
QUALITATIVE PERFORMANCE ANALYSIS FOR

LARGE-SCALE SCIENTIFIC WORKFLOWS

by

Emilia S. Buneci

Department of Computer Science
Duke University

Date:
Approved:

Daniel A. Reed, Supervisor

Jeffrey S. Chase

Carla S. Ellis

Vincent W. Freeh

Dissertation submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy

in the Department of Computer Science
in the Graduate School of

Duke University

2008

ABSTRACT

QUALITATIVE PERFORMANCE ANALYSIS FOR

LARGE-SCALE SCIENTIFIC WORKFLOWS

by

Emilia S. Buneci

Department of Computer Science
Duke University

Date:
Approved:

Daniel A. Reed, Supervisor

Jeffrey S. Chase

Carla S. Ellis

Vincent W. Freeh

An abstract of a dissertation submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy

in the Department of Computer Science
in the Graduate School of

Duke University

2008

Copyright c© 2008 by Emilia S. Buneci

All rights reserved

Abstract

Today, large-scale scientific applications are both data driven and distributed. To

support the scale and inherent distribution of these applications, significant heteroge-

neous and geographically distributed resources are required over long periods of time

to ensure adequate performance. Furthermore, the behavior of these applications

depends on a large number of factors related to the application, the system soft-

ware, the underlying hardware, and other running applications, as well as potential

interactions among these factors.

Most Grid application users are primarily concerned with obtaining the result

of the application as fast as possible, without worrying about the details involved

in monitoring and understanding factors affecting application performance. In this

work, we aim to provide the application users with a simple and intuitive perfor-

mance evaluation mechanism during the execution time of their long-running Grid

applications or workflows. Our performance evaluation mechanism provides a qual-

itative and periodic assessment of the application’s behavior by informing the user

whether the application’s performance is expected or unexpected. Furthermore, it

can help improve overall application performance by informing and guiding fault-

tolerance services when the application exhibits persistent unexpected performance

behaviors.

This thesis addresses the hypotheses that in order to qualitatively assess applica-

tion behavioral states in long-running scientific Grid applications: (1) it is necessary

to extract temporal information in performance time series data, and that (2) it is

sufficient to extract variance and pattern as specific examples of temporal informa-

tion. Evidence supporting these hypotheses can lead to the ability to qualitatively

assess the overall behavior of the application and, if needed, to offer a most likely

iv

diagnostic of the underlying problem.

To test the stated hypotheses, we develop and evaluate a general qualitative perfor-

mance analysis framework that incorporates (a) techniques from time series analysis

and machine learning to extract and learn from data, structural and temporal features

associated with application performance in order to reach a qualitative interpretation

of the application’s behavior, and (b) mechanisms and policies to reason over time

and across the distributed resource space about the behavior of the application.

Experiments with two scientific applications from meteorology and astronomy

comparing signatures generated from instantaneous values of performance data ver-

sus those generated from temporal characteristics support the former hypothesis that

temporal information is necessary to extract from performance time series data to be

able to accurately interpret the behavior of these applications. Furthermore, tempo-

ral signatures incorporating variance and pattern information generated for these ap-

plications reveal signatures that have distinct characteristics during well-performing

versus poor-performing executions. This leads to the framework’s accurate classifi-

cation of instances of similar behaviors, which represents supporting evidence for the

latter hypothesis. The proposed framework’s ability to generate a qualitative assess-

ment of performance behavior for scientific applications using temporal information

present in performance time series data represents a step towards simplifying and

improving the quality of service for Grid applications.

v

Acknowledgements

There are many people who have contributed to this work and have supported

me throughout this journey. First, I would like to thank my advisor, Dan Reed, for

his guidance and encouragement throughout my graduate career. He consistently

challenged me to see the “bigger picture” and helped me focus on the important

aspects of this work. I would like to thank my committee members –Jeff Chase,

Carla Ellis and Vince Freeh – for their time and patience in guiding me through the

process. I would particularly like to acknowledge and thank Jeff Chase for his time

towards the end of the journey, for his consistent questioning and guidance that have

helped improve this work significantly.

This work has benefited from the input of many people throughout various stages,

including Lavanya Ramakrishnan, Aydan Yumerefendi, Piyush Shivam, Anirban

Mandal, Gopi Kandaswamy, Sarat Kocherlakota, Shivnath Babu, Ilinca Stănciulescu,

Diane Pozefsky, Alan Porterfield, Rob Fowler, Xiaobai Sun, Rachael Brady, John

Good, Todd Gamblin, Tingting Jiang, and Seda Vural. Thank you all for your time.

