to be run on which resources to ensure that at least one copy succeeds 
(with a given probability) within the deadline, and (b) migration path:  determining to 
which resources to migrate in case of a failure such that the application succeeds (with a 



VGrADS Activities  25 

given probability) within the deadline. We consider the reliability (one-hour failure 
probability) of the underlying resources and the performance of the application on the 
resources to determine the suitable degree of over-provisioning/migration path.  
 
In particular, we consider the following information about the available resources and 
the application to estimate the expected performance of the application:  (a) latency and 
bandwidth information from NWS and data sizes from data-sources to estimate 
expected communication time, (b) BQP (Batch Queue Prediction) data to estimate the 
time the application has to wait on a queue on a particular resource before it can start 
execution, (c) whether there is a reservation on a queue on a resource, (d) MDS 
information to find out available resources and queues, and (e) computational 
performance estimates of the application in the form of performance models (table look-
up). We are working on developing a method for doing automatic trade-off between 
over-provisioning and migration. 
 
3.7 Grid Resource Specification Generation 
 
Any resource selection system (such as vgES) requires as input a resource specification 
(vgDL for vgES) describing the desired set of resources to execute the application. 
However, application developers are often focused on optimizing the application and 
application users often do not have the insight into the application to produce a resource 
specification that can optimize the application performance. While we have shown that 
an appropriate virtual grid (VG) produced by vgES can both optimize application 
performance and simplify scheduling, what is not clear is how to generate the resource 
specification that can produce the appropriate virtual grid. To address this issue, we 
formulated an empirical model to generate resource specifications based on application 
characteristics, the scheduling heuristic used, and an optional utility function allowing 
users to trade off application performance and resource cost. We validate our model 
with Montage DAGs and with arbitrarily generated DAGs. Our validation results show 
that our model leads to VGs enabling good performance at low resource costs. Further, 
we validate that our model maintains good performance for different scheduling 
heuristics and for different resource heterogeneity within the resource universe. The 
framework of our model appeared at HPDC 2007.  
 



VGrADS Activities  26 

4 Management & Structure 
 
VGrADS includes researchers from Rice University; University of California, San 
Diego (UCSD); University of California, Santa Barbara (UCSB); University of Houston 
(UH); University of North Carolina (UNC); University of Southern California / 
Information Sciences Institute (USC/ISI); and University of Tennessee, Knoxville 
(UTK).  Rice University serves as the lead VGrADS institution.  Keith Cooper serves as 
VGrADS PI.  He is advised by an executive committee, which consists of the key 
researchers leading the main VGrADS research thrusts.  The current members of the 
VGrADS executive committee are: 
 

Keith Cooper (Rice, Chair) 
Jack Dongarra (UTK) 
Carl Kesselman (USC/ISI) 
Chuck Koelbel (Rice) 
Rich Wolski (UCSB) 

 
During the reporting period, the VGrADS executive committee met on a regular basis 
either in person or by teleconference to review progress and milestones, discuss plans 
for the future, and advise the PI on resource allocation issues. 
 
Project design and coordination during the current reporting period were enabled 
through weekly technical teleconferences involving researchers from each of the 
VGrADS sites, one PI meeting, regular VGrADS executive committee meetings and 
teleconferences, VGrADS planning workshops at UNC (10/11-12/07) and Rice (4/7-
8/08), one developers’ workshop at USC/ISI (8/1-2/07), and communication via 
VGrADS mailing lists.  Research subproject participants also met on a regular basis to 
exchange ideas and develop research plans.  In addition, the EOT group at Rice met to 
develop and coordinate education and outreach activities.  
 
4.1 Changes to Management Structure 
 
On December 3, 2007, VGrADS PI Dan Reed left UNC to join Microsoft as Director of 
Scalable Computing and Multicore (http://www.renci.org/news/transition.php).  
Anirban Mandal, who has been a key participant throughout the VGrADS project, 
assumed the role of lead PI at UNC. 
 
4.2 VGrADS Web Site 
 
During the funding period, the VGrADS Web site, http://vgrads.rice.edu, was updated 
to reflect recent results, current project directions, and personnel changes. 
 
