
DGMonitor: a Performance Monitoring Tool for
Sandbox-based Desktop Grid Platforms

P. Cicotti1 � 2, M. Taufer1, A. Chien1

1 Department of CSE 2 Dipartimento di Informatica
University of California, San Diego Universita di Bologna, Italy

taufer, achien@csag.ucsd.edu cicotti@cs.unibo.it

Abstract

Accurate, continuous resource monitoring and profiling are
critical for enabling performance tuning and scheduling op-
timization. In desktop grid systems that employ sandbox-
ing, these issues are challenging because (1) subjobs in-
side sandboxes are executed in a virtual computing envi-
ronment and (2) the state of the virtual computing environ-
ment within the sandboxes is reset to empty after each sub-
job completes.
DGMonitor is a monitoring tool which builds a global, ac-
curate, and continuous view of real resource utilization for
desktop grids with sandboxing. Our monitoring tool mea-
sures performance unobtrusively and reliably, uses a simple
performance data model, and is easy to use. Our measure-
ments demonstrate that DGMonitor can scale to large desk-
top grids (up to 12000 workers) with low monitoring over-
head in terms of resource consumption (less than 0.1%) on
desktop PCs.
Though we developed DGMonitor with the Entropia DC-
Grid platform, our tool is easily integrated into other desk-
top grid systems. In all of these systems, DGMonitor data
can support existing and novel information services, partic-
ularly for performance tuning and scheduling.
Keywords: Performance monitoring and profiling, sand-
boxing techniques, distributed computing.

1 Introduction

Large numbers of high-performance computing applica-
tions are being run on desktop grid systems. These sys-
tems enable exploitation of unused resources in enterprise
intranets and across the Internet, and thus can deliver mas-
sive computing power for the study of complex phenomena
in a wide variety of scientific fields.
One challenging issue for desktop grid systems is how to
achieve good performance. To address efficient usage of
networked resources (i.e., computing, storage, and commu-
nication resources) and shorten the turn-around time, it is
compulsory to know the availability and usage of the real

resources in a continuous, global view rather than in an iso-
lated manner. New information services for performance
tuning and scheduling optimization of grid systems are un-
der investigation [1, 2]. Ideally, monitoring and profiling
tools would provide detailed information with an unobtru-
sive, continuous, and application independent view for a
large number of monitored nodes. In desktop grid environ-
ments this is particularly challenging because the desktop
PCs are volatile, frequently leaving and joining the desktop
grid system, thus making it difficult to locate all the moni-
tored nodes at any time.

Because of the benefits in security and unobtrusiveness,
many commercial and open-source desktop grid systems [3,
4, 5] are incorporating sandboxing techniques that isolate
grid applications, preventing inappropriate system calls and
modifications of the local node environment. The sand-
boxes make monitoring of desktop grid systems even more
challenging because the application computing environ-
ment is virtualized and so is the resource availability in-
formation. Moreover, sandboxes are typically reset at each
subjob termination, preventing continuous monitoring from
inside the sandbox [3]. To meet these challenges, we are
developing techniques to acquire accurate and continuous
monitoring data on desktop grids based on sandboxing tech-
niques.

To address the issues above, we present the architecture of
DGMonitor, a monitoring tool to build a global, consistent,
and complete view of resource utilization for desktop grids
based on sandboxing techniques. Our monitoring tool uses
a simple performance data model, provides unobtrusive and
reliable performance measures, and is easy to use. To eval-
uate the quality of DGMonitor, we address and analyze
three critical issues for monitoring tools on desktop grids
using Entropia DCGrid as a representative model. First, we
study the scalability of DGMonitor, exploring the number
of desktop PCs that can be monitored accurately, and our
results show that DGMonitor can easily monitor grids with
10,000 nodes or more. Second, we quantify the monitoring
overhead on each computer. Third, we consider both porta-
bility and interoperability of the DGMonitor components
and address the possibility of integrating our tool with other

1



existing information services.
The rest of the paper is organized as follows: In Section 2,
we survey existing monitoring systems and motivate why a
new monitoring tool like DGMonitor is needed for sandbox-
based desktop grids. In Section 3 we present the features
and the benefits of sandboxing techniques; we also intro-
duce Entropia DCGrid as a representative of desktop grid
systems. In Section 4, we describe the architecture of DG-
Monitor. Section 5 addresses system metrics, measurement
techniques, and communication policies used in DGMon-
itor for efficient resource monitoring. Section 6 describes
how we guarantee unobtrusiveness, Section 7 addresses the
system monitoring control, and Section 8 shows how to re-
construct a global performance view from the data collected
on local nodes. In Section 9, we measure the scalability and
overhead of our monitoring tool. Finally, in Section 10 we
address its portability and interoperability.

