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Abstract

In this paper, we consider the problem of modeling ma-
chine availability in enterprise-area and wide-area dis-
tributed computing settings. Using availability data gath-
ered from three different environments, we detail the suit-
ability of four potential statistical distributions for each
data set: exponential, Pareto, Weibull, and hyperexponen-
tial. In each case, we use software we have developed to de-
termine the necessary parameters automatically from each
data collection.

To gauge suitability, we present both graphical and sta-
tistical evaluations of the accuracy with each distribution
fits each data set. For all three data sets, we find that a
hyperexponential model fits slightly more accurately than a
Weibull, but that both are substantially better choices than
either an exponential or Pareto. We also test the indepen-
dence of individual machine measurements and the station-
arity of the underlying statistical process model for each
data set.

These results indicate that either a hyperexponential or
Weibull model effectively represents machine availability in
enterprise and Internet computing environments.

∗This work has been supported by grants from the National Science
Foundation numbered EIA-9975020 (The GrADS project), CCR-0331645
(The VGrADS project), and NGS-0305390 as well as the DOE SciDAC
program.

1 Introduction

As performance-oriented distributed computing (often
heralded under the moniker “Computational Grid” comput-
ing [24, 8, 47]) becomes more prevalent, the need to char-
acterize accurately resource reliability emerges as a critical
problem. Today’s successful Grid applications uniformly
rely on runtime scheduling [9, 43, 2, 4, 46, 1, 16, 50, 13,
12, 39] to identify and acquire the fastest, least-loaded re-
sources at the time an application is executed. While these
applications and systems have been able to achieve new per-
formance heights, they all rely on the assumption that re-
sources, once acquired, will not fail during application exe-
cution. In many resource environments such an assumption
is valid, but to employ nationally or globally distributed re-
source pools (e.g. in the way SETI@Home [48] does) or
enterprise-wide desktop resources (as many commercial en-
deavors do [8, 22, 55, 5]) performance-oriented distributed
applications must be able either to avoid or tolerate resource
failures.

Designing the next-generation of Grid applications re-
quires an accurate model of resource failure behavior. A
great deal of previous work [38, 31, 25, 29, 32] has studied
the problem of modeling resource failure (or equivalently
resource availability) using statistical techniques. As Plank
and Elwasif point out in their landmark paper [44], how-
ever, most of these approaches assume that the underlying
statistical behavior can be described by some form of ex-
ponential distribution or hyperexponential distribution[32].
In addition, they go on to note that despite their popularity,
many of these modeling techniques do not accurately reflect
empirical observation of machine availability.
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Our goal with this work is to develop an automatic
method for modeling the availability of enterprise-wide and
globally distributed resources. Automatic model determi-
nation has several important engineering applications. We
plan to incorporate such models into Grid programming
systems, such as the Grid Application Development Soft-
ware [7] system, NetSolve [12], NINF [39], and APST [14]
to enable effective resource allocation and scheduling.
Commercial enterprise-computing systems such as En-
tropia [22], United Devices [55], and Avaki [5] will also be
able to take advantage of automatically determined models
as they tune themselves to the characteristics of a particular
site. Moreover, much of the potential benefit offered by Au-
tonomic computing [30] depends, critically, on the abilityto
model resource characteristics automatically.

We propose a new approach to modeling machine avail-
ability based on either the Weibull family of distributions
or hyperexponentials depending on the intended use of the
model. We describe how to estimate the necessary parame-
ters from a given set of availability measurements, and the
implementation of our system for doing so automatically.
To gauge the effectiveness of our modeling methodology,
we detail and analyze the degree to which an automatically
generated model fits three diverse sets of empirical obser-
vations:

• reboot intervals taken from the student workstations
located in the Computer Science Department of the
University of California, Santa Barbara,

• processor occupancy duration measured from the Con-
dor [53, 17] deployment at the University of Wiscon-
sin, and

• availability data gathered by Long, Muir, and Golding
in a survey they conducted of Internet hosts, described
in [34] and further analyzed in [44, 45].

We compare the distributions generated by our method to
both standard exponential and Pareto distributions fit to the
data using the same parameter estimation techniques.

Exponential distributions have been studied extensively
in fault tolerant computing settings [56, 34, 44, 45, 35].
More recently, peer-to-peer systems have used exponential
distributions to as the basis of their availability assump-
tions [51, 60, 61]. In other contexts such as process life-
time estimation [28] and network performance [42, 41, 57,
19, 33] researchers often advocate the use of “heavy-tailed”
distributions, especially the Pareto. We also compare the
use of both a Weibull and a hyperexponential to that of a
Pareto for modeling our data. In both cases, using a va-
riety of goodness-of-fit metrics, the distributions generated
by our method are a significantly better fit for each data set.

The data sets we study are gathered in three different dis-
tributed computing contexts, at different times, using differ-

ent methods. The diversity of the conditions under which
each trace was gathered indicates the generality of our re-
sults in that regardless of setting or method, either a Weibull
or hyperexponential distribution appears to model availabil-
ity most effectively. More specifically, using p-values from
a variety of goodness-of-fit tests as a metric, an appropri-
ately chosen hyperexponential fits each data set best. How-
ever, the Weibull model for each set, while slightly less
well-fit, offers several attractive properties that make ita
better choice in some modeling contexts. Our methodology
generates both a “best-fit” Weibull and hyperexponential for
each data set, allowing the user to choose between the two.

In addition to the impact this work may have on peer-
to-peer system design, checkpoint/migration interval deter-
mination, and process scheduling, we believe it is particu-
larly important to the development of credible and effective
Grid and Autonomic Computing [30] simulations. Because
Grid dynamics are driven by the dynamic resource sharing
of competing users, repeatable “en vivo” experiments are
difficult or impossible. Several effective emulation [49] and
simulation [11, 52, 10] systems have been developed for
Grid environments. These systems will benefit immediately
from the more accurate models our method produces.

The rest of this paper is organized as follows. Section 2
describes the both the Weibull and hyperexponential distri-
butions and our method of fitting them to a set of machine
availability measurements. We discuss how we address both
the problem of parameter estimation and how we treat cen-
sored data. In Section 3 discusses the various data sets we
use in this study. In Section 4 we provide evidence for how
well various distributions fit each data set, and review the
advantages and disadvantages of each in Section 5. Finally,
in Section 6 we discuss the conclusions we draw from this
work and point to future research directions it enables.