 



VGrADS Activities  27 

5 Project Milestones 
 
As recommended by the NSF Site Review team (4/28-29/05), the VGrADS Principal 
Investigators have actively tracked and (where necessary) updated research milestones 
for the project. Here we report on milestones in years 4 (some of which were still in 
progress as of our last report), 5 and 6. All section numbers refer to the 2008 report 
unless otherwise noted. 
 
5.1 Year 4 Milestones 
 
Our revised milestones, and the progress toward them, included: 

i. Execution System/Virtualization: 
• Evaluate resource selection, binding, and scheduling techniques based on 

time-dependent provisioning for VGs developed in Year 3. 
(Done: described in 2007 report.) 

• Explore techniques to extend the VG abstraction to diverse resource 
management paradigms (e.g., probabilistic space-time resource 
abstractions). 
(Done: described in 2007 report and in Section 3.1.) 

• Expand techniques for integrated time-space reasoning with 
performance/fault tolerance capabilities. 
(Done: described in Section 3.3.) 

ii. Execution System/Grid Economy: 
• Complete integration of new prediction capabilities with vgES to support 

both scheduling and grid economy work. 
(Done described in 2007 report, described in Sections 2.2 and 3.4.) 

• Conduct empirical investigation of pricing scheme and its effect on 
resource allocations. 
(Done: described in Section 2 of 2008 report.) 

iii. Execution System/Fault Tolerance: 
• Implement novel techniques (e.g. diskless checkpointing in a general 

setting in Open-MPI). 
(Done: described in 2007 report and in Section 2.4.) 

• Prototype and experiment with techniques to implement dynamic 
adaptation in a multi-level fault tolerance environment on the virtual 
grid. 
(Done: described in 2007 report and in Section 3.6.) 

iv. Programming Tools/Workflow: 
• Demonstrate novel, scalable workflow scheduler(s) on TIGRE grid. 

(Partly done: Schedulers demonstrated (see Section 2.1), but TIGRE grid 
is only partly compatible with VGrADS requirements.) 

• Explore robustness of workflow schedulers, particularly with regard to 
fault tolerance. 
(Done: described in 2007 report.) 



VGrADS Activities  28 

v. Applications: 
• Incorporate novel, scalable workflow scheduler(s) into EMAN and 

LEAD applications. 
(Done: described in 2007 report and in Section 1.1.) 

• Continue evaluation of fault tolerant techniques with LEAD. 
(Done: described in 2007 report.) 

vi. Education, Outreach, and Training: 
• Continue AGEP program. 

(Done: One student supported in summer 2007 (expected second student 
dropped out).) 

• Participate in Tapia Symposium. 
(Done: VGrADS co-PI was poster chair, will support student travel.) 

• Continue graduate student exchanges and collaborative workshops. 
(Done: collaboration continues.) 

• Participate in Grace Hopper Conference. 
(Done: supported student travel.) 

 
5.2 Year 5 Milestones 
 
We have made excellent progress on Year 5 milestones.  We expect to achieve the 
following milestones by the end of the award period: 

i. Execution System/Virtualization: 
• Improve resource selection and binding techniques for flexible resource 

discovery. 
(Done: described in Section 3.7 of 2008 report. Some related work also 
described in 2007 report.) 

• Improve resource-scheduling techniques for VGs that consider resource 
efficiency and cost. 
 (Done: described in Section 2.1 and 2.2. Some related work also 
described in 2007 report.) 

• Prototype and evaluate extended VG abstraction over environments with 
diverse resource management paradigms.  
(Done/in progress: described in Section 3.1.3 and 3.2. Some related 
work demonstrated as early as SC06. ) 

• Demonstrate vgES with resource selection, resource binding, VG 
scheduling, for application kernels across large-scale grid platforms with 
diverse resource management paradigms.  
(Done: described Section 3.1, 3.2 and 3.4. Also referred to in Section 1.1 
as a key part of our LEAD demo.) 

• Validate and assess the integrated resource provisioning policies.  
(Done/in progress: Work started in Sections 3.5 and 3.7.) 

ii. Execution System/Grid Economy: 
• Investigate adaptive pricing algorithms for resource reservations that 

accurately reflect their value when compared with typical best-effort 



VGrADS Activities  29 

queueing service. 
(Done: described in Section 2.2.) 

