The Virtual Grid Application Development Software (VGrADS) Project

Ken Kennedy Center for High Performance Software Rice University

http://www.hipersoft.rice.edu/vgrads/

The VGrADS Team

• VGrADS is an NSF-funded Information Technology Research project

Rich Wolski

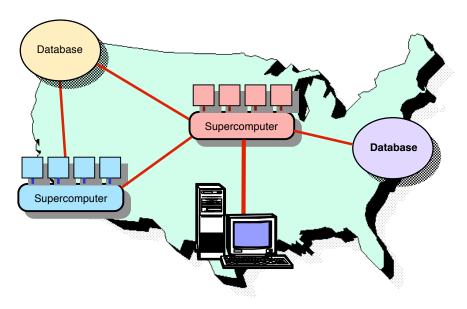
Fran Berman Andrew Chien Henri Casanova

Jack Dongarra

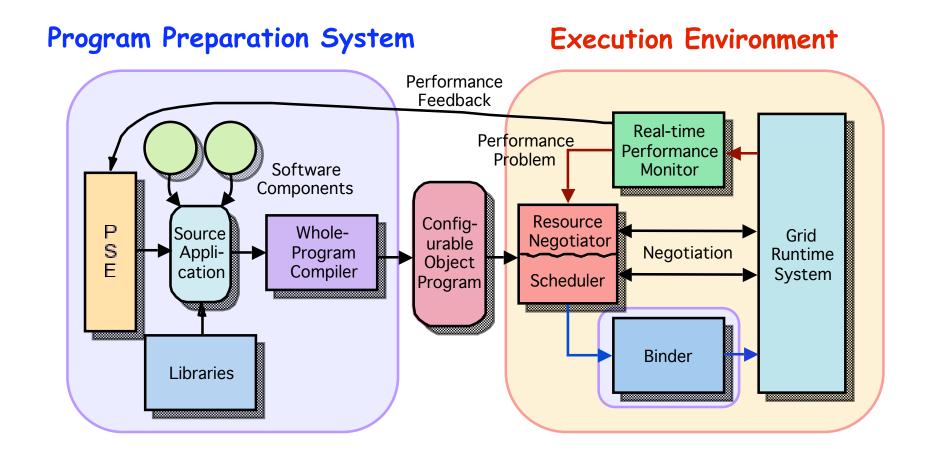
Carl Kesselman

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Dan Reed

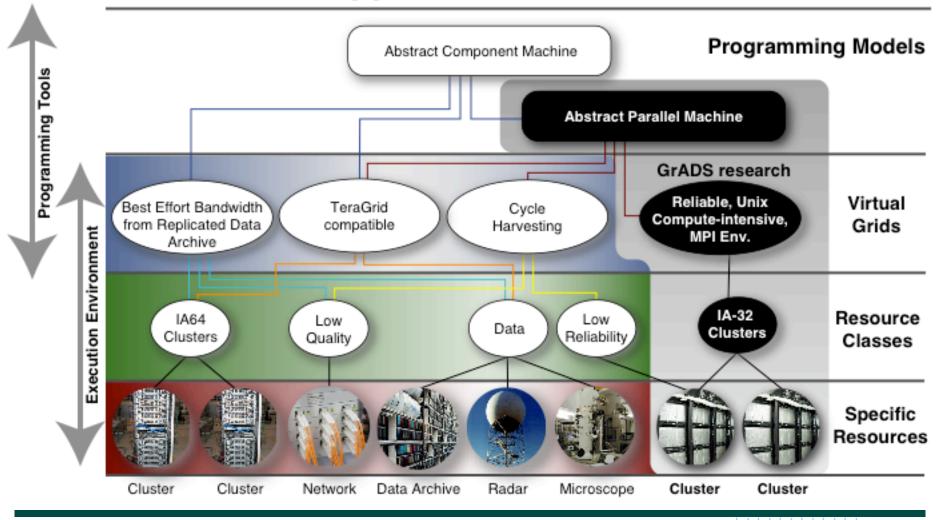


• Plus many graduate students, postdocs, and technical staff!