2 Fitting a Distribution to Availability Data

In this study, the two distribution families that consis-
tently fit the data we have gathered most accurately are the
Weibull and the hyperexponential. TheWeibull distribu-
tion is often used to model the lifetimes of objects, includ-
ing physical system components [37, 6]. Hyperexponen-
tials have been used to model machine availability previ-
ously [38], but their parameters are more numerically dif-
ficult to estimate through rigorous statistical techniques. In
particular, the number of phases (c.f. Section 2.3) to use isa
free parameter that our method determines by fitting succes-
sively larger models. Our algorithm terminates when an ad-
ditional phase fails to improve the goodness-of-fit. While in
practice, the convergence of p-value for a given goodness-
of-fit test indicates that no additional phases are needed, in
principle this technique must be considered a heuristic. As
a heuristic, however, we find that the quality of the fits gen-
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erated to be high using a relatively small number of phases.

2.1 Weibull Distributions

The density and distribution functionsfw andFw respec-
tively for a Weibull distribution are given by

fw(x) = αβ−αxα−1e−(x/β)α

(1)

Fw(x) = 1 − e−(x/β)α

(2)

The parameterα is called theshapeparameter, andβ is
called thescaleparameter.1 Whenα = 1, the Weibull is
equivalent to an exponential distribution.

The conditional distribution function for a Weibull is
given by

FX|X>t(x) = 1 − e[(t/β)α−(x/β)α], (3)

which clearly depends ont and not just the differencex− t
whenα 6= 1. When0 < α < 1, the probability that a
component will survive another time unitincreasesast in-
creases. Forα > 1, this probabilitydecreases, and when
α = 1 the distribution is memoryless. Thus a Weibull dis-
tribution is capable of modeling different aging effects, de-
pending on its shape parameter.

A hyperexponential, on the other hand, is only capable
of modeling increasing expected lifetime. One can show
this by demonstrating that thehazard function, which is es-
sentially the rate of failure, is a decreasing function of time
for any hyperexponential; this is a straightforward but te-
dious calculus exercise. Intuitively, throughout the lifetime
of a hyperexponentially distributed object, its having sur-
vived as long as it has makes it increasingly conditionally
probable that its lifetime is governed by the longer phases
of the hyperexponential, and so its expected future lifetime
will increase.

2.2 Weibull Parameter Estimation

Our 2-parameter Weibull, as mentioned above, has pa-
rameters for shape and scale. Given a set of sample data
{x1...xn}, there are many common techniques for estimat-
ing the two parameters based on some set of sample data,
including visual inspection (e.g. using a two-dimensional
graph) and analytic methods. A commonly accepted ap-
proach to the general problem of parameter estimation is
based on the principle ofmaximum likelihood. The maxi-
mum likelihood estimator (MLE) is calculated for any data
set, based on the assumptions that each of the sample data
pointsxi is drawn from a random variableXi an that the

1The general Weibull density function has a third parameter for loca-
tion, which we can eliminate from the density simply by subtracting the
minimum lifetime from all measurements. In this paper, we will work
with the two-parameter formulation.

Xi are independent and identically distributed (i.i.d.). The
method defines thelikelihood functionL, depending on the
parameters of the distribution, as the product of the density
function evaluated at the sample points. Thus in our case,L
will be a function ofα andβ given by

L(α, β) =
∏

i

f(xi) =
∏

i

αβ−αxi
α−1e−(x/β)α

.

Intuitively, maximizingL is equivalent to maximizing the
joint probability that each random variable will take on the
sample value. Large values of the density function corre-
spond to data that is “more likely” to occur, so larger values
of L correspond to values of the parameters for which the
data was “more likely” to have been produced. Thus, the
MLE for the parameters is simply the choice of parame-
ters (if it exists) which maximizesL. Equivalently,we can
maximize thelog-likelihood functionlog L, which is sim-
pler to compute because it converts the above product into
a sum. In practice, Weibull MLE values always exist. Our
approach to computing them numerically is to set the partial
derivatives oflog L equal to0 and using standard non-linear
equation solvers to find the critical point corresponding to
the maximum oflog L.

The other common analytic approach to parameter es-
timation is the method ofmoments. In the case of a 2-
parameter Weibull, the moments-based estimator will be the
set of parameters for which the mean and variance of the
distribution is equal to the mean and variance, respectively,
of the given sample. Moments-based estimators have his-
torically been popular because of their relative ease of cal-
culation, but MLEs enjoy more properties which are consid-
ered desirable for estimators. (Specifically MLEs are, un-
der very general conditions,asymptotically efficient, which
means roughly that the variance of an MLE approaches the
theoretical minimum, while moments-based estimators are
not asymptotically efficient in general.)

2.3 Hyperexponential Distributions

Hyperexponentials are distributions formed as the
weighted sum of exponentials, each having a different pa-
rameter. The density function is given by

fH(x) =
k

∑

i=1

[pi · fei
(x)], x ≥ 0 (4)

where
fei

(x) = λie
−λix (5)

defines the density function for an exponential having pa-
rameterλi. In the definition offH(x), all λi 6= λj for i 6= j,
and

∑k
i=1 pi = 1. The distribution function is defined as

FH(x) = 1 −

k
∑

i=1

pi · e
−λix (6)
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for the same definition offei
(x). Thus, to fit a hyperexpo-

nential to a given data set, the value ofk, eachλi and each
pi must be estimated. For a specified value ofk (which
indicates how many phases will be included in the hyperex-
ponential), an MLE technique can be used to determine the
remaining2k − 1 parameters. However, the optimization
problem that arises for even small values ofk is often too
complex for commonly available computers to solve, espe-
cially for larger data sets.2 As a result, we used the EMpht
software package [21] in place of an MLE procedure for
all estimated hyperexponentials in this paper. EMpht im-
plements the estimation maximization (EM) algorithm de-
scribed in [3]. While this technique often yields a good so-
lution (as is evidenced by our results) is is not guaranteed to
converge to an optimal solution.

The number of exponential phases (denoted byk) that
make up a hyperexponential, however, is a free parameter
that must be specified rather than estimated. Our approach
is is to use EMpht to estimate parameters for successively
larger values ofk and then to calculate goodness-of-fit met-
rics (as described in Section 4.2) for each. The algorithm
terminates when an additional phase produces no improve-
ment in the metrics.