2 Related Work

To our knowledge, no existing monitoring tools specifically
address the challenges of desktop grids based on sandboxes.
Well-known monitoring tools for general grid systems, like
NWS [6], Ganglia [7] or dproc [8], monitor real resource
information but at the same time require authenticated ac-
cess to remote nodes to install monitoring sensors. Rein-
stalling or restoring such sensors can be a tedious task for
highly volatile systems like desktop grids. More generally,
such monitoring tools are independent from the grid sys-
tem itself. This implies the maintenance, control and re-
liability of two separate infrastructures (one for the moni-
toring and one for the computing distribution) which need
to somehow share common information in real time (e.g.,
node identifiers, volatility, availability). In contrast, DG-
Monitor does not require direct authorized access to re-
mote nodes and is easily integrated into the desktop grid
infrastructure sharing common information (including au-
thentication) and overcoming the virtualization of resource
information from inside a sandboxed computing environ-
ment. Finally, DGMonitor operates both on Windows and
Linux/Unix systems while the tools listed above only oper-
ate on Linux/Unix systems.
More traditional performance monitoring tools like SV-
Pablo [9] and Paradyn [10] monitor and visualize the whole
distributed system at the application-level isolating sec-
tions that are particularly resource demanding. Therefore,
these tools normally require some code re-engineering, re-
compiling, or re-linking and some embedded instrumenta-
tion at the operating system or middleware level. DGMon-
itor captures both dynamic and static properties with a re-
source orientation without requiring any intervention at the
application level.

3 Desktop Grid Systems

Desktop grids are an emerging class of grid systems which
exploit desktop PCs for distributed computing. In general,

a central scheduling system accepts subjobs and then dis-
tributes them to the desktops PCs that dynamically join and
leave the grid, thereby delivering computational power for
limited amounts of time. Among the requirements of these
systems, security and unobtrusiveness are fundamental is-
sues in guaranteeing desktop grid users that their applica-
tion data is safe and to the PC owners that their system in-
tegrity and data privacy is protected.

3.1 Sandboxing Techniques

Security mechanisms in desktop grids move away from
complex authentication mechanisms to self-defense mecha-
nisms based on sandboxing techniques. Sandboxes are vir-
tual, homogeneous computing environments on top of real,
heterogeneous distributed environments. A virtual environ-
ment acts as an intermediate layer between the subjobs and
the operating system increasing the portability of applica-
tions, improving security, and providing flexible resource
control policies. Running applications inside sandboxes en-
forces both qualitative and quantitative control of the desk-
top resources [11], but at the same time it is not possible
to directly acquire real system performance data from in-
side such a virtual computing environment. Sandboxes are
based on different techniques which range from intercep-
tions of system calls (e.g., using ptrace on Unix/Linux or
dll injection in Windows) to resource control mechanisms
at the OS level. The Entropia virtual machine is an example
of a user-level sandbox [12]. Sandbox systems like Sub-
terfugue [13] and User Mode Linux [14] are ptrace-based
models, whereas Linux Security Module [15] is based on
kernel-based models.

3.2 Entropia DCGrid

Entropia DCGrid [3] is a representative of enterprise desk-
top grid systems based on sandboxing techniques. Entropia
DCGrid enables users to run any Win32 application with-
out modifications or special system support. We have cho-
sen Entropia DCGrid as our testbed because of its reliable
and robust sandbox implementation. The current version of
Entropia DCGrid supports sandboxes on top of Windows
9x/ME/2000/XP.
On the Entropia DCGrid platform, applications are submit-
ted to a job scheduler that distributes subjobs to Entropia
clients. Once distributed, the application subjobs run on
loosely-coupled workers inside sandboxes. Each Entropia
DCGrid client creates one sandbox. The sandbox denies
unauthorized access to the underlying systems, ensuring
that no system call can inappropriately access the host desk-
top PC. By acting as a virtual, homogeneous computing en-
vironment on top of a real, heterogeneous distributed en-
vironment, the sandbox improves the portability of appli-
cations and the security for both the host machine and the
distributed subjobs. At the end of any application subjob,
the content of the sandbox is reset to an initial empty state:
the results are sent back to the scheduling master, and the

2



remaining files are canceled leaving the worker empty and
ready to proceed with a new subjob. The Entropia DC-
Grid sandbox, under special conditions, allows pinholes to
be opened for communication with other sandboxes (e.g.,
peer-to-peer communication) and for access to the local file
system. This aspect does not compromise the security of
the whole grid system since the machines running DCGrid
clients are located inside the same administrative domain
and behind firewalls.

