
Relative Performance of Scheduling Algorithms in
Grid Environments

Yang Zhang, Charles Koelbel, and Ken Kennedy
Computer Science Department

Rice University
Houston, TX 77005

Email: {yzhang8,chk,ken}@rice.edu

Abstract—Effective scheduling is critical for the per-
formance of an application launched onto the Grid
environment [11], [12]. Finding effective scheduling al-
gorithms for this problem is a challenging research area.
Many scheduling algorithms have been proposed, stud-
ied and compared on heterogeneous parallel computers
but there are few studies comparing the performance of
scheduling algorithms in Grid environments. The Grid
is unique because of the drastic cost differences between
inter-cluster and the intra-cluster data transfers. In
this paper, we compare several scheduling algorithms
that represent two classes of schedulers used for Grid
computing. We analyze the results to explain how dif-
ferent resource environments and workflow application
structures affect the performance of these algorithms.
Based on our experments, we introduce a new mea-
surement called effective ACP that could drastically
improve the performance of some schedulers.

I. Introduction

With the development of large-scale high-speed net-
works, usually called “the Grid”, becomes an attractive
computational platform [11], [12] for high-performance
parallel and distributed applications [14], [26], [20]. Al-
though grid technologies enable the sharing and utilization
of widespread resources, the performance of parallel appli-
cations on the Grid is sensitive to the effectiveness of the
algorithms used to map them Grid resources. Scheduling
is the decision process by which application components
are assigned to available resources to optimize various
performance metrics. In this paper, we focus on scheduling
the important class of workflow applications, in which the
overall task is partitioned into multiple (usually coarse-
grain) sub-tasks linked to each other by data dependences,
typically requiring file transfers. We represent the overall
application as a directed acyclic graph (DAG), in which
graph nodes represent sub-tasks and graph edges represent
data transfers. A node must be assigned to a particular
resource on the Grid, and the communication represented
by an edge must occur over the network between proces-
sors to which its endpoints are assigned. We assume that
the application is available in the form of a DAG and
the scheduler must compute both the allocated resource
for each node in the DAG and the order of execution if
multiple nodes are assigned to the same resource.

In general, scheduling parallel and distributed applica-
tions is a known NP-complete problem [13]. Numerous
heuristics have been proposed for scheduling DAGs onto a
heterogeneous or homogenous computing environment [1],
[15], [24], [16]. These strategies fall into several cate-
gories, including list-based, clustering, and duplication-
based strategies. Among thee, list-based scheduling heuris-
tics are generally accepted as the best overall approach,
exhhibiting both low complexity and good results [19] .

The list-based scheduling strategy first orders the nodes
in the DAG by a pre-calculated priority then considers
the nodes in order, assigning each to a resource that
minimizes a suitable cost function. However, Iverson [17],
Illvarasan [10] and Atakan [8] argue that the pre-computed
order for list-based strategy cannot be used in hetero-
geneous environments and propose a new heuristic class
that we call the level-based strategy. Level-based methods
first organize the DAG into levels, or echelons, such that
within each all the nodes are independent and can be
scheduled once all the node in the previous level have been
completed; they then schedule all the nodes in each level,
level-by-level from beginning to the end.

A Grid environment usually consists of many clusters
with special properties that we will describe more in
Section II. This poses even more challenges for scheduling
applications because not only are the processors hetero-
geneous but also the communication variance is larger.
Looking over surveys of state-of-the-art Grid scheduling
algorithms [29], [9], we can see that many Grid projects
simply use dynamic dispatching mechanisms similar to
condor [23]. Besides that, the list-based and the level-
based algorithms are the only two strategies used in a Grid
project. Blythe et. al. [3] reported that the level based
strategy out performed the random matching strategy by
more than 50%. However, to the best of our knowledge,
there has been no published research that directly com-
pares the performance of these two classes of algorithms
in the Grid environment.

In this paper, we evaluate the schedules produced by
several well-known list-based and level-based scheduling
algorithms. Relying on tens of thousands of experimental
runs, we show how the performance of these algorithms
varies with differences in resource environments and ap-

plication DAGs. We analyze these results to explain why
some scheduling algorithms perform better in certain set-
tings and less well in others. Based on these observations,
we introduce a promising new scheduling concept, called
effective aggregated computing power (ACP) and demon-
strate how it can be used in scheduling algorithms.