• Design experiment to investigate allocation efficiency under various 
pricing schemes. 
(Done: described in 2007 work and Section 2.2.) 

• Target second VGrADS-enabled application (to be determined) as a 
driving application. 
(Done: described in 2007 report.)  

• Verify using both GridSAT and second application. 
(Done: GridSAT and LEAD described in 2007 report.) 

iii. Execution System/Fault Tolerance: 
• Integrate fault tolerance features into vgES and test on LEAD 

application. 
 (Done/in progress: described in Sections 1.1 and 3.6. Improvements 
continue, and will be demonstrated at SC08.) 

iv. Programming Tools/Workflow: 
• Incorporate novel techniques from vgES and fault tolerance work into 

workflow schedulers. 
(Done: described in Section 2.1.) 

• Study new problems in workflow based on grid economies, fault 
tolerance, and dynamic resource behavior. 
(Done/in progress: scheduling for fault tolerance described in part in 
Section 2.1 (though work continues). Dynamic resource behavior is a 
significant part of the cloud computing work described in Section 3.2.) 

• Consider compilation approaches to task migration for fault tolerance. 
(In progress. Preliminary work is part of the scheduler research 
described in Section 2.1.) 

v. Applications: 
• Evaluate methods for scheduling workflow applications on large-scale 

TIGRE grid. 
(Partially done: TIGRE grid project diverged from VGrADS 
infrastructure.) 

• Explore additional TIGRE applications. 
(Not done: TIGRE grid project diverged from VGrADS infrastructure.) 

vi. Education, Outreach, and Training: 
• Continue AGEP program.  

(In progress: two students started AGEP summer program.) 
• Continue graduate student exchanges. 

(Continuing effort.) 
 
 



VGrADS Activities  30 

5.3 Year 6 Milestones 
 
As part of our requested No Cost Extension, we developed a set of milestones for 
finishing the project. Most of these are extensions of Year 5 milestones, specialized 
based on our current development: 

i. Execution System/Virtualization: 
• Extend vgES to manage dynamic “cloud computing” resources. 

(In progress: first steps described in Section 3.2 will be demonstrated at 
SC08.) 

• Investigate scheduling methods for systems with both allocated clusters 
and cloud computing resources. 
(In progress: first steps described in Sections 3.1 and 3.2 will be 
demonstrated at SC08.) 

ii. Execution System/Grid Economy: 
• Continue investigation of grid economy systems for resource allocation 

and scheduling. 
(In progress.) 

iii. Execution System/Fault Tolerance: 
• Continue investigation of fault tolerance measures for cloud computing. 

 (In progress.) 
iv. Programming Tools/Workflow: 

• Demonstrate workflow schedulers sensitive to fault tolerance and 
performance model considerations. 
(In progress.) 

v. Applications: 
• No additional milestones expected. 

vi. Education, Outreach, and Training: 
• Support 2009 Richard Tapia Celebration of Diversity in Computing. 

(In progress: VGrADS PI Koelbel is on Tapia2009 committee, and we 
will support student attendees if funds permit.)  

 



VGrADS Activities  31 

II. Findings 
 
During the reporting period (6/1/07–5/31/08), VGrADS research continued to focus on 
three inter-institutional efforts: Applications, VGrADS Programming Tools, and 
VGrADS Execution System. The following sections summarize the findings of each 
subproject. 
 
6 Applications 
 
LEAD: We successfully demonstrated the applicability of the VG abstraction and 
VGrADS scheduling and fault-tolerance techniques to the workflow from an important 
meteorological application. This can (in principle) address LEAD’s requirement for 
transparent resource selection, monitoring and runtime adaptation. We have verified 
that our fault-tolerant scheduling techniques provide a means to address LEAD 
reliability and quality of service requirements. 
 
EMAN: We demonstrated how a workflow application could be effectively scheduled 
to use multiple clusters, each managed by an independent batch queue. We showed how 
this scheduling could lead to substantial improvements in turn-around time. 
 
GridSolve: We demonstrated a flexible, user-friendly interface to important 
mathematical software accessed over the grid. This included resource discovery, 
scheduling, and load balancing. We are currently adapting the software to take 
advantage of the VG abstraction through vgES. 
 