We have implemented a software system that takes a set
of measurements as an ordinary text file and computes both
the MLE Weibull and the EM-based hyperexponential au-
tomatically. Perhaps unsurprisingly, the quality of the nu-
merical methods that we use is critical to the success of the
method. In particular, the MLE computations involve hun-
dreds or thousands of terms (the data sets can be quite large)
requiring robust and efficient techniques. At present, the
implementation uses a combination of the Octave [40] nu-
merical package, Mathematica [36] (for solver quality), and
the afore mentioned EMpht. The resulting system, however,
takes data (as described in Section 3) and automatically de-
termines the necessary parameters.

2.4 Exponential and Pareto Distributions

The probability density functions (denoted using
lower-casef with a subscript) and distribution functions
(upper-caseF with a subscript) for the exponential and
Pareto distributions are as follows:

fe(x) = λe−λx (7)

Fe(x) = 1 − e−λx (8)

fp(x) =
αβα

xα+1
(9)

2While we were able to make MLE estimates for Weibull and Pareto
distributions for all data sets using a Pentium IV running Linux, the same
numerical algorithms failed for all hyperexponential estimations.

Fp(x) = 1 −

(

β

x

)α

(10)

Note that these techniques say nothing about how well a
data sample “fits” a distribution. Rather, it determines what
the most likely parameterization must be if the sample is
assumed to come from a specified family of distributions.
Thus, for a given data sample, we can find the Weibull,
exponential and Pareto distributions that are “most likely”
to have generated that sample by finding the MLE param-
eter estimates for each distribution (using the root-finding
method described earlier). For the hyperexponential, how-
ever, the distribution that is chosen is appropriate (that is
likely), but cannot strictly be said to be the one that maxi-
mizes likelihood.

3 Experimental Data

The data we use in this study measures resource avail-
ability in three different settings. At the University of Cal-
ifornia, Santa Barbara (UCSB) we collected measurements
of the time between machine reboots of the publically ac-
cessible workstations in the Computer Science Instructional
Laboratory (CSIL). In a second experiment, we measured
the process occupancy time observed by a single user of the
Condor [53] pool at the University of Wisconsin during a
two-month period. Finally, we gratefully acknowledge Dr.
Darrell Long from the University of California, Santa Cruz,
and Dr. James Plank at the University of Tennessee for sup-
plying us with the original test data used to derive the results
in [34] and [44] respectively. Each of these data sets mea-
sures machine availability in a different way reflecting the
different definitions of “availability” that Grid users may
choose. Our goal in using a plurality of measurement meth-
ods is to determine how sensitive our Weibull-based models
are to the way in which availability is measured.

3.1 The UCSB CSIL Data Set

At UCSB, the computer science students are given un-
restricted access to workstations located in several rooms
on campus. Together, these systems make up the Computer
Science Instructional Laboratory (CSIL). Physical accessto
the CSIL is provided to some (but not all) students 24-hours
a day when school is in session, and via remote access at all
other times to all computer science students. There are no
administrator scheduled reboots when school is in session,
however software failures, security breeches, and hardware
failures result in unplanned restarts by the administrative
staff.

What is perhaps most relevant to our study, however, is
that the power switch for each workstation is not physically
protected. Thus a student with access to a machine’s con-
sole who does not wish to share that machine with remote
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users or background processes can “clean off” the machine
by power cycling it. Remote users will often choose a new
machine when they are unceremoniously logged out with-
out warning, and few background processes are written to
automatically restart. Indeed, it is reported anecdotallyby
many students that the “normal” user response to observed
machine slowness is to try a power cycle immediately as a
potential remedy.

As anarchistic as it may seem, we believe that this mode
of usage and administration accurately reflects failure pat-
terns in enterprise and global desktop computing settings.
Users are willing to accept background computing load if it
does not introduce unacceptable slowness, but will reclaim
the resources they control (through catastrophic means, if
need be) if the externally generated load is “too great.” Ob-
viously each user has a different tolerance level for external
load that may not be known a priori, and individual user pa-
tience is likely to be be time and situation dependent. More-
over, it is the combination of user reclamations, administra-
tive restarts, and hardware failures that make up the overall
availability distribution that we observe externally.

To measure availability in the CSIL, we designed an “up-
time sensor” for the Network Weather Service (NWS) [58,
47, 59] that reads the time since the last machine reboot
from the/proc file system. All CSIL workstations cur-
rently run Linux which records the time since reboot in
the/proc}directory. The NWS is designed to gather and
maintain dynamic performance measurements from Grid
resources while introducing as little load as possible. We
deployed the NWS uptime-sensor on 83 of the CSIL work-
stations and recorded the duration between reboots during
April and May of 2003, which corresponds to the bulk of
the spring quarter. Thus the resultant data set captures a
“production” use period for the CSIL machines and does
not span a quarter break during which a correlated reboot
(for quarterly maintenance) is likely.

3.2 The Condor Data Set

Condor [53, 17] is a cycle-harvesting system designed
to support high-throughput computing. Under the Condor
model, the owner of each machine allows Condor to launch
an externally submitted job (i.e. one not generated by the
owner) when the machine becomes “idle.” Each owner is
expected to specify when his or her machine can be consid-
ered idle with respect to load average, memory occupancy,
keyboard activity, etc. When Condor detects that a ma-
chine has become idle, it takes an unexecuted job from a
queue it maintains, and assigns it to the idle machine for ex-
ecution. If the machine’s owner begins using the machine
again, Condor detects the local activity and evacuates the
external job. The result is that resource owners maintain ex-
clusive access to their own resources, and Condor uses them

only when they would otherwise be idle.

When a process is evicted from a machine because the
machine’s owner is reclaiming it (e.g. begins typing at the
console keyboard), Condor offers two options. Either the
evicted Condor process is checkpointed and saved for a later
restart, or it is killed. Condor implements checkpointing
through a series of libraries that intercept system calls to
ensure that a job can be properly restarted. Using these li-
braries, however, places certain restrictions on the system
calls that the job can issue. “Vanilla” jobs, however, are
unrestricted but will be terminated (and not checkpointed)
during a resource reclamation. Condor’s extensive docu-
mentation [18] details these features to a greater extent.