4 Architecture of DGMonitor

Unobtrusiveness and the distributed nature of the grid have
led us to design and implement our DGMonitor according
to a master-worker scheme. The master acts as a registra-
tion authority and controls the overall worker activity of the
system. To keep the monitoring of networked resources as
unobtrusive as possible, we delegate the collection, the pro-
cessing, and the storage of performance data to the master.
Figure 1 shows the architecture of our lightweight mon-
itoring tool and its processes running on the monitoring
master (i.e., mController, mCollector) and on the
monitored workers (i.e., mLauncher, mStarter, and
mDaemon).

application

mLauncher

mStarter

mDaemon mController

TextDisplay

FileStorage

DBStorage

mCollector

control

data

resources

data

observers 

pinhole

sandbox
monitored 
worker

monitoring
masterEntropia

channel

Figure 1. The architecture of the DGMonitor.

We expect the monitored system to change as the desktop
grid changes (e.g., new PCs are added or removed). There-
fore, it is important that the set of monitored workers is not
decided a priory but is continuously updated. To get such a
dynamic monitoring approach without requiring any direct
authorized access to the worker, we spread the monitoring
processes among the PCs of the desktop grid system us-
ing the Entropia channel. We do not know a priory which
PCs will take part in the distributed computation, but once
a desktop PC has received an Entropia client and starts run-
ning subjobs, it becomes visible to our DGMonitor. This is
achieved by sending tasks to the workers containing both an
application subjob and the additional monitoring processes.
Since the sandbox is a virtual environment, the monitoring
process has to be located outside the sandbox to collect real
resource information. It also has to completely break any
connection with the sandbox to survive the termination of
the application subjob. The sandbox initial empty state is in-
deed reset once the application subjob has terminated, pre-

venting the monitoring process to continue the monitoring
activity if located inside the virtual environment.
On the monitored worker, we use a chain of processes to
break all connections with the sandbox and be able to pro-
vide a real, continuous stream of performance information
to the monitoring master. The mLauncher process is
started inside the sandbox. It opens a pinhole1 through the
sandbox, creates the mStarter process outside the virtual
environment, and waits for its termination. The mStarter
process creates the mDaemon process as a stand-alone pro-
cess and dies immediately. Even if running outside the
sandbox, mStarter is still intercepted by the virtual en-
vironment and if alive at subjob termination, it is detected
as an errant child blocking the reset of the computing envi-
ronment to the initial empty state. The mDaemon process is
the real monitoring process and samples information about
the system resource usage. Before starting its monitoring
activity, every mDaemon checks the possible existence of a
previous instance to avoid duplex mDaemon processes on a
worker. When the mDaemon process is started, any stdout
and stderr pipes are closed so that any connection with the
sandbox is broken.
We use disjoint control and data channels between mon-
itored workers and the monitoring master. Control pack-
ets are sent to and from mController through the con-
trol channel and carry information to control the execution
state of mDaemons once the connection with the sandbox
is broken. The data channel is used to send resource sam-
ples from mDaemon to mCollector, as shown in Fig-
ure 1. DGMonitor uses a relational approach for the data
model representation and can store the performance data
into relational databases, files, or print it to standard output.
Performance data collected by mCollector is forwarded
to a set of data observers defined in the configuration
file of the process (i.e., TextDisplay, DBStorage,
FileStorage). The chosen observer design pattern
makes our monitoring tool highly flexible: so far, the termi-
nal printer implementation (TextDisplay) has been used
for debugging and testing purposes, whereas, for extensive
data collection, we have developed an implementation for
connectivity with an MySQL database (DBStorage) and
for writing to files (FileStorage).