7 VGrADS Programming Tools 
 
Scheduling Workflow DAGs: We have shown that the two-phase scheduling strategy 
of choosing a VG, then scheduling to the resources in that VG, gives good results on a 
variety of real-world and randomly-generated DAGs. Moreover, we have found that the 
reduction in grid size that VG selection provides makes it feasible to use more advanced 
scheduling heuristics, thus producing improved schedules. We have demonstrated that 
list-based scheduling algorithms produce excellent results, particularly when coupled 
with selection of clusters using the estimated aggregate computing power. 
 
Scheduling Applications onto Batch Queues: We have shown that accurate 
predictions of batch queue wait time are possible (albeit with unavoidably large error 
bounds in some cases). We have used these predictions in conjunction with predictions 
of computation and communication time to schedule the EMAN application. This 
scheduling mechanism produced integer factor improvements in turn-around time. 
 
Scheduling for Reliability: We have shown how applications can trade off reliability 
(probability of successful completion) and performance by a novel scheduling 



VGrADS Activities  32 

algorithm. The insight of the algorithm is that using resources with minimal {execution 
time}×{failure rate} maximizes reliability for any given makespan. Therefore, ordering 
processors by this quantity when choosing resources to use allows the application to 
optimize its reliability for a given deadline (or its execution time for a given reliability). 
This method can be applied to a variety of schedulers. 
Resource Economies:  We find that computationally efficient algorithms for “solving” 
GVA allocation problems can be developed and used to design novel reservation 
protocols for batch-controlled systems.  These protocols are incentive compatible (truth-
revelation about resource requirements is a dominant strategy) and budget-balanced.  
They can also be implemented using existing open-source tools such as PBS. 
 
8 VGrADS Execution System 
 
vgES Impact: We have released the software to other internal team members; those 
teams are developing advanced workflow scheduling techniques on top of the VG and 
vgDL abstractions. Indeed we have found both the vgDL language and the vgES system 
to be useful abstractions for real-time applications, which allocate resources against 
advance reservation and best-effort batch resources. Moreover, further studies on the 
resource actualization process enable us to redesign vgES as a generic framework for 
resource management and execution environment. The detailed resource instantiation 
mechanisms have been studied and submitted to Grid’07.  
 
Flexibility in Discovery: We extended the vgDL to express resource equivalence. This 
extension provides more flexibility in resource selection, which eliminates the iteration 
of resource selection in cases where the selection operation fails. The preliminary 
implementation, which allows the user to specify equivalence for processor type, can 
discover equivalent resources with a small additional overhead of 5 -10%. 
 
Resource Provisioning: Our work with optimal provisioning has shown that resource 
provisioning generally leads to a better application performance than best-effort service 
for applications with large resource requirements and when systems are under high 
utilization. 
 
Virtual Resource Reservations: We find that VARQ is able to “manufacture” a 
probabilistic resource reservation on systems that only support best-effort batch queue 
service.  By predicting when a job should be submitted in the future in order to meet a 
specified deadline, the system ensures that the user will be guaranteed the resources 
during the desired timeframe (i.e. has a reservation).  We find that VARQ reservations 
are often a preferable substitute for “hard” advanced reservations since the latter must 
currently be negotiated manually by members of our research team and the site 
administrators controlling the machines we currently target (e.g. the TeraGrid 
resources).  Lastly, the Slotted Virtual Grid abstraction is essentially an abstract 
reservation that is translated directly (with little alteration) into a hard reservation once 
it is made by hand.  We find that a VARQ reservation can support the SVG abstraction 



VGrADS Activities  33 

fully automatically with no intervention by the user or relevant system administrators, 
and can do so in production grid environments.  
 
Fault Tolerance: Our work on fault tolerance has shown that performance and 
reliability models enable automatic selection of over-provisioning, migration, or restart 
options that hide the details of grid service failures while maintaining the virtual grid 
abstraction. 
 
Cloud Computing:  We find that cloud computing services can be implemented using 
cluster resources locally procured and maintained for scientific research (as opposed to 
being purchased exclusively from “for fee” service providers).  We also find that both 
commercial and Eucalyptus-supported services can be integrated to support the 
VGrADS slot abstraction by the vgES. 
 