In this study, we take advantage of the vanilla (i.e
terminate-on-eviction) execution environment to build a
Condor occupancy sensor for the NWS. A set of sensors
(10 in this study) are submitted to Condor for execution.
When Condor assigns a sensor to a processor, the sensor
wakes periodically and reports the number of seconds that
have elapsed since it began executing. When that sensor
is terminated (due to an eviction) the last recorded elapsed
time value measures the occupancy the sensor enjoyed on
the processor it was using. The NWS associates measure-
ments with Internet address and port number so if a sensor
is subsequently restarted on a particular machine (because
Condor determined the machine to be idle) the new mea-
surements will be associated with the machine running the
sensor.

It is difficult to determine how many machines are avail-
able within the Wisconsin Condor pool. The number fluc-
tuates as new machines are added, users decommission old
machines, etc. In our study, however, Condor used 210 dif-
ferent Linux workstations to run the 10 NWS sensors over
the six-week measurement period.

Notice also that in this study we consider only the avail-
ability of each machine to a Condor user (the NWS, in our
case) once the machine is assigned to the NWS. We do not
consider the time between assignments during which a par-
ticular machine is either busy because its owner is using
it, or because Condor as scheduled other useful work. In
the CSIL data set, these durations are between 120 and 600
seconds which is the Linux reboot time, depending on the
machine in question. For Condor, however, the distribution
of resource unavailability is not as constant. Any complete
simulation of the Condor pool as a computational engine
would require both the distribution of availability and the
distribution of unavailability. In this work, we treat only
the availability distribution, but we plan a full analysis of
Condor’s dynamics in the near future.
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3.3 The Long-Muir-Golding Data Set

In [34] the authors identify 1170 hosts connected to the
Internet in 1995 that would cooperatively respond to a vac-
uous query of therpc.statd – a system process com-
monly used on systems running the Network File System
(NFS). The hosts were chosen to act as a “cross-section”
of the Internet connected hosts at the time, and a probing
mechanism based on periodic but randomized RPC calls to
rpc.statd. A successful response to an RPC constitutes
a “heartbeat” for the machine in question, and failure to re-
spond indicates machine failure. Long, Muir, and Golding
use this data to make a convincing argument that availabil-
ity is not accurately modeled by a Poisson process. More
recently Plank and Elwasif [44] and separately Plank and
Thomason [45] have analyzed it extensively in terms of the
suitability of Poisson and exponential models in the context
of process checkpoint scheduling. In all three studies, the
authors reach the same conclusion which is that the models
under study do not accurately reflect the behavior captured
by the measurements.

3.4 Discussion

We have chosen to study these three data sets because
they measure observable machine availability in different
ways, under different conditions, at different times. For the
CSIL data set, students engaged in collaborative and com-
petitive activities using the resources at hand strongly in-
fluence the measured availability durations. Under Condor,
availability measurements capture the idle-busy distribution
of resource owners who (in theory) are unaware that Con-
dor is using the resources during idle periods. From the
perspective of a Grid or peer-to-peer scheduler, however,
these two data sets record the same quantities: the amount
of time an application process was able to use a resource
before it (the process) was exogenously terminated. We in-
clude the Long-Muir-Golding (LMG) data set in our study
to ensure that our results are not biased by the measurement
techniques we have used. The CSIL and Condor data sets
measure availability using two different sensors we have de-
veloped for the NWS monitoring infrastructure. As a result,
we wished to use data gathered by a separate group using
different measurement techniques to remove the possibility
that the NWS is biasing the results in an unforeseen way.

Note that the age of the LMG data also indicates the time
sensitivity (i.e. non-stationarity) of the effects we observe.
Clearly the Internet and its usage patterns have evolved sub-
stantially since they gathered the data. Observing similar
distributions in all three data sets indicates that the effects
we are measuring are persistent and potentially fundamen-
tal.

4 Analysis

The goal of our study is to determine the value of us-
ing Weibull and hyperexponential distributions to model
resource availability. Our methodology is to compare the
MLE determined Weibull and EMpht determined hyperex-
ponential to the MLE exponential and Pareto for each of
the data sets discussed in the previous section. For refer-
ence, we have included the MLE and EMpht determined
model parameters that were used for all fitted distributions
discussed and shown in this work (Table 1). As we noted
in the introduction, both exponential and the Pareto models
have been used extensively to model resource and process
lifetime. Thus the value we perceive is the degree to which
a Weibull and hyperexponential model more accurately fits
each data set.

In each case, we use three different techniques to eval-
uate model fit: graphical, the Kolmogorov-Smirnov [20]
(KS) test, and the Anderson-Darling [20] (AD) test. Graph-
ical evaluation is often the most compelling methodol-
ogy [54] but it does not provide the security of a quantified
result. The other two tests come under the general heading
of “goodness-of-fit” tests3

4.1 Graphical Analysis of The Availability Mea-
surements

To gauge the fit of a specific model distribution to a par-
ticular data set, we plot the cumulative distribution func-
tion (CDF) for the distribution and the empirical cumula-
tive distribution for the data set. The form of the CDF for
the Weibull, hyperexponential, exponential and Pareto are
given by equations 2, 6, 8, and 10 respectively (c.f. Sec-
tion 2). The empirical distribution function (EDF) is the
CDF of the actual data; it is calculated by ordering the ob-
served values asX1 < X2 < · · · < Xn and defining

Fe(x) =











0, x < X1;

j/n, Xj ≤ x < X(j+1);

1, x ≥ Xn.

(11)

We start by comparing the empirical observations to the
CDF determined by the MLE estimated Weibull. As Fig-
ure 1, 2 and 3 show, a Weibull distribution appears to track
the observed distribution in each case. The track is never
perfect, but the shape and scale of the model appear to be
well suited to the trends in the observed data.