On a more personal level, I am indebted to my family for their support through

the year: my mom, for her constant encouragement, my sister Dana, for making me

laugh and helping me see life from a different angle. And finally, I will be eternally

indebted to the one person who suffered most throughout this research: Saul, thank

you for your love, friendship and support.

vi

Contents

Abstract iv

Acknowledgements vi

List of Figures xii

List of Tables xvi

1 Introduction 1

1.1 Challenge: User-Centric, Qualitative Performance Analysis 4

1.2 Research Questions . 6

1.3 Contributions . 7

2 Background 9

2.1 The Computational Grid Environment 9

2.2 Large-Scale Scientific Applications . 10

2.2.1 Distributed Scientific Workflows 12

2.2.2 Workflow Performance Analysis On Grid Resources 17

2.3 Summary . 18

3 Methodologies for Data Analysis and Visualization 19

3.1 Time Series . 19

3.1.1 Stationary Time Series . 21

3.1.2 The Auto-correlation Function and Its Properties 23

3.2 Temporal Signatures . 30

3.2.1 Feature Selection and Extraction 30

3.2.2 Building Temporal Signatures 42

vii

3.3 Supervised Learning . 43

3.3.1 Training . 44

3.3.2 Classification . 44

3.3.3 General Issues Affecting Classifiers 48

3.4 Methodologies for Data Visualization 50

3.4.1 Performance Time Series Data Visualizations 50

3.4.2 Temporal Signatures Visualizations 52

3.5 Summary . 60

4 Qualitative Performance Analysis Framework 61

4.1 Architecture . 61

4.2 Characteristics . 65

4.3 Temporal Signature Component . 67

4.3.1 Performance Time Series Selection 68

4.3.2 Features Selection and Extraction 69

4.3.3 Temporal Signature Definition 69

4.3.4 Temporal Signature Generation 70

4.4 Supervised Learning Component . 71

4.4.1 Training: Learning Expected and Unexpected Signatures . . . 71

4.4.2 Classification: Performance Validation and Diagnosis 73

4.5 Qualitative Reasoning Component . 74

4.6 Summary . 76

5 Framework Evaluation 77

5.1 Execution Environment . 78

5.1.1 Computational Resources . 78

viii

5.1.2 Performance Time Series Data Collection 81

5.2 Scientific Workflows . 81

5.2.1 Montage . 82

5.2.2 LEAD . 83

5.3 Labeling Application Performance Expectation 89

5.4 Temporal Signatures of Expected Application Executions 92

5.4.1 Temporal Signature for a Task Within an Experiment 92

5.4.2 Temporal Signatures for a Group of Tasks in an Experiment . 94

5.4.3 Temporal Signatures Across Experiments 94

5.4.4 Summary . 100

5.5 Temporal Signatures for Unexpected Application Executions 100

5.5.1 Case 1: Diagnosed Data-Intensive Application Running on Slow
Network . 101

5.5.2 Case 2: Diagnosed Corrupted Monitoring Data File Binary . . 105

5.5.3 Case 3: Undiagnosed Consistently Different Resource Charac-
teristics Across Experiments 105

5.5.4 Summary . 107

5.6 Qualitative Performance Validation and Diagnosis 108

5.6.1 Task-Level . 108

5.6.2 Workflow-Level . 109

5.7 Framework Evaluation . 113

5.7.1 Comparison of Classification Accuracy Between Instantaneous
Values Signatures and Temporal Signatures 113

5.7.2 Classification Accuracy Using Temporal Signatures 117

5.8 Performance Impact of Framework 121

ix

5.9 Limitations . 123

5.9.1 Limitations of the Current Evaluation 123

5.9.2 Limitations of the Approach 126

5.10 Summary . 128

6 Related Work 130

6.1 Temporal Signatures . 130

6.1.1 Time Series Analysis . 131

6.1.2 Dimensionality Reduction for Time Series Data 133

6.1.3 Application and System Signatures 138

6.2 Learning Techniques for Problem Diagnosis 141

6.2.1 Classification Techniques . 141

6.2.2 Clustering Techniques . 142

6.3 Context: Performance Analysis of Scientific Workflows 142

6.3.1 Performance Monitoring . 143

6.3.2 Workflow Optimizations . 144

6.3.3 Comprehensive Workflow Performance Analysis 147

6.3.4 Performance Analysis and Visualization 148

6.3.5 Discussion . 149

6.4 Summary . 152

7 Conclusion and Future Directions 154

7.1 Conclusions . 154

7.2 Future Directions . 154

7.2.1 Variable and Feature Selection for Performance Data 155

7.2.2 Learning Techniques . 156

x

7.2.3 Reasoning with Qualitative Information 157

7.2.4 Problem Diagnosis: Correlation and Causation 157

A Upper Bound Calculation for Sample Variance 159

Bibliography 161

Biography 171

xi

List of Figures

2.1 Example of static workflow in astronomy. 13

2.2 Simplified LEAD workflow. 15