Resource Economies:  We find that computationally efficient algorithms for “solving” 
GVA allocation problems can be developed and used to design novel reservation 
protocols for batch-controlled systems.  These protocols are incentive compatible (truth-
revelation about resource requirements is a dominant strategy) and budget-balanced.  
They can also be implemented using existing open-source tools such as PBS. 
 
Resource Specification Generation: We constructed an empirical model for resource 
specification generation that enables vgES to return an appropriate VG, leading to good 
application performance for arbitrary applications expressed as Directed Acyclic 
Graphs (DAGs). 
 



VGrADS Activities  34 

III. VGrADS Education, Outreach, and Training Activities 
 
The following sections describe VGrADS Education, Outreach, and Training (EOT) 
activities during the current reporting period (6/1/07-5/31/08). 
 
1 Training and Development Activities 
 
Much of the VGrADS training effort has gone toward training and development at the 
college, post-graduate, and professional levels. 
 
1.1 Inter-institutional Collaboration 
 
The VGrADS project has provided opportunities for graduate students to become 
involved in an exciting and important research project.  Through participation in 
VGrADS project meetings, email, and phone conversations, students have been able to 
interact with, learn from, and contribute toward the research of off-site VGrADS 
participants.  The multi-site nature of this project has given students first-hand exposure 
to a wider range of research approaches and specialty areas than would typically be 
possible.  Notably, this includes discussion and collaboration with several world-
renowned researchers from other institutions with whom they would not normally 
interact. These students bring their insights back to other students in their research 
groups who are not exposed to as many “outside” collaborators, enriching the 
experience for other graduate students as well. 
 
An important part of this interaction was student attendance at small-group workshops, 
which we call developer workshops. The demonstrations (at SC06 and SC07) of end-to-
end VGrADS capabilities led us to emphasize these meetings rather than student 
exchanges as we did in early years of the project. The developer workshops are working 
meetings, producing detailed plans and software artifacts for use in our experiments and 
demonstrations. This year, we held one such meeting at ISI on August 1-2, 2007 to 
integrate virtual grid development, fault tolerance, and scheduling on the LEAD 
application. The students involved received significant experience in collaborative work 
and distributed software development, as well as a broader exposure to the project than 
they would ordinarily have had. Of course, the developer workshop also had a great 
positive effect on the demonstrations described elsewhere in this report. 
 
1.2 Distributed Software Engineering 
 
The VGrADS project has provided students with a chance to build a very large-scale 
system in which all of the components must work together efficiently.  The students 
have learned goal-setting and management techniques for distributed teams, and have 
learned how to use a variety of group communication techniques to make distributed 
teams effective.  Since research groups are developing components of the system at 



VGrADS Activities  35 

various VGrADS sites, the project has also provided an opportunity for participants to 
collaborate closely with researchers with different expertise. 
 
1.3 Courses 
 
With support from their institutions, VGrADS PIs have developed and taught a variety 
of courses that cover Grid technologies and other aspects of high performance parallel 
and distributed computing.  For example, in the Spring 2008 semester, Lennart 
Johnsson taught COSC 6365: Introduction to High Performance Computing at UH. For 
more information on this course and its contents, visit either the course announcement 
page at http://www2.cs.uh.edu/~johnsson/cosc6365_08/Course_Announcement.pdf or 
the course Web page at http://www2.cs.uh.edu/~johnsson/cosc6365_08/.  In the Spring 
2008 semester, Jack Dongarra taught CS 594-004:  Scientific Computing for Engineers 
at UTK, which covered current trends in high-end computing systems and 
environments, parallel programming, aspects of Grid computing, and other topics 
relevant to scientific computing.  For more information on this course and its contents, 
visit http://www.cs.utk.edu/%7Edongarra/WEB-PAGES/cs594-2008.htm.  
 
2 Outreach Activities 
 
The Outreach component of VGrADS has continued its efforts to broaden the impact of 
the project. 
 