The rest of the paper is organized as follows. Section II
covers the basics of scheduling DAGs in a Grid envi-
ronment. Section III briefly introduces all the scheduling
algorithms that we evaluate in this paper and their usage
in the state-of-the-art Grid computing projects. Section IV
presents our applications, the experimental environments
we are using, and the Grid parameters we vary in the
experiments. Section V presents our results; it also defines
effective ACP and shows how it works in a scheduling
algorithm. Section VI concludes the paper with a summary
of contributions and perspectives on future work.

II. Problem Definition

A fundamental concept underlying the Grid is the view
of the global network of resources as an active computa-
tional environment, connecting geographically distributed
computers, databases, instruments and people into a seam-
less web of advanced capabilities. Miguel et al. [4] points
out that a Grid environment usually has the characteristics
of heterogeneity, large scale and geographical distribution.
This paints a picture of a typical Grid environment con-
sisting of many clusters, where the intra-cluster com-
munication is fast (often as fast as 10 Gigabit/sec) but
the inter-cluster communication can be 10 to 1000 times
slower. Thus, the Grid is not just a heterogeneous resource
pool, but also an unevenly distributed (but hierarchical)
interconnection network. Furthermore, while many homo-
geneous processors reside in any one cluster, the processors
in different clusters are often significantly different. As
Section V shows, these features have a big impact on how
scheduling algorithms originally designed for homogeneous
or heterogeneous platforms perform in Grid environments.

The directed acyclic graph (DAG) is an abstract descrip-
tion and is frequently used to represent an application. We
define an abstract DAG as a pair G = (V,E), where V is
a set of nodes, each representing an application task, and
E is a set of edges, each representing a data dependence
between tasks. Our complexity measures will often use v
as the size of set V and e as the size of set E. We will later
refer to an abstract DAG as the DAG model. We assume
that an abstract DAG has a single entry node and a unique
exit node since we can always insert dummy entry and exit
nodes into the DAG.

The inputs to a scheduling algorithm are an abstract
DAG, a set of resources P and two performance prediction
matrices Mp = V × P and Mn = P × P . Here, Mp[i][j]
represents the estimated computation cost of node ni

on processor pj and Mn[i][j] represents the estimated
communication cost of transferring data from processor
pi to processor pj . Our complexity measures will often use

the term p for the size of P . We will later refer to P as
the resource model, Mp as the cost model and Mn as the
network model.

The output of a scheduling algorithm is a concrete DAG
G = (V,E, M), where V and E are the same as in an
abstract DAG and M is a map from V to P such that
M [vi] is a pair (ri, ti), where ri is the resource on which
the node will be executed and ti the time it will start. In
this paper, the objective of the scheduling algorithms is
to output a concrete DAG corresponding to an abstract
DAG such that the actual scheduled length, usually called
the makespan, is minimized.

III. Related Work

There has been considerable work in scheduling DAGs
to minimize the schedule length (makespan) on either
homogeneous [19] or heterogeneous processors [5]. As we
mentioned in section I, the level-based and list-based
algorithms are the most used ones in Grid environments
and we want to compare their performance. For our exper-
iments, we have chosen some representative and effective
algorithms in both categories. This section gives a brief
overview of each of those algorithms.

A. List Scheduling Algorithm: HEFT

Heterogeneous Earliest Finish Time(HEFT) [15] is a
well-established list-based algorithm known to perform
well on heterogeneous platforms [2], [15]. Like all the
list-based scheduling algorithms, HEFT has two phases,
namely, the node prioritizing phase and the processor
selection phase. For more detail, refer to the paper by
Topcuoglu, Hariri, and Wu [15].

Upon examination, we discovered that the rank used in
HEFT is a heterogeneous adeptation of the definition of
b-level commonly used in list-based scheduling algorithms.
Thus, it can be considered as a heterogeneous version
of MCP(Modified Critical Path) [27] algorithm which
performs very well in homogeneous environment [19]. Both
Ma and Buyya [21] and Cao et. al. [6] use HEFT to help
schedule application DAGs onto Grid resources. The com-
putation complexity of this version of HEFT is O(v2+vp).

B. Levelized Scheduling Algorithm: LHBS

Levelized Heuristic Based Scheduling(LHBS) [22] is a
level-based algorithm for Grid scheduling. As all level-
based algorithms do, it proceeds by partitioning the DAG
into levels of independent nodes. Within each level, LHBS
can use Greedy, Min-min,Min-max or Sufferage heuris-
tics [5] to map the nodes to the processors. Both the
GrADS [3] and Pegasus [14] schedulers use a version of
LHBS. The complexity of the LHBS using only the greedy
heuristic is O(vp); we will refer this as Greedy LHBS. The
complexity of the LHBS using the other three heuristics is
O(v2p); we will refer this variant as Heuristic LHBS.