2.3 Detailed LEAD workflow. 16

3.1 Performance time series data example. 21

3.2 Random time series and its auto-correlation function. 25

3.3 Flat time series and its auto-correlation function. 27

3.4 Periodic time series and its auto-correlation function. 28

3.5 Ramp time series and their auto-correlation function. 29

3.6 Auto-correlation function for a random time series. 35

3.7 Computed confidence bands values for k ¥ 1 35

3.8 Auto-correlation function for a periodic time series. 37

3.9 Auto-correlation function for a ramp time series. 38

3.10 Auto-correlation function for an almost periodic time series. 40

3.11 Auto-correlation function of a ramp time series with added noise. . . 41

3.12 Auto-correlation function for time series with periodic and ramp be-
haviors. 42

3.13 Example of k-nearest neighbor classifier for k � 1 and k � 5. From [32]. 46

3.14 Semi-log y-axis visualization of multiple mime series. 51

3.15 Performance time series visualized as a set of stacked individual plots. 52

xii

3.16 Temporal signature visualization as a set of two bar charts. 53

3.17 Temporal signature visualization as color vector. 54

3.18 Example of the projection of a data point P in 8 dimensions. From [55]. 55

3.19 P1�P6 using two different software implementations of Star-Coordinates. 57

3.20 P1 � P6 visualized on a Kiviat diagram. 58

3.21 Visualization of groups of temporal signatures using our novel color
matrix visualization. 59

4.1 Teresa: high-level process overview. 62

4.2 Teresa: framework components. 62

4.3 Teresa: detailed framework architecture. 64

4.4 Teresa as Grid service. 65

4.5 Teresa: Temporal signature design component. 67

4.6 Teresa: Supervised learning component. 72

4.7 Teresa: Qualitative reasoning component. 74

4.8 Global workflow performance ratio, R for different values of N 76

5.1 Architecture overview: Dante cluster. 79

5.2 Architecture overview: NCSA TeraGrid Mercury Cluster. 80

5.3 Example Montage workflow. 82

5.4 Example LEAD workflow. 86

5.5 Execution times for all experiments with mProjExec. 91

5.6 Performance time series and temporal signature for one task from
mProjExec Experiment #5. 93

xiii

5.7 Temporal signatures for mProjExec Experiment # 5. 95

5.8 Temporal signatures across experiments: mProjExec experiments # 5,
6, 7. 96

5.9 Temporal signatures across experiments: mProjExec experiments #
12, 13, 14. 97

5.10 Temporal signatures across experiments: mProjExec experiments #
20, 21, 22. 98

5.11 Temporal signatures across experiments: WRF experiments # 35, 36,
37. 99

5.12 Performance time series and temporal signature for one task from un-
expected mProjExec experiment #23. 102

5.13 Unexpected temporal signatures for mProjExec Experiments # 23, 24,
25. 103

5.14 Temporal signatures across slowio cluster for unexpected mProjExec

application executions. 104

5.15 Unexpected temporal signatures on specific nodes during WRF experi-
ments # 51, 52, 53. 106

5.16 Time series data from WRF Experiment #51 for the compute node
tg-c256 exhibiting the abnormal behavior. 107

5.17 Periodic evaluation of application behavior using temporal signatures. 109

5.18 Scenario 1: Workflow instance with expected qualitative behavior. . . 111

5.19 Scenario 2: Workflow instance with unexpected qualitative behavior. 112

5.20 Examples of instantaneous signatures extracted from both expected
and unexpected performance data. 115

5.21 Balanced accuracy results for classification with instantaneous signa-
tures and with temporal signatures. 117

xiv

5.22 Impact of smoothing on the variance feature calculation and the direct
impact on framework accuracy. 121

6.1 Related areas and problem context 131

6.2 Time series from the electrocardiogram diagnosis of a healthy and
unhealthy patient. 136

6.3 Kiviat-graphs, visual system signatures. 139

6.4 Application signature using poly-lines. 139

6.5 Example of two time profiles of identical processes. 140

6.6 Example of two temporal signatures of system-calls used for intrusion
detection. 140

7.1 Other contexts where Teresa can be applied. 156

xv

List of Tables

3.1 Summarized properties of the ACF given specific patterns in time series. 24

3.2 Encoding the pattern into a discrete value within t1, 2, 3, 4, 5u. 32

3.3 Accuracy results for identifying random patterns in time series of dif-
ferent lengths, N and with varying amplitudes. 39