2.1 Collaboration with Alliances for Graduate Education and the Professoriate 

(AGEP) 
 
AGEP (http://rgs.rice.edu/grad/agep/index.cfm) is a program of the NSF EHR 
directorate that funds a number of activities at Rice (and other universities) to provide a 
year-round community experience for Science/Math/Engineering (SME) students from 
under-represented groups. Most relevant for VGrADS activities is the Rice AGEP 
summer program, which provides hands-on research experience to undergraduate 
students in SME disciplines with an eye toward giving the students a solid foundation 
for the remainder of their undergraduate course work, developing professional 
relationships, and gaining a sense of what graduate school will be like, particularly at 
Rice University. VGrADS leverages this program to provide an opportunity for 
outreach to under-represented groups by having VGrADS researchers serve as mentors 
for these summer students. AGEP leverages VGrADS to reach more students, through 
our direct funding of additional participants. 
 
In summer 2007, we sponsored one female student, Emily de la Garza, who had also 
participated in 2006. Under the direction of VGrADS co-PI Chuck Koelbel, Emily, now 
a senior in the computer science program at the University of Houston-Downtown, used 
the EMAN program to continue her work on comparing and contrasting the use of batch 
queues with performance models and Condor. She also reports using her experience 



VGrADS Activities  36 

with VGrADS to help set up a grid testbed at UH-D, although that research is 
independent of the VGrADS project per se. (Another potential summer student, Lauren 
Garcia, was mentioned in the 2007 annual report; unfortunately, she had to withdraw 
from the VGrADS portion of the summer program before the program started, and we 
were unable to fill her slot.) 
 
We have also recruited participants for summer 2008, which is getting underway as this 
report is being submitted. Out of many applicants, we selected Keisha Cumber (from 
Johnson C. Smith University in Charlotte, NC) and Stephanie Diehl (from Case 
Western University). Both are freshmen.  They will be working under the joint 
mentoring of Chuck Koelbel and Vivek Sarkar (a non-VGrADS-affiliated professor of 
CS) on projects related to parallel and distributed computing. We have supplied both 
students with beginning textbooks to bring them up to speed on the topic.  We look 
forward to an interesting summer. 
 
2.2 Participation in Conferences Focused on Diversity in Computer Science 
 
As planned, VGrADS outreach-based conference participation has focused on 
supporting activities at the Grace Hopper Celebration of Women in Computing and at 
the Richard Tapia Celebration of Diversity in Computing.  Both meetings are devoted to 
increasing diversity in computer and computational science, and were chosen for that 
reason.  In 2007, VGrADS was able to provide travel support for one VGrADS summer 
student to attend the Richard Tapia Celebration of Diversity in Computing Conference 
2007 (http://tapiaconference.org/2007/). 
 
The Tapia conference is a biannual meeting; the Hopper conference is now an annual 
meeting.  The Grace Hopper Celebration of Women in Computing 2007 
(http://gracehopper.org/2007/) was held October 17-20, 2007, and was co-located in 
Orlando, Florida with the Richard Tapia Celebration of Diversity in Computing 
Conference 2007 (http://tapiaconference.org/2007/), which was held October 14-17, 
2007.  The two conferences shared a day when attendees from both conferences 
attended joint sessions.  Dr. Charles Koelbel, a VGrADS PI, served as Posters Chair for 
the Tapia Conference 2007 and will be doing so again in 2009.  
 
 
2.3 Participation in NSF-funded Computer Science Computer and Mentoring 

Partnership 
 
VGrADS PIs have continued to participate in the NSF-funded Computer Science 
Computer and Mentoring Partnership (CS-CAMP) project (http://ceee.rice.edu/cs-
camp/). VGrADS PIs Keith Cooper and Richard Tapia are PIs of the CS-CAMP project.  
MS CS-CAMP, an extension of the original CS-CAMP program for high school girls, is 
designed for middle school girls.  The first session of the program, which served 44 



VGrADS Activities  37 

middle school girls during the summer of 2007, will be followed this summer (2008) 
with another session.  At least 35 girls are currently registered for that camp.   
 
MS CS-CAMP is a one-week version for middle school girls of the successful two-
week CS-CAMP program for high school females.  Both programs are designed to 
encourage and motivate females to think about computer science as a possible career 
choice, and to arm them with skills to help them succeed in high school computer 
science classes.  The students participated in a wide variety of sessions related to 
computer science, involving robotics, programming in Scheme, logic, and – of course – 
grid computing. 
 