Similarly, Figures 4, 5, and 6 show the results of fitting
a three phase, two phase, and three phase EMpht generated

3The best known goodness-of-fit test is based on the Chi-squared dis-
tribution. Both the Kolmogorov-Smirnov and the Anderson-Darling tests
are thought to be more appropriate for continuous distributions than the
Chi-squared test, which is designed for categorical data. We therefore use
these methods in place of the more familiar one.
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Data Set Weibull Hyperexponential Exponential Pareto
α β p1 p2 p3 λ1 λ2 λ3 λ α β

CSIL .545 275599 .464 .197 .389 .00000111 .000195 .00000832 2177800 .087 1
Condor .49 2403 .592 .408 NA .00296 .0000750 NA .00018 .149 1.005
Long .61 834571 .282 .271 .474 .000000305 .0000124 .00000139 78886000 .079 1

Table 1. Table of fitted model parameters
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Figure 1. CSIL data with
Weibull fit
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Figure 2. Condor data
with Wiebull fit
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Figure 3. Long data with
Weibull fit
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Figure 4. CSIL data with
hyperexponential fit
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Figure 5. Condor data
with hyperexponential fit
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Figure 6. Long data with
hyperexponential fit
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Figure 7. CSIL data with
exponential and Pareto
fits
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Figure 8. Condor data
with exponential and
Pareto fits
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Figure 9. Long data with
exponential and Pareto
fits
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hyperexponential to the CSIL, Condor, and Long datasets
respectively. In each figure, the units associated with the
x − axis are seconds. As was previously mentioned, the
choice of number of phases is a value specified by the user
when attempting to fit a hyperexponential using the EMpht
software. To determine the number of phases to report in the
visual analysis, we start with a 2 phase hyper exponential,
test the resulting fit with a Kolmogorov Smirnov test (de-
tailed in the Section 4.2), and then repeat with an increased
number of phases until the KS test result shows no improve-
ment. As the figures again show, the fitted hyperexponential
appear to track the EDF functions extremely well, so much
so that the model curve is nearly indistinguishable from the
EDFs for the CSIL and Condor data.

When viewed against the MLE exponential and MLE
Pareto for each set the superiority of the previous fits is ev-
ident. Figures7, 8, and 9 plot the EDF, exponential, and
Pareto CDFs for each of the data sets.

One of the most obvious discrepancies lies in the upper
tails, which consistently appear too light or too heavy, for
exponential and Pareto respectively, when compared to our
sample EDFs.

In a modeling context, “tail behavior” can be important,
especially if the presence or absence of rare occurrences
must be modeled accurately. For example, previous re-
search [27, 28] reveals Unix process lifetimes to be “heavy-
tailed” and well-modeled by a Pareto distribution. Thus
schedulers and process management systems must be de-
signed for occasionally occurring processes that have very
long execution times.

According to Figures7, 8, and 9, however, a Pareto dis-
tribution would over-estimate the probability of very long-
lived resources by a considerable amount. Indeed, it may
be that while Unix process lifetime distributions are heavy
tailed, if they are executed in distributed or global comput-
ing environments, many of them will be terminated by re-
source failure since the resource lifetime distributions (both
EDFs and their matching Weibull and hyperexponential fits)
have considerably less tail weight.

Even beyond the differences in the tails, however, we
can clearly see that the general shape of the exponential
and Pareto distributions do not seem to fit the sample CDFs
well.

Another well accepted method for graphically determin-
ing how observations fit a theoretical distribution is by gen-
erating Quantile-Quantile (Q-Q) Plots. In a Q-Q Plot, the
ordinates from the EDF and the CDF from the theoretical
distribution are plotted against one another.

If the observations were exactly drawn from our the-
orized distribution, the resulting Q-Q plot would be very
nearly a line intersecting the origin, having slope 1. As Fig-
ures 11, 12, and 13 show, our observation quantiles are very
close to being linearly related to the fitted Weibull quantiles
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Figure 10. CSIL Q-Q Plot of uncensored sam-
ple/Weibull quantile relationships

for both the CSIL and Long-Muir-Golding data sets, but re-
veal a less-accurate quantile match for the Condor data set.

Note that we havecensoredthe CSIL data to generate
the Q-Q Plots by using a cutoff point after which we do not
show quantile-quantile relationships. This method is out-
lined in [20] and has been employed so as to remove obfus-
cating data near the extreme upper tails of our sample distri-
butions (we show data from quantiles 0.01 to approximately
0.97). Without censoring, we can see that data in the upper
tail makes the resulting Q-Q Plot (shown in Figure 10) diffi-
cult to interpret as the entire trend of relationships is thrown
off by a few unstable data points.

The reason for this censoring stems from the way in
which each data set is gathered. In particular, resources that
are available at the end of the measurement period generate
truncated values. This distorted our data in two important
ways. First, the duration of the measurement period artifi-
cially created a maximum uptime, when in fact there were
several uptimes which continued over this entire period, so
that the tail of the EDF was cut off; and second, uptimes
which by chance started near the end of the period were as-
signed extremely short values, thus assigning undue weight
to the left end of the distribution.

Figures 14, 15 and 16 show the Q-Q Plots of the dataset
quantiles versus the hyperexponential model quantiles. The
plots support the original CDF comparison graphs by show-
ing that the relationships, even in the tails, between our em-
pirical observations and fitted models are very near to linear.

To get a feel for the suitability of the Weibull and hyper-
exponential models versus the exponential or Pareto mod-
els, we present Q-Q Plots of our sample data against expo-
nential model in Figures 17, 19 and 19. We do not show the
Q-Q Plots for the Pareto fit as the quantile relationships are
so far from the ideal linear graph that the plot is difficult to
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Figure 11. CSIL Q-Q Plot
of sample/Weibull quan-
tile relationships
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Figure 12. Condor Q-Q
Plot of sample/Weibull
quantile relationships
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Figure 13. Long Q-Q Plot
of sample/Weibull quan-
tile relationships
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Figure 14. CSIL
Q-Q Plot of sam-
ple/hyperexponential
quantile relationships

 0

 9000

 18000

 27000

 0  9000  18000  27000

empirical

 0

 9000

 18000

 27000

 0  9000  18000  27000

empirical
ideal

Figure 15. Condor
Q-Q Plot of sam-
ple/hyperexponential
quantile relationships
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Figure 16. Long
Q-Q Plot of sam-
ple/hyperexponential
quantile relationships
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Figure 17. CSIL Q-Q Plot
of sample/exponential
quantile relationships
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Figure 18. Condor
Q-Q Plot of sam-
ple/exponential quantile
relationships
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Figure 19. Long Q-Q Plot
of sample/exponential
quantile relationships
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Figure 20. Q-Q Plot showing ideal case of
sample drawn directly from tested Weibull
distribution

render. It suffices to say, however, a Pareto distribution in
not indicated by any Q-Q Plot of our data sets.