3.4 Numerical values for six vectors in 8D, comprising two different cate-
gories. 56

4.1 Example of input performance time series metrics. 69

5.1 Architectural characteristics of computing resource sites. 78

5.2 Set of system-level performance time series analyzed. 81

5.3 mProjExec with data set M101 on all clusters. 84

5.4 mProjExec with data set M57 on all four clusters. 85

5.5 WRF2.2 and WRF2.0* with mesoscale data set on all four clusters. . . 88

5.6 WRF2.2 with non-mesoscale data set on all clusters except* slowio. 89

5.7 Framework efficacy evaluation. 119

5.8 Considerate use of smoothing: impact of unfit application of smoothing
for calculation of variance feature. 120

5.9 Performance impact of temporal signatures and their subsequent clas-
sification. 122

xvi

Chapter 1

Introduction

Grids are systems that coordinate distributed resources using standard, general-

purpose protocols and interfaces to deliver desired qualities of service [38]. They rep-

resent one of the solutions offering a computational infrastructure enabling progress

and new modes of research and collaboration in both science and industry. Grids en-

able organizations to tackle problems previously infeasible to solve due to computing

and data-integration constraints. They also reduce costs through automation and

improved IT resource utilization.

Scientists use Grids to solve grand challenge problems like weather modeling [29],

earthquake simulation [104, 113], high-energy physics simulations [58], or help un-

derstand the mechanisms behind protein folding [83]. For example, thousands of

physicists from universities and laboratories around the world have joined forces to

design, create, operate, and analyze the products of a major particle accelerator, and

are pooling their computing, storage, and networking resources to analyze petabytes

of data [39, 88, 45].

Companies use Grids and service oriented infrastructures to automate business

transactions and enable cross-industry collaborations to increase profit and compet-

itiveness [79]. Consider an industrial consortium commissioning the study of the

feasibility of a next-generation supersonic aircraft by multidisciplinary simulation of

the entire aircraft. Generating this type of simulation involves integrating propri-

etary software and coordinating resource sharing for a prearranged set of resources

(i.e., design databases, data, or computing resources) [39]. More recently, companies

have started to offer cloud or utility computing [65, 68], a web-scale virtual comput-

1

ing environment offering on-demand access to storage [6], computing [5], and other

services on a pay-per-use basis. Science or research “clouds” are under development;

they will function as huge virtual laboratories, where authorized users will be able to

analyze data, build new tools and share this data with other researchers [10].

These examples from both the academic and business world differ in many re-

spects: the number and type of participants, the resources being shared, the duration

of the interaction, and the type of activity. However, in each case, interested par-

ticipants want to share resources to perform some task that each could not perform

independently. Sharing implies providing access to a multitude of resources: software,

computers, data, sensors, and other resources. Grids and, more recently, computing

clouds, offer technologies to coordinate resource sharing and problem solving.

Grids are complex and highly dynamic systems and their ease of management and

utilization are key to their success. As part of the effort to make Grids easier to use

within the scientific application domain, it is important to understand the character-

istics of the factors affecting application performance, and to support scientific users

with intuitive tools to evaluate and interpret application behavior during execution.

Previous efforts in performance diagnosis and optimizations include quantitative

mechanisms that assess, based on performance metric thresholds, whether an applica-

tion’s performance expectations are being met at a given point [93, 96, 109, 106, 37].

Threshold-based techniques are a form of service level agreements (SLAs) for scien-

tific Grid applications. Such approaches are definitely useful to a user who knows (1)

the key metrics to monitor, and (2) the best value of the threshold that would capture

the most important performance problems without triggering too many false alarms.

The major weakness of threshold-based approaches that rely on static, non-adaptive

thresholds is the assumption that these meaningful threshold values are known in ad-

vance. This is seldom true in practice. In a complex and dynamic environment such

2

as a Grid, on which different applications with varied characteristics execute, finding

meaningful performance metric thresholds may be very difficult. Furthermore, from a

usability perspective, threshold-level approaches work well if there are relatively few

metrics specified and monitored, and if the impact of these metrics on the application

performance, both individually and as a set, is simple and easy to understand and

predict.

In this thesis, we propose an alternative and novel performance analysis methodol-

ogy which addresses the disadvantages of static threshold-based approaches by learn-

ing differences between characteristics of performance time series data during good

and degraded application performance states. Our approach redefines and expands

the concept of an SLA in terms of the qualitative notion of performance as perceived

by the scientific application user. Instead of depending on a user to specify a set

of numerical thresholds within an SLA (i.e., the application’s memory utilization

should be ¤ 1 GB, and the available network bandwidth should be in the range of

r100 Mb{s�300 Mb{ss), our framework relies on the user to express his or her level

of satisfaction with various executions of the application by labeling these executions

as having a desirable or undesirable performance1. From these sets of historical ex-

pected and unexpected behaviors, our framework provides the workflow user with

periodic qualitative assessments of application behavior during on-line execution.

Because our target applications are long-running scientific applications (i.e., ex-

ecution times can take days, weeks or even months), persistent changes in perfor-

mance behaviors are of interest and not transient or localized ones. Therefore, to

qualitatively assess application behavior in this class of applications, we investigate

the hypotheses that: (1) it is necessary to analyze and extract temporal/historical

information in performance time series data, and that (2) it is sufficient to use vari-

1Additionally, we may refer throughout the thesis to these binary states of performance as good
and poor or as expected and unexpected.