VGrADS PIs Keith Cooper, Richard Tapia, and Chuck Koelbel, who were involved in 
planning the new program, participated in sessions during the first middle school camp, 
and will do so again during the summer of 2008.  
 
2.4 Computer Science Community Interactions 
 
VGrADS researchers have presented (and will continue to present) VGrADS research 
results and ideas in a variety of forums, including technical computer science 
presentations, presentations to applications groups, and presentations to students. 
 
The VGrADS project had a variety of professional outreach activities at the annual 
SC07 Conference (Reno, NV, November 10-16, 2007).  Other sections of this report 
detail the research advances that were reported there, including paper and poster 
presentations.  VGrADS researchers also gave a number of talks with accompanying 
demonstrations in exhibit booths, including: 

• Chuck Koelbel (Rice), Rich Wolski (UCSB), and Dan Reed (then still UNC) 
gave overviews of the VGrADS project in the GCAS booth (a collaboration of 
Rice, UH, and Texas A&M), SDSC booth, and RENCI booth.  

• Lavanya Ramakrishnan (IU), Anirban Mandal (UNC), and Dan Nurmi (UCSB) 
led a team of students and staff in demonstrating the LEAD application running 
with VGrADS for both performance and fault tolerance. 

• Several members of the VGrADS team, including Chuck Koelbel, Kiran 
Thyagaraja (Rice), and Mark Huang (UH) were also active in Grid-related talks 
and demos for the TIGRE project. 

• Dan Reed and Lavanya Ramakrishnan also presented a VGrADS-related poster 
“Performability Modeling for Scheduling and Fault Tolerance Strategies for 
Grid Workflows”. 

Most of these demos attracted reasonable audiences, and represented good outreach to 
the high-performance computing and research communities by the project.  



VGrADS Activities  38 

IV.  VGrADS Contributions 
 
1.  Contributions within Discipline 
 
VGrADS activities and findings during the funding period, which are described in more 
detail in the “Activities” and “Findings” sections of this report, included research results 
and associated implementations that will ultimately contribute toward computer science 
research, particularly in the area of distributed, heterogeneous computing.  Research 
highlights from the VGrADS project during the funding period include: 
 

• VGrADS researchers have continued development of the Virtual Grid Execution 
System (vgES) for managing the abstractions that are key to our work. Key 
contributions in past years included the introduction of slotted virtual grids, 
which allow unified management of reserved resources and resources controlled 
by batch queues and resource equivalence, by which an application can identify 
trade-offs between processor architectures.  
 
In this reporting period, VGrADS researchers have investigated the degree to 
which fault-tolerance can be effectively implemented “underneath” virtualized 
execution abstraction (e.g. the VGrADS slot). This capability addresses a long-
standing question over the degree to which grid software technologies can hide 
implementation complexity from application developers. It also extends the 
contributions described in previous reports in unifying the virtual grid treatment 
of fault tolerance. 

 
• VGrADS researchers developed a temporal reasoning framework to support 

performance validation and diagnosis of long-running grid applications for 
virtual grids. In particular, this reasoning framework supports monitoring of grid 
applications, allowing them to identify changes in conditions that require 
adaptation. The framework’s qualitative performance analysis can help bind 
expectations of grid applications with resource behavior in the Virtual Grid 
Execution System. 

 
• VGrADS researchers developed fault-tolerance and recovery algorithms for 

reliable execution of scientific workflows on computational grids and validated 
them using meteorological workflows from LEAD. In particular, the fault-
tolerance techniques increase the reliability of workflow executions through 
over-provisioning and migration of workflow steps.  

 
• VGrADS researchers have continued development and evaluation of grid 

scheduling heuristics. We previously presented a two-phase strategy of a simple 
virtual grid selection phase (picking “good” resources to run on) followed by 
good scheduling heuristics (such as the HEFT algorithm) for optimizing 
workflow application performance. We also developed schedulers that combine 



VGrADS Activities  39 

estimations of application performance and batch queue wait times to generate 
high-quality schedules in slotted virtual grid environments. This year, we 
extended those static methods to a hybrid dynamic/static scheduler that revises 
its choices based on run-time feedback. We found that, on a real grid with 
varying load, such a method not only improved on purely static methods (as one 
would expect), but also was better than a purely dynamic method. 