Q-Q Plots are, themselves, sensitive to the shape of the
tails in the distribution being plotted. This sensitivity is re-
flected by the sample size used (i.e. the smaller the sample
size, the less accurately the tails may be rendered). To cali-
brate the sensitivity of Q-Q Plotting in our setting, we draw
1000 random values from the Weibull distribution we fit to
the CSIL data (shown in Figure 1). We then generate the
Q-Q Plot for this random sample against the actual Weibull
from which it is drawn. This plot corresponds to the ideal
case in that the observed sample comes from the distribution
against which it is plotted. Figure 20 shows the results.

Even in the ideal case, the tails diverge because of the
small number of data points that are likely to be drawn
from the tail. Comparing this ideal Q-Q plot to the one
shown in Figures 10 in which the actual data is used in un-
censored form further supports case for a Weibull fit to the
to the CSIL and Long, Muir, Golding data sets, but leaves
the Condor data set open to suspicion. However, based on
the visual comparison of the plots in Figure 12 and Fig-
ure 18, the MLE Weibull and EM-based hyperexponential
seem clearly better choices than the exponential and Pareto.

In addition to comparing CDFs and empirical quan-
tiles directly and Q-Q Plots, we also show probability-
probability (P-P Plots) to illustrate distribution fit the entire
range or probabilities. P-P Plots are generated by evaluating
the EDF and MLE CDFsat each sample pointand plotting
them against each other.

If the sample points were exactly drawn from the theo-
retical distribution function, we would see a perfect linear
(i.e. zero-intercept, slope 1) relationship between. Notethat
a P-P Plot differs from a Q-Q Plot in that it depicts the dis-
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Figure 21. CSIL P-P Plot of sample/Weibull
percentile relationships
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Figure 22. Condor P-P Plot of sample/Weibull
percentile relationships

tributions only at the sample points, thereby eliminating any
effects the necessary interpolation might introduce in a Q-Q
Plot. That is, in an EDF, the quantile values that occur be-
tween sample data points must be interpolated. The P-P Plot
does not require this interpolation because it only evaluates
each function at the sample data points.

As Figures 21, 22, and 23 show, the Weibull/EDF rela-
tionships are almost linear throughout the probability range,
especially for the CSIL and Long datasets. The hyperexpo-
nential/EDF relationships are also shown, in Figures 24, 25,
and 26, to be quite close to linear.

4.2 Goodness-of-fit Tests

Before we present results for the Kolmogorov-Smirnov
(KS) and Anderson-Darling (AD) test results, some discus-
sion of goodness-of-fit (GOF) tests in general may be help-
ful.

Each of these tests is designed to test the hypothesis that
our sample observations,(x1, x2, ..., xi), are drawn from
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Figure 23. Long P-P Plot of sample/Weibull
percentile relationships
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Figure 24. CSIL P-P Plot of sam-
ple/hyperexponential percentile relationships
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Figure 25. Condor P-P Plot of sam-
ple/hyperexponential percentile relationships
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Figure 26. Long P-P Plot of sam-
ple/hyperexponential percentile relationships

random variables having some specified statistical distribu-
tion, by producing a measure of the strength of the evidence
againstthis hypothesis provided by the data.

That is, we wish to examine the question whether

Fe(x) = Fd(x)

whereFe(x) is the EDF of our sample data andFd(x) is
a hypothesized and completely specified distribution model
(e.g. MLE Weibull, exponential, or Pareto in this study).
Such tests are set up with null hypothesis

H0 : the data come from the given distribution

and alternative hypothesis

Ha : the data do not come from the given distribution

Goodness of fit tests have been designed to test against
this null hypothesis and essentially allow us to ask whether,
at a chosen significance levelα (often but rather arbitrarily
set at0.05 or 0.01), we rejectH0 at levelα. Each test gen-
erates its own test statistic, which we can use to compute a
p-value, which essentially measures how common or scarce
such a test statistic would be under the assumption that the
null hypothesis is true. After running a GOF test against
some observed data, we could end up withp = 0.07. This
would mean that the probability of getting the same or larger
test statistic from the test using a random sample drawn di-
rectly from the tested distribution is0.07. Thus, we have
failed to rejectH0 at the significance levelα = 0.05. If p
were less than our chosen significance cutoff point, then we
would rejectH0 in favor ofHa.

Although we realize the failure to rejectH0 is in no way
the same as acceptingH0, we use GOF tests in this study
to lend further evidence that some distributions model our
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data better than some other distributions. We have found
that GOF tests will, almost certainly, rejectH0 for large data
sets, since the power of the tests to reveal discrepancies be-
tween the observed data and the test distribution increases
with increasing sample size. Thus we find GOF tests some-
what difficult to use for testing large pools of real-world
data, which by nature cannot be expected to follow precisely
any theoretical distribution function.

For this reason, we employ a novel application of GOF
testing to the data sets in this study, keeping in mind that we
are presenting these results as further comparative evidence
of how well the various tested distributions fit the observed
data. Rather than conducting each test using all available
measurements (which indicates rejection in all cases), we
GOF tests on randomly gathered subsamples to determine
if rejection is warranted for small numbers of data points.
By doing so, we exploit the ability of each GOF test to de-
termine, from a smattering of measurements, whether rejec-
tion is indicated.

4.3 Goodness-of-fit Analysis

For this analysis we use both KS and AD goodness-of-
fit tests with randomly chosen subsamples from our data
sets each having size 100. We then repeat the tests, with
different random subsamples, 1000 times to get a range of
test results and then we use the average test statistic value
to compute the p-value. Rejection at size 100 indicates that
with as few as 100 data points it is evident that the tested dis-
tribution is inappropriate. The addition of more data points
to the test will only confirm this inappropriateness further.

Test results are shown in Table 2 which are the average
p-values from the 1000 iterations of the test.