C. Hybrid Scheduling Algorithm: HHS
Hybrid Heuristic Scheduling (HHS) [25] is refers to a

class of algorithms that use a hybrid of the list-based and
level-based strategy. The version we study in this paper
first computes levels as in LHBS, then processes nodes in
each level following the prioritized order used by HEFT.
This version has the same complexity as HEFT: O(v2 +
vp). Sakellariou [25] reports that it can achieve better
performance than HEFT.

IV. Experimental Methodology

In order to study how well these scheduling strategies
perform in the Grid environment, we have implemented
the algorithms described in Section III and compared the
schedules produced on a variety of DAGs and grids. To
achieve a thorough comparison, we developed a platform
to create test cases. The platform consists of three key
components: the DAG generator described in Subsec-
tion IV-A, the cost generator described in Subsection IV-
B, and a Grid generator described in Subsection IV-C.
As Subsection IV-D discusses, our experiments combined
these to schedule and evaluate over 10,000 combinations
of DAGs and grids.

A. DAG Model
We use DAGs taken from two real Grid applications,

along with three classes of artificially-generated, but re-
alistic, DAGs. EMAN [20] and Montage [26] are two real
workflow applications that we have previously studied [3],
[22]. The generated DAGs abstract certain characteristics
of these applications. For details, please refer to Zhang et.
al. [31].

1) DAG generator: Besides the DAGs from real appli-
cations, we also implemented a DAG generator that can
generate various formats of weighted pseudo-application
DAGs. The following input parameters were used to create
a DAG.
• Type of DAG: Unlike other DAG generators [2], [15],

our DAG generator can generate different formats of
DAGs. Currently, we support fully random, level, and
choke formats. In a random DAG, each node can be
connected to any node on a higher level (to ensure
that the graph is acyclic). In the level DAG, a node
can only connect to nodes on the level immediately
above. In the choke DAG, there always exists one level
(the choke point) that has only one node; it connects
to all the nodes on the levels above and below it.
Nodes in other levels are connected as in the random
graph.

• Total number of nodes in the DAG, λ.
• Shape parameter, α: α represents the ratio of the

DAG height (i.e. number of levels) to the width (i.e.
maximum number of nodes in a level). The height and
the width of the DAG are generated using the method
described by Topcuoglu, Hariri, and Wu [15], which
takes α and λ as parameters.

• Out degree of a node, η : Each node’s out degree is
randomly generated from a uniform distribution with
mean value equal to η.

B. Cost Model

Given a DAG, whether from a real application or auto-
matically generated, we generate base costs for the nodes
and edges using three parameters.
• The lower and upper bound of the data size, ε, φ: The

data size attached to each edge in a generated DAG
is randomly generated from a uniform distribution
between the lower and upper bound. In level graphs,
all edges between two adjacent levels have identical
data size; in random and choke graphs, we generate
costs for every edge independently. For EMAN and
Montage DAGs, we use actual data sizes from the
application.

• Communication-Computation Ratio (CCR): Follow-
ing Blythe et al. [3], we define the CCR of a DAG
as

CCR =
total communication cost

number of nodes×AvgCompCost

We can set this ratio as a parameter and combine
it with the total data size and average bandwidth in
the resource pool to compute the average computation
cost for a node:

AvgCompCost =
total file size/avg bandwidth

number of nodes× CCR

• Range: The node computation costs for generated
DAGs are independently randomly generated from
a uniform distribution from AvgCompCost × (1 −
range) to AvgCompCost × (1 + range). For EMAN
and Montage DAGs, we use uniform costs for each
level, reflecting the behavior of the actual applica-
tions.

This gives us a base cost for every node, which will be
modified by the Grid model.

C. Grid Model

Our resource model is based on a tool that gener-
ates populations of representative compute clusters, as
described by Kee. Casanova, and Chien [18]. This tool
uses empirical statistical models of cluster characteristics
(e.g., number of processors, processor clock rate) obtained
from a survey of 114 real-world clusters. Using this tool
we generated a resource pool that contains over 18,000
processors grouped in 500 clusters, which we refer as the
universal environment. We also semi-manually generated
two smaller resource sub-pools. They both have roughly
300 processors, but one groups them into 20 clusters while
the other only has only 4 clusters. We will later refer
the resource pool with 20 clusters as the many-cluster
environment and the other as the big-cluster environment.
Given the resource model, we computed the computational

cost matrix Mp[i][j] by scaling the base cost for DAG node
i by the clock rate of processor j.