 
• VGrADS researchers have investigated the feasibility of implementing cloud-

computing services in research and scientific computing contexts.  Commercial 
cloud-computing services are well suited to web-service deployment and large-
scale text search.  Eucalyptus demonstrates that these services can be provided 
by existing, locally deployed clusters that are servicing a scientific user 
community. 

 
• VGrADS researchers have demonstrated that effective batch-scheduling 

protocols with provable incentive properties (e.g. incentive compatibility) can be 
developed, both from a theoretical perspective and in implementation. 

 
• VGrADS researchers have studied the feasibility of traditional compiler 

optimizations for grid computing systems. Previous reports have documented 
the effectiveness of optimizations such as register allocation in the context of 
just-in-time compilation. This year, we have studied the requirements of system-
specific auto-tuning of FFT software, which can be used to significantly 
improve individual node performance in a grid environment. This work supports 
the VGrADS philosophy of using local compilation to enable heterogeneous 
executables. 

 
• VGrADS researchers have developed the FT-MPI library to provide process-

level fault tolerance based on the MPI 1.2 standard, with excellent performance 
(comparable to MPICH2 or LAM). This work is being incorporated in the 
OpenMPI project, which is creating a completely new MPI-2 implementation 
using the best library technologies and resources available. New work this year 
has included evaluation of the Binomial Graph Network as a basis for fault-
tolerant message passing layers. 

 
2) Contributions to Other Disciplines  
 
As indicated in the VGrADS highlights listed under “Contributions within Discipline,” 
many of the ideas and associated implementations developed under the VGrADS 
project are relevant to application researchers interested in or currently using grid 
computing.  The VGrADS project has also supported the development and/or 
enhancement of software packages that are used by a variety of application groups, 
including those application groups directly collaborating with VGrADS researchers.   
 



VGrADS Activities  40 

3) Contributions to Human Resources Development 
 
The VGrADS project has provided computer science research opportunities for 
graduate students and postdoctoral associates, including individuals from 
underrepresented groups. Through participation in VGrADS project meetings, email, 
and phone conversations, students and postdoctoral associates have been able to interact 
with, learn from, and contribute toward the research of off-site VGrADS participants.  
The multi-site nature of this project has exposed participants first-hand to a wider range 
of research approaches and specialty areas than would typically be possible. Notably, 
this includes discussion and collaboration with several world-renowned researchers 
from other institutions with whom the students would not normally interact. 
 
With support from their institutions, VGrADS PIs continue to develop and teach a 
variety of courses that cover Grid technologies and other aspects of high performance 
parallel and distributed computing.  In the Spring 2008 semester, Lennart Johnsson 
taught COSC 6365: Introduction to High Performance Computing at UH. In the Spring 
2008 semester, Jack Dongarra taught CS 594-004:  Scientific Computing for Engineers 
at UTK. 
 
VGrADS researchers and staff have been actively involved in efforts to encourage 
middle-school and high-school students, undergraduates, and graduate students from 
underrepresented groups to pursue careers in science, math, and technology fields.  The 
programs and activities for students from underrepresented groups, which are described 
in more detail under “Outreach Activities,” have included summer research experiences 
for undergraduates; mentoring programs for graduate students, undergraduates, and 
middle- and high-school students; seeking funding for fellowships to increase diversity; 
and participation in conferences devoted to increasing diversity in computer and 
computational science. 
 
VGrADS researchers have presented VGrADS research results and ideas in a variety of 
forums, including technical computer science presentations, presentations to 
applications groups, and presentations to students.  In particular, the VGrADS project 
was involved in a variety of outreach activities at the SC’07 conference in Reno, 
Nevada (November 10–16, 2007).  VGrADS activities at SC’07 are discussed under 
both “Outreach Activities” and “Project Activities.” 
 
4) Contributions to Resources for Research and Education 
 
There is nothing to report at this time. 
 
5) Contributions Beyond Science and Engineering 
 
There is nothing to report at this time. 
 



VGrADS Activities  41 

 
 