The VGrADS Vision: National Distributed Problem Solving

- Where We Want To Be
 - Transparent Grid computing
 - Submit job
 - Find & schedule resources
 - Execute efficiently
- Where We Are
 - -Low-level hand programming
- What Do We Need?
 - -A more abstract view of the Grid
 - Each developer sees a specialized "virtual grid"
 - $-\operatorname{Simplified}$ programming models built on the abstract view
 - Permit the application developer to focus on the problem

The Original GrADS Vision


Lessons from GrADS

- Mapping and Scheduling for MPI Jobs is Hard
 - Although we were able to do some interesting experiments
- Performance Model Construction is Hard
 - -Hybrid static/dynamic schemes are best
 - Difficult for application developers to do by hand
- Heterogeneity is Hard
 - -We completely revised the launching mechanisms to support this
 - -Good scheduling is critical
- Rescheduling/Migration is Hard
 - -Requires application collaboration (generalized checkpointing)
 - -Requires performance modeling to determine profitability
- Scaling to Large Grids is Hard
 - -Scheduling becomes expensive

VGrADS Virtual Grid Hierarchy

Applications and Users

Virtual Grid Application Development Software Project

VGrADS

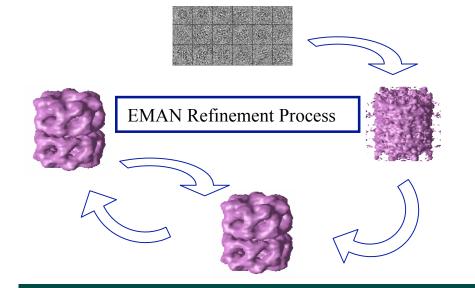
Virtual Grids and Tools

- Abstract Resource Request
 - Permits true scalability by mapping from requirements to set of resources
 - Scalable search produces manageable resource set
 - Virtual Grid services permit effective scheduling
 - Fault tolerance, performance stability
- Look-Ahead Scheduling
 - Applications map to directed graphs
 - Vertices are computations, edges are data transfers
 - Scheduling done on entire graph
 - Using automatically-constructed performance models for computations
 - Depends on load prediction (Network Weather Service)
- Abstract Programming Interfaces
 - Application graphs constructed from scripts
 - Written in standard scripting languages (Python, Perl, Matlab)

Virtual Grids

- Goal: Provide abstract view of grid resources for application use
 Will need to experiment to get the right abstractions
- Assumptions:
 - -Underlying scalable information service
 - -Shared, widely distributed, heterogeneous resources
 - -Scaling and robustness for high load factors on Grid
 - -Separation of the application and resource management system
- Basic Approach:
 - -Specify vgrid as a hierarchy of ...
 - Aggregation operators (ClusterOf, LooseBagOf, etc.) with ...
 - Constraints (type of processor, installed software, etc.) and ...
 - Application-based rankings (e.g. predicted execution time)
 - -Execution system returns (candidate) vgrid, structured as request
 - Application can use as it sees fit, make further requests

Programming Tools


- Collaborating on definition of the Virtual Grids interface
 - -Initial experiments based on GrADS infrastructure
- Focus: Automating critical application-development steps
 - -Building workflow graphs
 - From Python scripts used by EMAN
 - -Scheduling workflow graphs
 - Heuristics required (problems are NP-complete at best)
 - Good initial results *if* accurate predictions of resource performance are available (see EMAN demo)
 - -Constructing of performance models
 - Based on loop-level performance models of the application
 - Requires benchmarking with (relatively) small data sets, extrapolating to larger cases
 - -Initiating application execution
 - Optimize and launch application on heterogeneous resources

VGrADS Demos at SC04

- EMAN Electron Microscopy Analysis [Rice, Houston]
 - 3D reconstruction of particles from electron micrographs
 - Workflow scheduling and performance prediction to optimize mapping

- GridSAT Boolean Satisfiability [UCSB]
 - Classic NP-complete problem useful in circuit design and verification
 - Performance-based dynamic resource allocation and scheduling

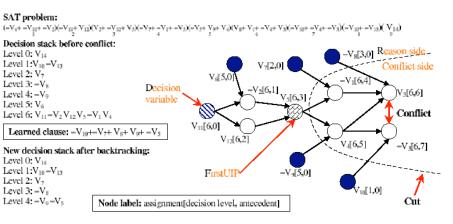


Figure 1: Example of conflict analysis with learning and non-chronological backtracking