5 Efficient Monitoring

5.1 System Metrics

On desktop grid systems, which are non-dedicated systems,
the knowledge of dynamic resource properties is vital for
improving application performance. DGMonitor is able to
capture both dynamic and static properties of the networked
resources (i.e., computing and communication resources).
In our approach, we look at each desktop PC as a set of net-
worked resources. The resources under investigation are:
CPU, memory, storage devices, and network. For each net-

1Pinholes are set through a task configuration file

3



worked resource, we have identified a limited set of repre-
sentative metrics capable of capturing the dynamic resource
properties. Table 1 reports on the networked resources and
the related set of metrics used by DGMonitor. Each met-

Resources Measured metrics
CPU idle time, user time, system time

number of processes,
process queue length

Memory available, cache, cache faults,
page faults, page transferred

Storage devices transfer time, transfer/sec,
transfer queue length, Byte/transfer

Network nic bandwidth, out queue length,
packets transferred, packet dropped

Table 1. Networked resources and related metrics.

ric corresponds to a performance counter that is added to
a collective query: at specified frequencies, the system is
queried and the metrics are sampled. The data packets used
to transmit this information do not exceed 128 Bytes in size.

5.2 Monitoring and Measuring Sensitivity

Dynamic resource properties change at run-time in varying
degrees: depending on the use that an application makes
of the resources, some resource properties may be updated
more frequently than others. Most applications on desk-
top grid systems are scientific applications which run dur-
ing long turn-around times ranging from several minutes to
hours or days. Therefore, medium-grain (seconds/minutes)
and coarse-grain (tens of minutes) measurements of the net-
worked resources give reasonable estimates of system be-
havior.
Our medium-grain monitoring policy is based on both time-
and value thresholds. These time- (δt and ∆t) and value
thresholds (a vector of resource thresholds δ

�
r, one for each

of the n metrics monitored reported in Table 1) are set at the
beginning of the monitoring process on each worker and
can be changed at run-time. Every δt time, mDaemon sam-
ples the values of the n metrics,

�
r
�
t � , and sends them to

mCollector if the following is true:

�
ri
�
t ��� �

r
�
t � : � ri

�
t ��� ri

�
t � δt �	��
 dri �

To facilitate the accurate rebuilding of performance traces
of the networked resources, mDaemon samples the values
of the metrics and performs a forced send of the whole met-
rics vector

�
r every ∆t time.

5.3 Data Collection

For accurate real-time performance data of a large desk-
top grid system, frequent and fast monitoring traffic is re-
quired. Such kind of transmission may introduce rele-

vant communication intrusions. To obtain low communi-
cation intrusions, we use the UDP/IP protocol for trans-
mission of performance monitoring data from mDaemon
to mCollector. UDP/IP is a fast, but unreliable trans-
mission protocol (packets may get lost). No attempt to re-
transmit lost messages is made during our monitoring, but
regression models might be used at the data storage level
to rebuild lost information [16]. Because UDP/IP does not
need to maintain connection states of the monitoring pro-
cesses, it supports a larger number of monitored workers.
A data message comprises the worker ID assigned during
the registration, the timestamp at which the samples have
been taken and the several metrics describing the resource
properties. The worker ID allows us to simplify the storage
procedure of the data: no sophisticated client recognition
mechanisms based on the sender IP are required both at the
mCollector and data storage levels.

6 Ensuring Self-Cleaning

To survive the sandbox reset at the end of any subjob and to
sample real resource values, we allocate the monitoring pro-
cess, mDaemon, outside the sandbox, thereby violating the
unobtrusiveness principle of the sandbox. To guarantee un-
obtrusiveness, mDaemon is time-bound: DGMonitor uses
the concept of ”lease” or fixed amount of time in which a
given mDaemon will be valid for monitoring the resources.
The first time a worker joins the pool of monitored desk-
top PCs and receives an application subjob, the starting
mDaemon sends a registration request to mController.
If a confirmation for the initial registration is not received
by mDaemon, it terminates. At regular intervals ∆T ,
mDaemon asks for a renewal of the monitoring lease. In
case the renewal is not successful, the lease expires and
mDaemon terminates. In case of network failure or a fail-
ure of mController, the mDaemon processes do not suc-
ceed in renewing the lease and terminate. In case of worker
failure, no attempt to resume mDaemon is done by the mon-
itoring master.
The choice of the most appropriate ∆T is a critical task that
should be based on three main factors: the system scala-
bility, the local overhead due to the renewal of the lease,
and the level of unobtrusiveness desired. A small ∆T (e.g.,
one second) means frequent renewal by a large set of work-
ers and may imply a high load on mController. It also
means more frequent use of resources on the worker and
the consequent increase of the local overhead. On the other
hand, minimizing the lease duration through a small ∆T im-
plies a more responsive mDaemon termination to any re-
newal failure. In Section 9, we look at how much a small
∆T affects both the scalability and the local overhead.