Our network model is based on a tool that generates
end-to-end latency matrices according to the actual la-
tency data collected over the Internet [30]. Following the
experiment results of Yang et al. [28] and Denis et al. [7] we
assigned the bandwidth based on the latency. Low-latency
links had high bandwidth, consistent with the data in Bo et
al. [30]. Given the latency and bandwidth of each network
link, it was a simple matter to compute the communication
cost matrix Mn.

The costs we generated are static, although actual Grids
can have dynamic costs due to load. However, we claim
that the static data help us focus on performance of the
algorithms and factor out the uncertainties of resource and
network behavior. We are embarking on separate research
to explore the effects of dynamic costs on the algorithms

D. Experimental Setup
We used our DAG generator to produce DAGs with the

following parameters:
• Type = {random, level, choke}
• λ = {300, 1000, 3000}
• α = {0.5, 1.0, 5.0}
• η ={1.0, 2.0, 5.0}

We generated 5 random DAGs for each possible parameter
combination. In addition, we used 30 EMAN DAGs and
30 Montage DAGs. For all of these DAGs, we applied our
cost model with the following parameters:
• {ε, φ} = { {20,1000},{100,1000},{500,1000} }
• CCR = {0.1, 1.0, 10}
• Range ={0.15, 0.4, 0.85}

With three Grids and four scheduling algorithms, we
collected about 120,000 schedules and their associated
makespans.

The makespans usually vary widely among DAGs, mak-
ing it difficult to take meaningful averages or make cross-
DAG comparisons. Following the methodology of other
scheduling work [19], [15], [2], we use Schedule Length Ratio
(SLR) as the main metric for the comparisons so that
the results will not be sensitive to the size of the DAG.
Conceptually, the SLR is a normalization of the makespan
to an estimate of the best possible schedule length of a
given DAG in a given environment. In a perfect world, we
would use an optimal schedule for this estimate; however,
since finding the optimal makespan is NP-complete, we
instead use the estimated critical path length. Because
the costs of nodes depend on where they are mapped, in
this calculation we approximate the computation cost of a
DAG node by its average cost over all possible processors.
Similarly, we approximate the communication cost of a
DAG edge by its average over all possible processor pairs.
We compute the Critical Path Including Communication
(CPIC) as the cost of the critical path using these esti-
mates, and define

SLR = makespan/CPIC

Intuitively, a small SLR is indicative of a better schedule
than a large SLR. An SLR of 1 occurs when all nodes and
edges are mapped to average processors and network links,
and no bottlenecks occur due to lack of resources. An SLR
can be below 1 when some nodes are mapped to faster-
than-average resourcess, and above 1 due to resource limits
or use of slower-than-average resources. Our definition of
SLR differs slightly from the usual definition of SLR that
uses CPES (critical path excluding communication).We
prefer our definition because it includes an approximation
of communication cost, thus providing a more realistic
standard of comparison.

V. Results

Over the entire set of DAGs and Grids, SLRs ranges
from 0.06 to 88. (The range of makespans is even greater.)
Moreover, the algorithm that produces the best schedule
for each DAG varies with no obvious pattern. Once the re-
sults are aggregated, however, a somewhat clearer picture
emerges.

A. Results Analyses

Figure 1 shows the range of quality for each scheduling
method on all DAGs for the universal resource set. The
top and bottom of the white boxes are the 75th and
25th percentile SLRs for each scheduler, while the top and
bottom of the black lines are the 90th and 10th percentile.
It is clear that all the methods have many high-SLR

HEFT HHS Heuri. Gree
LHBS LHBS

Mean SLR 1.99 1.97 5.58 2.90
Std. Dev. SLR 4.12 4.12 10.35 6.05
Median SLR 0.90 0.89 1.21 0.92
% of best cases 56% 60% 1% 29%
% of worst cases 0.5% 0.3% 80% 19%

Fig. 1. Aggregate behavior of scheduling methods

outliers, but that the bulk of the results from the HEFT,
HHS, and Greedy LHBS methods are comparable. The
included table shows the average results for each method.

Despite the high variance of data, the differences between
the means are statistically significant at levels far less
than p = 0.001 (according to paired t-tests). Even the
1% difference between HEFT and HHS has a statistical
significance of p = 6× 10−6, although that difference may
not be noticeable in practice. The last two lines of the
table show how often each method returned the best and
worst result for the same DAG among the four algorithms
we tested. The percentages do not add up to 100% due to
ties; HEFT and HHS often computed equivalent schedules,
particularly for choke DAGs. This would lead us to believe
that HEFT or HHS produce better schedules than level-
based methods on average. However, we did not observe
the clear advantages of HHS over HEFT reported by
Sakellariou and Zhao [25].