3

ance and pattern as representative features of temporal information for a reasonably

accurate characterization of behaviors.

1.1 Challenge: User-Centric, Qualitative Perfor-

mance Analysis

In a dynamic environment such as the Grid, extrinsic forces can affect application

performance, which leads to significant difficulties in obtaining accurate models of

application performance. We are interested in exploring a qualitative approach to

performance analysis, which draws on human experience [59] in creating and using

qualitative descriptions of mechanisms. We want to provide a qualitative evalua-

tion of application performance because simple to use and understand descriptions

of application behaviors are easier for workflow users to reason with than complex

performance models, and because they can reduce the complexity of the scheduling

policies by supporting categorical resource control in Grid environments.

In the context of scientific Grid applications, we seek to define and extract charac-

teristics of monitored performance data that correlate well with important high-level

application states (i.e., well-performing, poor-performing). For example, consider a

case where the user is unsatisfied with the recent executions of his or her applica-

tion, as the average run times may be twice as long as previous runs. There could

be different and multiple causes of degraded application performance such as more

competition for network bandwidth, changes of configuration in the computational

environment or application source code changes, to name a few of the possibilities.

Our framework’s goal is twofold: to automatically detect (1) the existence of a pos-

sible problem, and (2) the type of problem affecting application performance during

executions.

We define qualitative performance analysis as the qualitative performance val-

idation and diagnosis of applications. Qualitative performance validation assesses

4

whether an observed behavior is expected or unexpected. Qualitative performance

diagnosis searches and offers the application user possible causes of unexpected be-

havior (e.g., low network bandwidth). These simple, intuitive and qualitative an-

swers to the possible problems affecting large-scale scientific workflows can be used

to build and deploy rescheduling policies for a simplified resource control in complex

distributed environments, similarly to the qualitative preference specifications used to

exercise effective control over quantitative trust-based resource allocations proposed

in [27].

Below, we summarize the main challenge we address and the problem specifica-

tion, together with the assumptions and requirements.

Challenge

To bound the performance variability of scientific Grid applications.

Problem Specification

Input: Continuous performance time series collected from Grid computing re-

sources where applications execute.

Output: Qualitative performance analysis of the application.

Assumptions: The following assumptions apply: (1) workloads of interest are

long-running component workflow scientific applications, and (2) performance time

series metrics are selected by an expert2, and reflect the temporal performance of the

workloads over time.

Requirements: The following requirements apply:

1. On-line re-evaluation of behavior is necessary at larger time scales (i.e., tens

of minutes) rather than smaller time scales (i.e., minutes or seconds), because

target applications have significant resource requirements3, resulting in a high

2Either human or software-based.
3See Section 2.2.1 for LEAD workflow resource requirements [29, 100].

5

cost for application migration, restart or over-provisioning.

2. Performance metrics of interest are easy to collect and are provided by existing

distributed monitoring software.

3. Answers to the output questions are accurate to a specified level and useful

most of the time.

4. Approach is scalable to thousands of Grid computing resources.

1.2 Research Questions

This thesis answers the following questions:

1. What does it mean to assess the performance of an application qual-

itatively? We investigate the user-centric definition of well-performing and

poor-performing application states in the context of large-scale scientific appli-

cations executing on distributed resources. Furthermore, we study how periodi-

cally sampled performance data can be correlated with the qualitative behavior

of the application.

2. What characteristics present in the performance time series data are

necessary and sufficient to correlate with the high-level behavior of

these long-running applications? We test the hypothesis that temporal

information present in performance data is necessary to analyze in order to

characterize more accurately the application’s behavior. Moreover, we inves-

tigate if specific examples of temporal features in performance data, such as

relative variance and pattern are sufficient to characterize expected and unex-

pected application behaviors.

3. How can we gather samples of application behavior effectively and

accurately? We investigate the cost of gathering samples of performance data

6

correlated with qualitative application behavior and propose methodologies for

gathering samples of behaviors as effectively and accurately as possible.

4. How can we use samples of application behavior for qualitative per-

formance analysis (i.e., validation and diagnosis)? We use the sample

knowledge base acquired to show how it can be utilized for on-line qualitative

performance validation and diagnosis for large-scale scientific workflows, within

a specified accuracy.

1.3 Contributions

This thesis proposes a novel, qualitative performance analysis framework that

supports workflow users in (a) understanding via intuitive behavioral characteriza-

tions the performance of their applications, and (b) supporting fault-tolerance and

rescheduling services by simplifying and categorizing the space of scheduling policies

options. Moreover, the framework investigates what performance data features are

necessary and sufficient to characterize the higher-level behavior of applications. To

support these goals, our framework:

1. Defines a general process to extract useful features from multi-variate perfor-

mance time series data, and to generate a compact signature of this data. We

present the mathematical details of generating a signature from performance

data in Chapter 3, and detail the high-level process of using signatures for

performance validation and diagnosis in Chapter 4.