7 System Monitoring Control

A separate control channel is used to control the behavior
of the mDaemon processes, to update the time- and value
thresholds, and to register a new lease and keep the regis-

4



tration updated. The loss of a message on this channel might
compromise the monitoring process e.g., unexpected termi-
nation of a daemon or excessive client intrusion. To assure
reliable control communication between master and work-
ers, DGMonitor uses the TCP/IP protocol. Control mes-
sages are sent in both directions through the TCP/IP chan-
nel.
Master control messages are sent from mController to
the mDaemon processes to control the monitoring (i.e., to
start or resume the monitoring activities), to stop or suspend
the monitoring, or to kill a monitoring process on a single
worker or a group of workers. An update of the time- and
value thresholds as well as of the lease duration can also
be sent at run-time. Worker control messages are sent from
mDaemon to mController to register a new worker and,
at regular intervals, to obtain a renewal of the lease. The
mDaemon process sends a control message containing the
static properties of the networked resources available. It
also sends its local time and a set of proposed time- and
value thresholds (δt, ∆t, ∆T , ∆r) based on the static proper-
ties of the networked resources. The mController pro-
cess confirms the registration providing mDaemon with a
worker ID, its global time, and the assigned time- and value
thresholds. The global time provided by the monitoring
master to the monitored worker is described in detail in the
next section.
Master control messages are not frequent and therefore, the
related TCP/IP connections do not affect the global sys-
tem load. On the contrary, registrations or lease renewals
might affect the network load for large amounts of workers
or small ∆T and, in the worst case, might be responsible for
loss of packets in the data channel.

8 Reconstructing Performance from Col-
lected Data

The monitoring master has to be able to patch together the
performance data of the workers in a consistent manner. To
address this issue, a consistent notion of global time has to
be maintained among the several PCs of the desktop grid
system. To overcome this problem, a monitoring tool has
to introduce some mechanism of synchronization during
the performance data sampling. Mechanisms based on or-
dered events such as barriers for synchronizing the compu-
tation and the communication may change the run-time be-
havior of the monitored application introducing idle times
and therefore, change scheduling and execution of the pro-
cesses.
To cope with the problem of maintaining a global notion
of time and at the same time reducing scheduling and exe-
cution intrusions, we adopt a notion of global time using
synchronizations based on Christian’s algorithm [17]. A
precise synchronization between master and workers takes
place at the registration and at each lease renewal: dur-
ing these operations the master provides the workers with
its local time to which it has added a rough estimation of

the time needed for its communication. Figure 2 shows
the re-synchronization done at every lease renewal. The
mDaemon process encloses its timestamp t0 into the re-
quest for the lease renewal. The request is received by
mController at the time t1. The mController pro-
cess sends back a confirmation of the lease renewal at time
t2. Both t2 and t̄0 � t0

� �
t2 � t1 � are sent back in the con-

firmation message. At time t3, the worker receives the re-
newal and restarts the performance sampling adopting a
new global time, t � t2

� t3 � t̄0
2 . Timestamps of the sample

worker master

t0=t0+(t2−t1)

2

global time t 

t0

t1

t2,

t0

time

t2

time

t3

t= t2 + (t3 − t0)

Figure 2. Time synchronization between the moni-
toring master and a monitored worker.

times are delivered in the performance packets containing
the sampled performance information.

9 System Evaluation

9.1 Scalability Study

A rapid growth in the number of desktop PCs might imply a
significant growth in the number of samples of the resource
properties and a consequent increase in terms of overhead
at the monitoring master level. To identify when the master
becomes a bottleneck to the scalability of the whole system,
we measure:

� the maximal number of mDaemons collecting data
on workers that mCollector can serve in real time
without losing data packets containing resource prop-
erties,

� the maximal number of renewals that mController
can serve in real time without losing any request from
the workers.

Scalability of mCollector

To measure the maximal number of mDaemons that
mCollector can serve without losing data packets, we
use a multi-threaded packet generator to emulate large num-
bers of monitored workers sending their metrics samples
together. We use real-size data packets of 128 Bytes con-
taining the performance metrics listed in Table 1. We con-

5



sider two different commodity master configurations: a
slow master with 400MHz CPU speed, 256 MByte mem-
ory and 8833 IDE disk (slow master) versus a faster master
with 2 GHz CPU speed, 512 MByte and ATA-33 IDE disk
(fast master). We also consider three different kinds of ob-
servers: an observer which directly writes the data in a local
file (FileStorage), an observer which uses a MySQL
database located on the monitoring master (DBStorage loc)
and an observer which uses a MySQL database on a remote
machine (DBStorage rem). We repeat each monitoring test
several times, each time lasting more than five minutes. The
amount of data packets sent from the workers to the master
ranges from 1000 data packets to 15000 data packets per
second.