The difference in behavior was not, however, consistent
across types of DAGs, as shown by Figure 2. In particular,
all of the methods produced good schedules for EMAN.
Most of the differences are statistically significant (the
exceptions are HEFT and HHS results for level and EMAN
DAGs), but many are too small to be important in prac-
tice. Nor was the difference between methods true of all

Fig. 2. Results for different DAG types

resource sets, as Figure 3 shows for random DAGs. We can
clearly see that the LHBS algorithms perform much worse
in the larger resource pool. As for the universal resource
set, the differences are statistically significant (except for
the two LHBS algorithms in the big-cluster resource set),
but many are likely smaller than the uncertainties in our
simulation.

After examining some of the schedules, we hypothesized
that most of the differences were due to LHBS methods
emphasizing parallelism over communication costs. One
scenario is that LHBS might assign some DAG nodes to
clusters that have a earlier start time in order to to achieve
a shorter makespan in one level. If these nodes required
input from two or more clusters, the estimated communi-
cation costs might be equivalent for that level. At the next
level, however, having the nodes on different clusters might

Fig. 3. Algorithms Performance on Different Resource Models

require additional inter-cluster communications. This sce-
nario would obviously have more impact when a DAG
required more point-to-point communication. (All-to-all
communication, as in EMAN, does not necessarily suffer,
because the inter-cluster communication is almost always
required.) This may have a smaller impact on HEFT and,
to a lesser extent, HHS. It is because nodes with high
future communications requirements are scheduled earlier,
when the resources nearby (i.e. processors within the same
cluster) may have not yet been allocated.

To test this, we examined the sensitivity of the
algorithms to various DAG attributes. Figure 4
shows the average SLR for high-communication
(CCR=10), medium-communication (CCR=1), and
low-communication (CCR=0.1) DAGs. We can see
that the performance difference among algorithms is
very sensitive to CCR. We think it is because high
communication costs affect the performance of LHBS
the most. Wide DAGs should also show the effect, since
there are more opportunities for inappropriate parallel
assignment. Figure 5 shows this for wide (α = 5), square
(α = 1), and narrow (α = 0.5) DAGs. Figures 4 and
5 consider only the random, level and choke graph
types, since we have not yet generated complete data
for Montage nor EMAN DAGs. (Note: If this paper is
accepted, we plan to finish those experiments and update
the graphs accordingly.)

It may be less apparent why our hypothesized paral-
lelism/communication trade-off affects the large universal
environment much more than the others. The connection
is in the characteristics of the resource pools. Our previ-
ous work [31] shows that our algorithms typically select
clusters with the fastest nodes. Table I lists the number
of nodes and their speed in the four highest-GHz clusters
in each of the three Grid environments. Clearly, the per-
node speeds of these clusters in the universal resource
environment are closer than in the other environments. At
the same time, the top cluster in the universal environment

Fig. 4. Results for varying communication-computation ratios
(CCR)

Fig. 5. Results for varying shapes (α)

Universal Big-Cluster Many-cluster
nodes speed nodes speed nodes speed

First 78 4.2 Ghz 38 4.2 Ghz 13 4.2 Ghz
Second 6 4.2 Ghz 52 3.0 Ghz 18 3.8 Ghz
Third 103 4.1 Ghz 88 2.8 Ghz 17 3.7 Ghz
Fourth 118 4.1 Ghz 34 2.0 Ghz 6 3.6 Ghz

TABLE I

The Configuration of The Fastest Four Clusters in The

Resource Pool

is larger than in the others. Therefore, a relatively narrow
DAG (e.g. width=40) can be run entirely on a single, fast
cluster in the universal environment. Running the same
DAG run on the many-cluster or big-cluster environment
must either use slower cluster (e.g. the second cluster in

the big-cluster environment) or multiple clusters (e.g. all
four displayed clusters in the many-cluster environment).
Figure 6 illustrates this effect. When the DAG’s width is
less than the number of nodes of the fastest cluster or is
larger than all the nodes in the fastest four clusters, the
difference between algorithms are much smaller than when
the DAG’s width is in between. In other words, when the
choices between clusters are obvious, all the algorithms
perform relatively the same, while when the choices are
tough, different algorithms can perform very differently.
The above observations suggested that we could improve

Fig. 6. Random DAG Performance in Universal Resource Environ-
ment with Different Widths

the quality of schedules for Grid environments by choosing
the clusters on which to run more intelligently.