2. Demonstrates how to use generated performance signatures to automatically

learn characteristics associated with both well-performing and poor-performing

application behavioral states. We describe the learning process in Chapter 4,

and we detail specific examples of learning in the evaluation chapter, Chapter

5.

7

3. Develops techniques and policies for reasoning about observed application be-

havior temporally and spatially. We evaluate the techniques proposed on two

large-scale scientific workflows and we present results in Chapter 5.

8

Chapter 2

Background

This chapter describes the context in which the proposed framework works, in-

cluding characteristics of the computational Grid environment, and those of the target

scientific Grid applications.

2.1 The Computational Grid Environment

The computing environments where distributed scientific applications execute are

often heterogeneous. They include a variety of computing resources such as super-

computers, homogeneous commodity clusters, servers or ensembles of workstations,

all with a variety of architectural characteristics (processor speeds, memory, network

interconnects). Similarly, there is heterogeneity in the software available on com-

puting resources, with different operating systems, scientific applications, libraries

or other software applications of interest. Grids often have a highly heterogeneous

and unbalanced communication network, comprising a mix of different inter-machine

networks and a variety of Internet connections whose bandwidth and latency vary

greatly in time and space.

The reason for the heterogeneity of Grids is at least three-fold: (1) organizations

participating with computing resources often have different hardware configurations,

network speeds, storage systems and software stacks on their computing resources,

(2) failed or misbehaving components or computational resources are usually replaced

with different (more powerful) ones, as cost per performance ratios keep falling, and

(3) any necessary increases in performance or capacity due to expected increases in

load are usually obtained with better performing components.

Another important characteristic of the computational Grid environment is the

9

availability of resources. Computational Grid resources can be dedicated, shared, or

on-demand. Their availability can vary significantly, not only because of unavoidable

system failures, but also because the owners of the resources can decide when and un-

der what circumstances their resources will be shared (i.e., dedicated supercomputer

becomes unavailable).

The dynamic resource fluctuation and the resource sharing can dramatically im-

pact the performance of the system or application of interest. Therefore, automatic

mechanisms, which monitor and detect persistent behavior anomalies of applications

are critical to the creation of a robust computational framework.

2.2 Large-Scale Scientific Applications

The computational Grid environment provides the necessary infrastructure for

scientists to solve problems that were previously infeasible due to computing and

data-integration constraints.

For example, the Linked Environments for Atmospheric Discovery (LEAD) multi-

disciplinary effort addresses the fundamental IT research challenges to accommodate

the real-time, on-demand, and dynamically-adaptive needs of mesoscale weather re-

search1 [29]. The LEAD project utilizes the Grid to achieve its scientific research

goals. This effort is a major shift away from a 50 year paradigm, in which weather

sensing and prediction, and computing infrastructures operated in fixed modes inde-

pendent of weather conditions [28].

Scientific fields have developed over long periods of time large-scale software codes

to assist them in their research. These large-scale scientific applications have tradi-

tionally been computationally focused. They have been mostly implemented as par-

allel codes designed to be executed on supercomputers, clusters and/or symmetric

1Mesoscale weather - floods, tornadoes, hail, strong wind, lightning and winter storms - causes
hundreds of deaths, routinely disrupts transportation and commerce and results in significant
economic losses.

10

multiprocessors (SMPs). Two emerging trends have been changing these scientific

applications.

First, many scientific fields such as biology, astronomy, physics, meteorology have

recently seen an exponential increase in scientific data following significant technolog-

ical breakthroughs in scientific instruments. The improved instruments can generate

large amounts of data, which typically require complex and computationally-intensive

analysis and multi-level modeling [11]. In astronomy, breakthroughs in telescope, de-

tector and computer technologies have resulted in astronomical sky surveys producing

petabytes (PB) of data in the form of sky images and sky object catalogs [114]. Sky

survey databases such as DPOSS (Palomar Digital Sky Survey) [26], and the 2MASS

(Two Micron All Sky Survey) [2] are three and ten TB respectively. In high-energy

physics, the prime experimental data from the CERN CMS detector will be over one

petabyte (PB) a year [78]. In the future, CMS and other experiments now being

built to run at CERN’s Large Hadron Collider will accumulate data on the order of

100 PB within the next decade.

Second, recent improvements in the computing infrastructure (e.g., computers,

networks, storage systems, sensors) have enabled collaboration, data sharing and

other new modes of interaction which involve distributed resources. The result is

an emphasis on coupling the existing distributed infrastructure via easy to use tools

with standard interfaces.