Figure 3 shows the number of received packets (y-axis) ver-
sus sent packets (x-axis) for both the slow and the fast mas-
ter’s configurations when the data is locally saved in a file
(FileStorage). The master with faster and larger sys-
tem resources (i.e., CPU, memory, HD) is able to serve a
larger number of received packets. The maximum number
of packets simultaneously served without any loss is 12000
using a fast master and 4000 using a slow master. Figure 4

Figure 3. Rate of collected data for different master
hardware configurations when the data is directly
saved in a local file.

shows the amount of received packets (y-axis) over sent
packets (x-axis) using the fast master configuration when
the performance data is saved in a local database (DBStor-
age loc) and remote database (DBStorage rem). The re-
mote database is located on a commodity PC with 1.8 GHz
CPU speed and 512 MByte RAM. The PC is connected to
the monitoring network through a Fast Ethernet connection
on a local area network. Saving performance data in a lo-
cal database gives worse performance in terms of maximum
amount of packets stored without any loss than saving this
data in a remote database. This is because the local database
steals about 30% of the CPU cycles from the master, sat-
urating it in a much faster time. Figure 4 shows that we

Figure 4. Rate of collected data for different
database locations (local and remote) with a fast
monitoring master.

receive all the packets up to 1200 packets/sec but we lose
more than 14% of the received packets with just 3000 pack-
ets/sec. We have found that such a loss increases to 68%
when the number of sent packets are 6000 packets/sec.

On the other hand, the storage on the remote database pro-
vides better performance in terms of maximum amount of
packets stored without any loss. However, for more than
600 packets/sec, such a storage on the remote database
is no longer able to take place at run-time because it
starts to introduce delays between when the data leaves
mCollector and when the data is stored into the
database. This is mainly due to the congestion control:
as a consequence, packets are cached on the master and
slowly sent to the database introducing a thrashing phe-
nomena. If the UDP communication between mDaemon
and mCollector allows us to avoid TCP/IP congestion
control problems during the collection of the resource met-
rics, once we want to store this data on a remote database,
we have to face such a problem. Moreover, the creation
of TCP/IP packets steals CPU cycles additionally affecting
the transmission delay. Such a delay increases significantly
with the number of packets sent to the database forcing us
to reduce the duration of the tests in order to keep the total
delay under control and allow the database to store the data
in a short time. This is not the case for the local database in
which all the data is stored at run-time even for more than
600 packets/sec up to 6000 packets/sec. By running shorter
monitoring tests (ranging between 15 and 30 seconds), we
observe that we are able to repeat the same performance (in
terms of maximum packets received per second without los-
ing any packet) that we have reached when writing the same
data on local file.

6



Scalability of mController

To measure the maximum rate of renewals that
mController can serve, we simulate a large num-
ber of workers trying to renew the lease by using a
multi-threaded generator. In a first set of tests, the gen-
erator is located on one machine and then to increase the
load it is replicated on two and three machines. For every
renewal, a TCP/IP connection is open and a round trip
message is exchanged between the simulated mDaemon
process and mController.
We look at the two different master configurations used
in the previous experiment: a monitoring master with
400 MHz CPU speed and 256 MByte memory previously
called slow master and a monitoring master with 2 GHz
CPU speed and 512 MByte called fast master. Table 2
shows the maximal number of requests served per second
for the two configurations. When we try to generate higher

fast master slow master

renewal/sec 1440 503

Table 2. Maximal number of renewal per second
served by the mControllerprocess when running
on different master configurations.

loads, we observe that mController is no longer able
to serve more requests and consequently the multi-threaded
generator, by adapting its speed, is not able to exceed the
limits reported in the table.