From the table, it is clear that both the exponential and
Pareto fail the goodness-of-fit tests for all three data sets.
This is not entirely surprising, since the visual fit was clearly
inferior for all three data sets. The hyperexponential is per-
forming significantly better than all of the models for all
of the data sets, which was expected to eventually happen
as the number of phases was arbitrarily increased. For the
Weibull, we fail to reject the null hypothesis atα = 0.05
significance level using the KS test for all three data sets.
We fail to reject the null hypothesis atα = 0.05 signifi-
cance using the AD test for the CSIL and Long data sets,
but reject for the Condor data set, supporting the graphical
evidence that the Condor data set is less-well modeled by a
Weibull than the CSIL or Long-Muir-Golding data. Despite
the rejection, however, the graphical comparison indicates
that the Weibull is substantially better than either the expo-
nential or Pareto at modeling the observed data, but some-
what worse than a hyperexponential.

4.4 Data Characteristics

When we start using a Weibull distribution to model the
data sets presented in this work, we would like to fully un-
derstand and be able to characterize many aspects of the
sample data we’re working with. We need to know how
our data can be characterized in terms of stationarity and
identical distribution. To kick-start this understanding, we
have performed some common statistical tests that begin to
help us understand these underlying features that may influ-
ence further work with the data. For many of these tests,
we are exploiting the fact that we have access to our data
sets as they were originally recorded; grouped by machine.
Each of our datasets can be expressed as a combined list
of availability measurements, or as many sets of availabil-
ity uptimes grouped according to the machine from which
were taken.

We have, based on intuition about the underlying causes
for machine reboots and Condor process evacuations, as-
sumed for the length of this paper that our data values are in-
dependent. We believe that, for instance, one uptime inter-
val on some machine has no effect on the length of the next
uptime interval. We also assume that the data do not follow
any particulartrend; in other words, the uptimes should not
be getting generally longer or shorter as time progresses.
The combined properties of independence and lack of trend
constitute what we will call “stationarity.”

To support our assumption that our data are stationary,
we have performed on each machine aruns test, which is
designed to detect whether the sequential data within a time-
ordered set appeared “randomly” or whether there was a
trend or autocorrelation within the data. The idea of this
test is that a trend or positive autocorrelation within a sin-
gle machine’s ordered set of data will tend to create longer
and fewer “runs” of consecutive data points above, and also
below, the median than would be expected if the data were
truly random, and a negative autocorrelation would cause
there to be a larger number of such runs due to the tendency
of the data to oscillate. Runs test data for the CSIL and
Condor data sets were remarkably close to the null distribu-
tion. While the Long data set contained significantly more
machines (31) to be rejected at the.05 level than would be
expected under the null hypothesis (12.75), the number of
machines that failed the test because of too few runs was al-
most identical to the number that failed because of too many
(16 and15 respectively), so these factors may tend to mit-
igate and contribute to an overall data set that is also fairly
stationary.

We would also like to know whether the distributions of
uptimes for the various machines are all identical. There are
no good non-parametric tests available to test for identical
distribution against the most general alternative hypothesis,
but we are able to perform the Kruskal-Wallis test for iden-
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Data Set Weibull Exponential Pareto Hyperexponential
AD KS AD KS AD KS AD KS

CSIL 0.071 0.36 0 0.0002 0 0.0005 0.59280 0.47
Condor 0 0.07 0 0 0 0 0.68291 0.42
Long 0.132 0.41 0 0.001 0 0.0005 0.77247 0.48

Table 2. Table of p-value results from GOF tests

tical location. This test is designed to detect whether a data
point’s rank in a combined set is affected by its group mem-
bership. The testing process showed that we consistently
and stronglyrejectedthe null hypothesis that our data are
identically distributed. This is not entirely surprising,since
the data-gathering methods for all three data sets made no
attempt to record machines based on some assumed simi-
larity with regards to availability. The importance of this
result lies in the possible uses of the fitted models to indi-
vidual machines. Although we can determine good mod-
els for combined sets of machines we cannot, in good con-
science, apply this model to for any individual machine.
That is, these models capture the availability distributions
that are available to a user who wishes to introduce a sin-
gle process for execution on a randomly chosen machine.
The collection of machines with respect to this process is
well-modeled, but the availability of an individual machine
is not. As we record more data per machine, and are able to
perform model fitting methods on the individual machine,
we will be more able to address machine-specific availabil-
ity problems directly.

5 Discussion

From the results presented in this paper, we make sev-
eral observations. First, none of the data are well-modeled
by either an exponential or a Pareto distribution. The visual
evidence indicates that the fits are poor, and the GOF anal-
ysis seems to confirm that even at a coarse subsampling,
the observed data is likely not to have come from either the
MLE exponential or Pareto we fit. Thus, the tails of the
availability distributions are neither as light as would bede-
scribed by an exponential, nor as heavy as described by a
Pareto. While perhaps not surprising, this conclusion may
have wide-ranging effects.

In [44], Plank and Elwasif examine the “cost” of us-
ing an exponential model as the basis for optimal check-
point interval determination. The authors reproduce Long,
Muir and Golding’s analysis [34] and find that an exponen-
tial model is unlikely to be accurate. However, they go on
to determine that using an exponential model produces ac-
ceptable if conservative results for parallel systems. In a
global computing environment, however, where the number

of active processes in a program scales to much greater lev-
els, and checkpoints are sure to traverse over-taxed network
links, the need to control checkpoint-induced load becomes
critical. Indeed, the exponential model under-estimates life-
time, particularly in the tail, causing checkpoints to be taken
with greater frequency than necessary. In wide-area net-
work environment, the cost of checkpointing too frequently
is both lost compute time and lost network throughput if the
checkpoints are sent to a remote site for storage.

Process scheduling is similarly affected. Downey and
Harchol-Balter [28] make a convincing case for using
Pareto distributions to model Unix process lifetimes. Based
on non-negligible probability that a randomly chosen pro-
cess will be long lived, they argue that the overhead of
process migration can be amortized by the benefit of load
balancing. However, if the machines under consideration
are part of a federated system, as are the machines in our
study, processes may substantially outlive machine avail-
ability periods (or periods between resource reclamations,
in the case of Condor). Under these conditions, the value of
checkpointing and migration is easily amortized since the
alternative is either to restart long-running processes that
are terminated by a failure, or to abandon them altogether.

More theoretically, much of the recent work in peer-
to-peer systems [51, 60, 61] assumes exponential lifetime
models. From an equational tractability standpoint, these
simplifying assumptions are attractive, and simulation us-
ing these models indicates that their use does not pose a
significant risk to stability or performance. We contend,
however, that the effect we observe should be considered
in any future peer-to-peer system formulation. The non-
memoryless aspect of the Weibull and hyperexponentialdis-
tributions implies that past history carries important infor-
mation about future availability. To our knowledge, no peer-
to-peer system accounts for this possibility despite the re-
cent widespread interest in peer-to-peer systems design.