B. Effective ACP
To investigate further, we introduce the notion of ef-

fective aggregated computing power (ACP) and apply it
within the two-level scheduling approach from our previous
work [31]. Briefly, our two-level scheduler performs a very
fast selection phase to select a suitable subset resource
from the large resource base represented by the real Grid.
It then performs a more complex scheduling step, such as
LBHS, to map the application to nodes within the virtual
grid.

We define ACP for a cluster A as

ACP (clusterA) =
∑
B∈A

computing power of node B

We use the node’s clock rate as an approximation of the
computing power, although we could use more sophisti-
cated performance models as well. ACP represents the
peak computing power of a cluster, but this may not all
be usable on a particular DAG. For example, consider
running 20 independent tasks on two clusters. Cluster A
consists of 100 processors running at 1GHz, while cluster
B consists of 30 processors running at 2 GHz. Our unit of
comparison is one processor running at one GhZ. Although
A apparently has a higher ACP (100 units vs. 60 units),
the DAG can utilize at most 20 processors in either cluster.

Therefore, we introduce the notion of effectiveness which
only aggregates the computing power up to the width of
the DAG. In our example, cluster B has 40 effective ACP
units while cluster A has 20.

Within the two-level scheduling algorithm described
above, the selection phase chooses nodes from clusters with
the highest effective ACP for the given DAG. After this
selection, we apply the HEFT, LHBS, or HHS algorithms
to the smaller universe of resources. Below we will refer
to this as the effective ACP version or simply the EACP
version of each standard algorithm. Figure 7 and 8 show

Fig. 7. comparing EACP version algorithms with the standard
version

how the EACP versions of HEFT and Heuristic LHBS
compared to the corresponding standard algorithms under
the universal resource environment with all three kinds
of DAGs. The EACP versions of the other algorithms
exhibited very similar results. The leftmost set of bars of
Figure 7 represents DAGs that have low communication
cost(CCR =0.1). In this case, the EACP version algo-
rithms do not have significant advantage over the standard
HEFT or the other scheduling algorithms. The middle
set represents DAGs that have medium communication
cost(CCR =1.0) and the rightmost set represents the most
communication intensive DAGs(CCR =10). We thought
that the standard methods would be more likely to make
bad trade-offs between parallelism and communication in
these cases. The results confirm our beliefs. The EACP
versions of HEFT and Heuristic LHBS outperformed their
standard versions by factors of two to nine in aggre-
gate. Both EACP algorithms performed better than any
standard algorithm. Similarly, Figure 8 shows that the
EACP version algorithms have better performance than
the standard algorithms when the DAG is wide(α = 5.0).
Taken together, figure 7 and 8 show that 2-level selection
based on effective ACP can vastly reduce the inter-cluster
communication cost when communication is significant. In
addition, the EACP version algorithms are more scalable
in very large Grid environments since they are only applied
to a subset of the universal resources.

However, the results may vary depend on the Grid used.
For example, the results of similar experiments using the

Fig. 8. comparing EACP versions with standard version of the same
algorithms

big cluster environment shows EACP version of HEFT can
perform 10% worse than the standard HEFT algorithm .
We can explain this from the entries of Table I. In the
big-cluster grid, the highest ACP cluster(the third) has
relatively slow processors, so the fastest two clusters are
likely to have the highest effective ACP for many DAGs.
However, it happens that the network connection between
these two clusters is slow in our experimental setting.
Thus, selection based on effective ACP actually increases
communication costs because it puts data movement on a
slow link. More work is clearly needed to take effects like
this into account.

VI. Conclusion and Future Work

In this work, we have compared the performance of
several algorithms that represent alternative major ap-
proaches to scheduling on three different Grid environ-
ments. Our experiments show that the list-based, and
hybrid, scheduling algorithms are effective in a Grid en-
vironment, outperforming level-based scheduling meth-
ods on many combinations of environments and DAGs.
The experiments also show how different factors in a
Grid computing environment affect the performance of
the scheduling algorithms. The most critical question for
scheduling in the Grid environment is whether to assign a
node to a cluster different from its parents: performance
of the algorithms are highly sensitive to this question.
Finally, the experiments demonstrate that using effective
aggregate computing power (EACP) in the selection phase
of a two-level algorithm, then scheduling to the resulting
virtual grid with a standard algorithm, can produce sig-
nificantly improved schedules over the standard version of
the same algorithm.