Result Analysis and Discussion

Having a TCP/IP connected remote database is a viable so-
lution only if the average number of packets per second ex-
pected to be served instantaneously is of the order of a few
hundred. A local database can instead serve an expected
load of about a thousand packets per second which is in
our case the preferable solution. Every simulated load re-
ported in this paper can be considered the result of either a
small number of workers (of the order of hundreds) forced
to send monitoring packets every second or a larger number
(of the order of thousands of workers) running an applica-
tion which is characterized by slow system changes, so that
the performance data transmission happens less frequently
(of the order of seconds or even minutes). A lease rate limit
arises from the use of the TCP/IP protocol but is not as re-
strictive as the limits found for mCollector since a re-
newal of the lease is not strictly required every second.
By looking at the results reported above, we can conclude
that any technology improvement of the monitoring master
(i.e., faster CPU, larger memory, faster disk access) can sig-
nificantly affect the performance of both the mCollector

and mController processes. Moreover, the monitoring
master and the database server perform better if located on
different, dedicated machines to assure higher scalability,
but still the database host remains the limiting factor. Also
architecture improvements, like multiple monitoring mas-
ters on which the mCollector and mController pro-
cesses are built in hierarchical structures, can significantly
increase the number of workers served. These issues are
currently under investigation.

9.2 Local Overhead

To study the worker overhead of DGMonitor, we compare
the CPU, memory and, network usage rate of mDaemon
versus the total usage rate for the same resources using the
Performance Logs and Alerts. The resource usage sam-
pled every second is piped into a log file. The measure-
ments have shown that the CPU and the memory usage of
mDaemon remain almost insignificant. The network uti-
lization remains under 0.1% even in a condition of maxi-
mal load when the metrics are sampled and sent every sec-
ond and the lease renewal also takes place every second
(δt � ∆t � 1∆T � 1).

10 System Integration

10.1 System Portability

For our DGMonitor, multi-threading, synchronization con-
structs, and socket communication have been designed to
be portable: all these parts run not only on Win32 ma-
chines and Entropia DCGrid but also on other operating
systems based on pthreads like Linux/Unix machines and
other desktop grid systems like XtremWeb. On the mas-
ter side, all the monitoring processes are portable. On the
worker side, we are currently developing a /proc-based
mDaemon and we plan to insert our DGMonitor into an
XtremWeb platform with workers hosted on both Win32
and Linux machines. Once this extension is finished, we
plan to extensively use DGMonitor to monitor large hybrid
desktop systems composed of XtremWeb workers and En-
tropia workers.

10.2 System Interoperability

The data scheme currently adopted in our MySQL database
is simple and is used for the collection of all the metrics
listed in Table 1. Different implementations and database
schemes can easily be implemented to collect sets of met-
rics, to filter, and to observe specific events. Moreover, an
ad-hoc observer implementation can be a direct interface to
other specific services. Indeed, our DGMonitor can easily
interoperate with existing services, e.g., resource location
services [18, 19] or forecasting services [6]. It can also be
combined with the Round Robin Database Tool [20, 21] and
web-based interfaces to maintain and visualize performance
data. To locate networked resources at run-time, DGMoni-
tor with its relational database can be used as a back-end for

7



grid information services like RGIS [1] and R-GMA [2].

11 Conclusion

Accurate, continuous system monitoring and profiling is re-
quired to support online performance tuning and scheduling
optimization. In this paper, we have described DGMonitor,
a tool which enables the collection of this data in sandbox-
based desktop grids. We have implemented and evaluated
the system on the Entropia DCGrid platform, characteriz-
ing its unobtrusiveness. Important design elements include
minimal resource usage on the monitored workers and in-
cremental update only when relevant system changes oc-
cur. New desktop PCs are added to the monitored system
as soon as they receive a subjob and they are removed when
their lease cannot be renewed.
Our experiments have shown that DGMonitor can monitor
up to 12000 workers in real time with full accuracy, and
writing the performance data to a file. When the monitor-
ing master writes the performance data in a local database
and the highest accuracy for data collection (every sec-
ond) is used, DGMonitor can simultaneously collect per-
formance packets from up to 1200 workers without any loss
of data. Larger numbers of workers can be monitored in
real time under lower precision (time intervals of seconds
or even minutes per worker), indicating good scalability of
our monitoring tool. The design of DGMonitor is not spe-
cific to the Entropia DCGrid system. DGMonitor can eas-
ily be integrated into different existing information services
to provide performance data and create the base for per-
formance tuning and scheduling optimization of complex
desktop grid systems. Finally, we are currently extending
DGMonitor to guarantee data privacy by adopting an en-
cryption mechanism (i.e., private and public keys).

Acknowledgments

Supported in part by the National Science Foundation under
awards NSF EIA-99-75020 Grads and NSF Cooperative Agree-
ment ANI-0225642 (OptIPuter), NSF CCR-0331645 (VGrADS),
NSF ACI-0305390, and NSF Research Infrastructure Grant EIA-
0303622. Support from Hewlett-Packard, BigBangwidth, Mi-
crosoft, and Intel is also gratefully acknowledged. We wish to
thank Alex Olugbile and Andre Kerstens for their helpful com-
ments and suggestions.