The unifying theme is that traditionally, computationally focused large-scale sci-

entific applications have been changing due to the exponential increase in scientific

data and due to the improved coupling infrastructure. The emerging large-scale sci-

entific applications are data driven and distributed: they analyze distributed data

sources, use distributed computing resources and software tools which enable scien-

tists in their pursuance of answering fundamental scientific questions.

11

2.2.1 Distributed Scientific Workflows

The new large-scale scientific Grid applications are no longer monolithic codes;

rather, they are represented by various components or tasks which perform data

collection, pre-processing, transformations, analysis and visualizations as part of a

workflow.

A workflow is a systematic way of specifying application logic and coordination.

Scientists can simply specify what tasks/components need to be accomplished and

in what order, and can specify the data inputs and flow among the components.

Once a workflow is specified, various mechanisms, such as those in Pegasus [25],

automatically map it on available computing resources meeting desired requirements.

Workflows can be static or dynamic. A static workflow executes all the compo-

nents in the order specified and outputs results of various stages. A dynamic workflow

can change the execution flow of one or more components adaptively, depending on

current system conditions or results of components of interest.

Two examples of scientific workflows are detailed in the following section. We

present a static workflow from astronomy and a dynamic workflow from meteorology.

Static Workflows

The National Virtual Observatory (NVO) [114] is contributing to a new mode of

performing astrophysics research. The NVO was designed to support the federation

of astronomical sky surveys because there are probably many undiscovered phenom-

ena in the data that have not yet been discovered due to the tremendous amount

of data requiring analysis. Therefore, it provides the tools to explore within and

extract relevant information from these massive, multi-frequency surveys. This type

of unprecedented access enabled astronomers to: (1) perform detailed correlation

within the data, (2) understand the basis of the physical processes that result in the

correlations, and (3) potentially identify new classes of astrophysical phenomena.

12

Selects a galaxy cluster

Look-up cluster in internally stored catalog
User

Retrieve X-ray and optical images

Launch distributed analysis

Generate initial galaxy catalog

Merge images cut-out pointers into catalog

Calculate morphological parameters on the grid for each galaxy

Download final table and images for analysis and visualization

Software tools handle
the user's request

transparently

User

Analyzes & interprets results

Figure 2.1: Static scientific workflow in astronomy. Adapted from [92].

Figure 2.1 shows a static scientific workflow used in the NVO project. Initially,

the user selects a galaxy cluster of interest, which is then looked up in the internally

stored catalog. Multi-frequency images of the cluster are retrieved from sky survey

databases, then a distributed analysis is launched on Grid computing resources. An

initial galaxy catalog is generated, within which image cutout pointers are merged.

Various morphological parameters are calculated on the Grid for each galaxy. Finally,

the user downloads tables and images for analysis and visualization.

These workflows, which perform multi-frequency image and/or database analy-

sis, constitute an example of federation of information: bringing data from different

13

sources into the same frame of reference. This type of data federation is very impor-

tant in astronomy because it enables discoveries of new sky objects and phenomena

(i.e., brown dwarf stars can be found by a search spanning infrared image catalogs)

[114].

Dynamic Workflows

In the meteorology science context, traditional weather forecasts are static, linear

workflows with no adaptive response to weather. Consider the simplified dynamic

LEAD workflow shown in Figure 2.2. Meteorological data sets and streams generated

by radars, satellites, weather balloons and other weather instruments are transported

via shared networks to distributed and shared computing resources for processing.

The different data types are integrated and transformed such that numerical weather

forecast codes can be initiated. The results of the forecasting are visualized.

Automated data-mining algorithms analyzing forecast output can dynamically

request new real-time data from data-collecting instruments in case severe weather

patterns are detected. The entire or part of the workflow process is repeated following

the arrival of new real-time data. Figure 2.3 shows the actual LEAD workflow of

Figure 2.2 with its components.

Dynamic workflows are different from static workflows in that the totality or

parts of the workflow can be repeated as needed based on run-time criteria. Dy-

namic workflows result in more uncertainty regarding what applications will run and

what resources will be used. For LEAD dynamic workflows, uncertainty is intro-

duced by two meteorological needs: (1) more accurate, and (2) immediate forecast

of weather, given the detection of severe weather. To obtain more accurate forecasts,

meteorologists typically run ensemble forecasts2. The more computational resources

2Multiple predictions from a group or ensemble of slightly different initial conditions and/or various
versions of models. The objective is to improve the accuracy of the forecast through averaging
many forecasts, which reduces the number of non-predictable components, and to provide reliable
information on forecast uncertainties from the diversity among ensemble members [42].

14

Distributed Data Sets & Streams

Distributed & Shared Resources

Radars Satellites Weather
Balloons

Terrain
Data

Distributed
Scientific
Instruments

Transported Via
Shared Networks

Preprocessing

Analysis & Forecasting

Data Mining Visualization

Automatically
Request
New Data

Figure 2.2: Simplified LEAD workflow.

available, the more accurate the forecast. Immediate forecast of weather means that

computing resources need to be available now, because a delayed prediction of severe

weather conditions is not useful.