In terms of building credible Grid, desktop, and global
computing simulations, these results clearly indicate that
both Weibull and hyperexponential models of resource life-
time must be considered. Enterprise-wide systems like
those supported by Condor, Entropia [22] and United De-
vices [55] must certainly consider parameterizations of
these models possible operating regimes. Moreover, Grid
testbeds such as the Grid Application Development Soft-
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ware [7, 26] testbed often include desktop resources like
the ones we study in the CSIL and Condor data sets. Grid
Simulation packages such as the MicroGrid [49, 15], Sim-
Grid [11], Bricks [52] and Gridsim [10] can more ac-
curately capture federated resource behavior using these
model types.

The question of whether to use a Weibull or hyperex-
ponential model in simulation and/or analysis is a difficult
one one to address quantitatively. Using reasonably pow-
erful goodness-of-fit tests, the p-values for a hyperexpo-
nential that has been fit with an EM procedure are gen-
erally larger than those generated from an MLE Weibull.
While not a rigorous comparison, comparing p-values in
this way does indicate which of the two models is most
probably the more accurate. In addition, a hyperexponen-
tial has some attractive analytical properties that make ita
useful choice in queuing contexts, when analytical solutions
are needed [23]. For simulation, however, Weibull models
offer potential advantages. Having only two parameters,
“sweeps” of the simulation parameter space are substan-
tially less complex than with a hyperexponential. Recall
that ak phase hyperexponential requires2k − 1 parame-
ters, and that the value ofk must be chosena priori. In
our study,k = 3 is complex enough to capture the distribu-
tional behavior, but higher phase degrees may be necessary.
Moreover, the Weibull is a algebraically invertible model
making visual techniques such as Q-Q plots less complex
to generate.

Regarding the general process of model fitting to empir-
ical performance data, Feldmann and Witt provide evidence
that any heavy-tailed distribution can be approximated by
a hyperexponential distribution with a sufficient number of
phases [23]. However, their preferred method is to use an
MLE technique to determine a heavy-tailed model (either
Pareto or Weibull in their paper) and then to use an EM
technique to approximate the model with a hyperexponen-
tial. In our experience, fitting a hyperexponential directly to
the data using EM provides a better fit, using fewer phases
than they report.

The applicability of both Weibull and hyperexponential
models is startling clear in the analysis of the Long, Muir
and Golding data set. This study gives some indication of
what availability may be like in a web-services based com-
puting environment. We suspect that with the current wide-
spread of proliferation of computer viruses, an attempt to
reproduce the Internet survey for the current Internet will
not be successful. However, given the similar nature of
the Weibull fits across data sets, we conjecture that the ef-
fect extends at least to Internet connected hosts and servers.
While the reliability of the network fabric has certainly im-
proved since the survey was conducted, we conjecture that
machine availability is unlikely to have undergone a sim-
ilar improvement. For example, in 1995 the predominant
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Figure 27. Condor data with with removed
outliers and MLE Weibull fit ( α = 0.493, β =
2304.8)

server operating system is likely to have been some vari-
ant of the Solaris operating system from Sun Microsystems.
Since then, many if not the majority of web systems are sup-
ported on machines running some variant of Linux. There
is little reason to suspect that this shift has produced an
increase in availability. However, the increased virus and
“spam” activity combined with the greater proliferation of
even less stable operating system platforms, may have de-
creased availability leaving the appropriateness of even ex-
ponential models (with lighter tails) as an open question for
the web services community.

Finally, we have attempted to characterize our data sets
in terms of stationarity and identical distribution by con-
sulting common tests. We failed to reject a null hypothesis
for stationarity, but very strongly rejected a null hypothe-
sis for identical distribution. However, during these experi-
ments, we noticed an interesting feature in some of our data
sets, namely that when four outlier machines (those with ex-
tremely large contributions to the Kruskal-Wallis test statis-
tic) were removed from the Condor data set, the Kruskal
Wallis test for i.d. jumped from an essentially 0 p-value to a
p-value of 0.2. As can be seen in Figure 27, the removal of
outlier machines did not affect the suitability of a new MLE
Weibull fit to the remaining data. From this observation, we
suspect that our data may have very discrete subsets of ma-
chines that, as a group, may benefit from a model separate
from the model for the combination of all machines. We in-
tend to explore this idea further in the future in the hopes of
finding large enough i.d. groups of machines such that pre-
dictions made from group models can be used to accurately
predict behavior of any one group member.

Automatically determining this clustering of availabil-
ity is the subject of our on-going research. However, as
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collections of resources, the combination of MLE Weibull
and EM hyperexponential fitting provides good models au-
tomatically from NWS-generated availability data. Given
the evidence for stationarity, we can gather data and use
both techniques to fit models that are applicable for long
periods. By doing so, our method provides a dynamic (if
slowly changing) characterization of resource pools that is
useful in several distributed computing contexts.

6 Conclusions

The need to model resource availability and to charac-
terize groups of resources in terms of their availability is
critical to desktop Grid, peer-to-peer, and global comput-
ing paradigms. Previous related work has used exponential
(memoryless) or Pareto distributions, but our work shows
that Weibull and hyperexponential distributions are more
accurate choices. Visual evidence and GOF results (when
applied repeatedly to subsamples) show with a high degree
of statistical significance that the data we have is distributed
according to Weibull and hyperexponential distributions.
The choice of which to use depends on the application for
which the model is needed, and from an engineering per-
spective, they can be made equivalent. Both, however, are
significantly better at capturing the distribution of availabil-
ity time we analyze in this study and both can be computed
automatically from on-line NWS data.

We have also examined the stationarity and indepen-
dence characteristics of the data sets we consider. The
models we fit appear stationary, but independence among
the machines in each set is not generally indicated. Thus,
the techniques we have developed characterize collections
of machines, but not the machines themselves. However,
removal of a small number of of outliers reveals that for
some data sets, the machines are “almost” independent in
that the removal of a few outliers dramatically improves
independence-test results. From these results, we hope to
generate individual resource models and to improve the
quality of simulation and modeling for volatile distributed
systems.
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