References

[1] P. Dinda and D. Lu. Nondeterministic Queries in a Relational
Grid Information Service. In Proc. of Supercomputing 2003
(SC 2003), Phoenix, AZ, Nov 2003.

[2] S. Fisher. Relational Model for Information and Monitoring.
Technical report, Tech. Rep. Informational Draft GWD-GP-
7-1, Grid Forum, 2001.

[3] A. Chien, B. Calder, S. Elbert, and K. Bhatia. Entropia: Ar-
chitecture and Performance of an Enterprise Desktop Grid
System. Journal of Parallel Distributed Computing, 2003.

[4] D. Anderson et al. United Devices - Building the
worlds largest computer, one computer at a time.
http://www.ud.com.

[5] O. Lodygensky, G. Fedak, V. Neri, F. Cappello, Thain D.,
and M. Livny. XtremWeb and Condor : Sharing Resources
between Internet connected Condor Pool. In GP2PC2003
(Global and Peer-to-Peer Computing on Large Scale Dis-
tributed Systems) colocated with IEEE/ACM CCGRID2003,
Tokyo Japan, May 2003.

[6] R. Wolski, N. Spring, and J. Hayes. The Network Weather
Service: A Distributed Resource Performance Forecasting
Service for Metacomputing. Journal of Future Generation
Computing Systems, 15(5-6):757–768, Oct 1999.

[7] M. Massie, B. Chun, and D. Culler. The Ganglia Distributed
Monitoring System: Design, Implementation, and Experi-
ence. 2003.

[8] S. Agarwala, C. Poellabauer, J. Kong, K. Schwan, and
M. Wolf. Resource-Aware Stream Management with the
Customizable dproc Distributed Monitoring Mechanisms. In
Proc. of the 12th IEEE International Symposium on High
Performance Distributed Computing (HPDC-12), Seattle,
WA, Jun 2003.

[9] L. De Rose, Y. Zhang, and D.A. Reed. SvPablo: A Multi-
language Performance Analysis System. Lecture Notes in
Computer Science, 1469:352–??, 1998.

[10] B.P. Miller, M.D. Callaghan, J.M. Cargille, J.K.
Hollingsworth, R. B. Irvin, K.L. Karavanic, K. Kunchitha-
padam, and T. Newhall. The paradyn parallel performance
measurement tool. IEEE Computer, 28(11):37–46, 1995.

[11] F. Chang, A. Itzkovitz, and V. Karamcheti. User-level
Resource-constrained Sandboxing. In 4th USENIX Windows
Systems Symposium (WSS 2000), Seattle, Aug 2000.

[12] B. Calder, A. Chien, J. Wang, and D. Yang. The Entropia Vir-
tual Machine for Desktop Grids. Technical Report CS2003-
0773, University of California, San Diego, CSE Technical
Report CS2003-0773, 2003.

[13] M. Callman and M. Pavel. http://subterfugue.org/.
[14] J. Dike. A User Mode Port of the Linux Kernel. In Proc. of

the 4th Annual Linux Showcase, Atlanta, GA, 2000.
[15] C. Cowan and D. Wagner. http://lsm.immunix.org/.

[16] M. Taufer. Inverting Middleware: Performance Analysis of
Layered Application Codes in High Performance Distributed
Computing. PhD thesis, Laboratory for Computer Systems,
Department of Computer Science, Swiss Federal Institute of
Technology (ETH) Zurich, Oct 2002.

[17] F. Cristian and C. Fetzer. The Timed Asynchronous Dis-
tributed System Model. IEEE Transactions on Parallel and
Distributed Systems, 10(6):642–??, 1999.

[18] I. Foster and C. Kesselman. Globus: A Metacomputing
Infrastructure Toolkit. Intl J. Supercomputer Applications,
11(2):115–128, 1997.

[19] R. Raman, M. Livny, and M. Solomon. Matchmaking: Dis-
tributed Resource Management for High Throughput Com-
puting. In Proc. of the Seventh IEEE International Sympo-
sium on High Performance Distributed Computing (HPDC-
7), Chicago, IL, Kul 1998.

[20] D. A. Menasce and V. Almeida. Capacity Planning for Web
Services. Prentice Hall PTR, 2002.

[21] M. Karaul. Metacomputing and Resource Allocation on the
World Wide Web. PhD thesis, New York University, May
1998.

8