In the future, we will try to combine the concept of
effective ACP and the concept of good network connection
used in Zhang et. al. [31]. We will devlop methods for more
intelligently dividing work among clusters and we will also
conduct experiments to investigate the robustness of the
resulting schedules, reflecting the fact that performance
estimates are imperfect and the resources are dynamic. We

expect this research to lead to a new class of scheduling
algorithms specifically targeting the Grid resource envi-
ronment.

Since our universal resource environment is large, we
encountered some difficulties in gathering enough compu-
tational power to finish the experiments. We used three
heterogeneous clusters to run about 4000 jobs, each of
which can take from 30 minutes to 24 hours. We see
such an experiment as an ideal application for the Grid
environment. In the future we will try to use Grid software
to conduct such experiments, controlled by the scheduling
algorithms we develop. This will provide both simulation
and real-world data to validate our methods.

Acknowledgments

This material is based on work supported by the Na-
tional Science Foundation under Cooperative Agreement
No. CCR-0331645 (the VGrADS Project). This work was
supported in part by the Rice Terascale Cluster funded by
NSF under Grant EIA-0216467, Intel and HP.

References

[1] Rashmi Bajaj and Dharma P. Agrawal. Improving scheduling
of tasks in a heterogeneous environment. IEEE Trans. Parallel
Distrib. Syst., 15(2):107–118, 2004.

[2] Sanjeev Baskiyar and Christopher Dickinson. Scheduling di-
rected acyclic task graphs on a bounded set of heterogeneous
processors using task duplication. J. Parallel Distrib. Comput.,
65(8):911–921, 2005.

[3] Jim Blythe, Sonal Jain, Ewa Deelman, Yolanda Gil, Karan Vahi,
Anirban Mandal, and Ken Kennedy. Task scheduling strategies
for workflow-based applications in grids. In IEEE International
Symposium on Cluster Computing and the Grid (CCGrid 2005).
IEEE Press, 2005.

[4] Miguel L. Bote-Lorenzo, Yannis A. Dimitriadis, and Eduardo
Gomez-Sanchez. Grid characteristics and uses: a Grid definition.

[5] T. Braun, H. Siegel, and N. Beck. A comparison of eleven static
heuristics for mapping a class of independent tasks onto hetero-
geneous distributed computing systems. Journal of Parallel and
Distributed Computing, 61:810–837, 2001.

[6] Junwei Cao, Stephen A. Jarvis, Subhash Saini, and Graham R.
Nudd. Gridflow: Workflow management for grid computing. In
CCGRID ’03: Proceedings of the 3st International Symposium
on Cluster Computing and the Grid, page 198, Washington, DC,
USA, 2003. IEEE Computer Society.

[7] A. Denis and etc O. Aumage. Wide-area communication for
grids: An integrated solution to connectivity, performance and
security problems. In HPDC ’04: Proceedings of the 13th IEEE
International Symposium on High Performance Distributed
Computing (HPDC’04), pages 97–106, Washington, DC, USA,
2004. IEEE Computer Society.

[8] A. Dogan and R Ozguner. LDBS: A duplication based schedul-
ing algorithm for heterogeneous computing systems. In ICPP
’02: Proceedings of the 2002 International Conference on Par-
allel Processing (ICPP’02), page 352, Washington, DC, USA,
2002. IEEE Computer Society.

[9] F. Dong and Selim G. A.l. Scheduling algorithms for Grid
computing: State of the art and open problems. Technical
Report TR06-504, School of Computing, QueenâĂŹs University,
2006.

[10] P. Thambidurai E. Illvarasan. Levelized scheduling of directed
acyclic precedence constrained task graphs onto heterogeneous
computing system. In First International Conference on Dis-
tributed Frameworks for Multimedia Applications (DFMA’05),
pages 262–269. IEEE Computer Society, 2005.

[11] I. Foster and C. Kesselman. The Grid: Blueprint for a New
Computing Infrastructure. Morgan Kauffmann Publishers, Inc.,
1999.

[12] I. Foster and C. Kesselman. The Grid 2. Morgan Kauffmann
Publishers, Inc., 2003.

[13] M. Garey and D. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. 1979.

[14] Ewa Deelman Gurmeet Singh, Carl Kesselman. Optimizing
grid-based workflow execution. Journal of Grid Computing,
3(3):201–219, 2005.

[15] H.Topcuoglu, S. Hariri, and M.-Y. Wu. Performance-
effective and low-complexity task scheduling for heterogeneous
computing. IEEE Transactions on Parallel and Distributed
Systems, 2(13):260–274, 2002.

[16] J.J. Hwang, Y.C. Chow, F.D. Anger, and C.Y. Lee. Scheduling
precedence graphs in systems with inter-processor communica-
tion costs. SIAM Journal of Computing, 2(18):244–257, 1989.

[17] M. Iverson, F. Ozguner, and G. Follen. Parallelizing existing
applications in a distributed heterogeneous environment. In 4th
Heterogeneous Computing Workshop (HCW ’95), pages 93–100,
Apr 1995.

[18] Y.-S. Kee, H. Casanova, and A. A. Chien. Realistic modeling
and svnthesis of resources for computational grids. In SC ’04:
Proceedings of the 2004 ACM/IEEE conference on Supercom-
puting, page 54, Washington, DC, USA, 2004. IEEE Computer
Society.

[19] Y. Kwok and I. Ahmad. Benchmarking and comparison of
the task graph scheduling algorithms. Journal of Parallel and
Distributed Computing, 59(3):381–422, 1999.

[20] S. Ludtke, P. Baldwin, and W. Chiu. EMAN: Semiautomated
software for high resolution single-particle reconstructions. J.
Struct. Biol, (128):82–97, 1999.

[21] Tianchi Ma and Rajkumar Buyya. Critical-path and prior-
ity based algorithms for scheduling workflows with parameter-
sweep tasks on global grids. In SBAC-PAD ’05: Proceedings
of the 17th International Symposium on Computer Architecture
on High Performance Computing, pages 251–258, Washington,
DC, USA, 2005. IEEE Computer Society.

[22] A. Mandal, K. Kennedy, C. Koelbel, G. Marin, J. Mellor-
Crummey, B. Liu, and L. Johnsson. Scheduling strategies
for mapping application workflows onto the Grid. In 14-th
IEEE Symposium on High Performance Distributed Computing
(HPDC14), pages 125–134, 2005.

[23] Dagman MetaScheduler. http://www.cs.wisc.edu/condor/
dagman.

[24] Samantha Ranaweera and Dharma P. Agrawal. A scalable
task duplication based scheduling algorithm for heterogeneous
systems. In ICPP ’00: Proceedings of the Proceedings of the
2000 International Conference on Parallel Processing, page 383,
Washington, DC, USA, 2000. IEEE Computer Society.

[25] R. Sakellariou and H. Zhao. A hybrid heuristic for DAG
scheduling on heterogeneous systems. In 18th International
Parallel and Distributed Processing Symposium (IPDPS’04),
page 111. IEEE Computer Society, 2004.

[26] G. Singh, E. Deelman, and G. Bruce Berriman et al. Montage: a
Grid enabled image mosaic service for the National Virtual Ob-
servatory. Astronomical Data Analysis Software and Systems,
(13), 2003.

[27] M. Y. Wu and D. D. Gajski. Hypertool: A programming aid for
message-passing systems. IEEE Trans. Parallel Distrib. Syst.,
1(3):330–343, 1990.

[28] L. Yang, J. M. Schopf, and I.Foster. Improving parallel data
transfer times using predicted variances in shared networks. In
IEEE International Symposium on Cluster Computing and the
Grid (CCGrid 2005). IEEE Press, 2005.

[29] Jia Yu and Rajkumar Buyya. A taxonomy of scientific workflow
systems for Grid computing. SIGMOD Rec., 34(3):44–49, 2005.

[30] B. Zhang and T. S. etc Eugene. Measurement based analysis,
modeling, and synthesis of the internet delay space. In IMC ’06:
Proceedings of the 6th ACM SIGCOMM on Internet measure-
ment, pages 85–98, New York, NY, USA, 2006. ACM Press.

[31] Y. Zhang and Mandal A. etc. Scalable Grid application
scheduling via decoupled resource selection and scheduling. In
Proceedings of the 6th IEEE Symposium on Cluster Computing
and the Grid (CCGrid’06), May 2006.

http://www.cs.wisc.edu/condor/dagman
http://www.cs.wisc.edu/condor/dagman

	I Introduction
	II Problem Definition
	III Related Work
	III-A List Scheduling Algorithm: HEFT
	III-B Levelized Scheduling Algorithm: LHBS
	III-C Hybrid Scheduling Algorithm: HHS

	IV Experimental Methodology
	IV-A DAG Model
	IV-A.1 DAG generator

	IV-B Cost Model
	IV-C Grid Model
	IV-D Experimental Setup

	V Results
	V-A Results Analyses
	V-B Effective ACP

	VI Conclusion and Future Work
	References