Many of the distributed scientific workflows require great storage and computa-

tional capacity. For example, in the LEAD workflow various types of high-volume

data sets and streams (i.e., terrain input, satellite or radar data) are collected at re-

mote, geographically distributed sites, and transferred via shared networks to other

distributed computing centers for further processing and analysis. Currently, each

NEXRAD (Next Generation Radar) Level II can output 4.3 GB/day [80]. In case of

severe weather, the application may demand streaming of data from many NEXRADs

15

Examples of Distributed
Data Sets & Streams

Examples of Shared
Resources: Networks

Examples of Shared
Resources: Software &
Computing Resources

Example of Large-Scale
Scientific Code Performing
Weather Forecasting

Figure 2.3: LEAD workflow for data ingestion, analysis and weather forecast.
Adapted from [29].

as well as other meteorological instruments for more accurate weather predictions.

The computational demands of numerical forecast models such as the Weather

Research and Forecasting (WRF) code [72] and its data-assimilation systems [16]

are significant [29]. A recent experiment [100] conducted by the Center for Anal-

ysis and Prediction of Storms (CAPS) and the Pittsburgh Supercomputing Center

(PSC) generated the highest-resolution numerical weather forecasts yet attempted.

The forecasts had twice the horizontal resolution and nearly 50 percent greater ver-

tical resolution, with a spacing between grid points of two kilometers. This increased

spacial resolution was five times finer than the one used in the National Weather Ser-

vice’s most advanced model. As a result, the experiment demanded approximately

300 times more raw computing power. The higher resolution offered meteorologists

16

improved storm forecast capability, such as the ability to capture individual thunder-

storms together with their rotation information.

CAPS used the numerical forecast model WRF executing on 307 Alphaserver

ES45 nodes (four 1 GHz processors with 4 GB RAM per node) to produce the daily

forecast from mid-April through early June during 2005 for over two-thirds of the

continental United States. The forecasts executed approximately two months on

these high-performing computational resources.

2.2.2 Workflow Performance Analysis On Grid Resources

For the astronomy application example, the Grid implications are that these mas-

sive astronomical data collections are made available without worries about differ-

ences in storage systems, security environment or access mechanisms. These static

workflows execute a series of workflow components, sequentially or in parallel, fol-

lowing a directed acyclic graph flow. The workflows may have real-time constraints

on the total execution time. Thus, workflow performance analysis tools must de-

tect timely if components are not performing as expected. Both quantitative and

qualitative performance analysis approaches offer methods to enforce soft or hard

performance guarantees.

For the meteorology application example, generating accurate and immediate se-

vere weather forecasts requires significant computational and data demands. The

data and computational resources utilized are distributed and are integrated via cou-

pling tools such as Grids and web services. However, in an integrated, distributed

computing environment there are a variety of challenges to overcome, such as re-

source contention, software and hardware failures, data dependencies and optimal

resource allocations. Resource contention and sharing in this environment cause the

performance of applications to vary widely and unexpectedly. Therefore, creating

mechanisms that enable soft real-time performance guarantees by characterizing re-

17

source behavior to ensure timely completion of tasks is especially critical in real-time

environments.

2.3 Summary

We presented the context in which we apply our qualitative performance analysis

framework: large-scale scientific Grid applications executing in a distributed comput-

ing environment. The complexity and dynamism of these new scientific applications

makes monitoring and understanding application resource behavior both critical and

challenging. This work complements existing quantitative Grid performance analysis

approaches with qualitative ones, which together will offer a more robust computa-

tional environment during the execution of scientific workflows.

18

Chapter 3

Methodologies for Data Analysis and
Visualization

This chapter describes methodologies for performance data analysis and visual-

ization which we employ to extract temporal information from time series data and

to characterize qualitatively the behavior of long-running scientific applications. We

introduce concepts from time series analysis and pattern recognition in time series

and show how to build temporal signatures from time series data. We also introduce

fundamental concepts from supervised learning and show how we use it on temporal

signatures to differentiate between desired and undesired application performance

states. Lastly, we describe supporting techniques from multi-variate data visualiza-

tion which help with the analysis and interpretation of results from our performance

data.

3.1 Time Series

A time series T is a set of observations, denoted by z0, z1,� � � , zk,� � � ,zN generated

sequentially at time points τ0, τ1, � � � , τk,� � � , τN . Successive time points can be

collected at a fixed interval of time, h, or at different intervals of time. In this thesis,

we are concerned with equidistant series.

Time series analysis uses statistical methods to analyze dependencies in a chrono-

logical sequence of observations. When applied to performance metric time series,

the observations can be any quantitative data gathered from any metric of inter-

est (i.e., CPU utilization, amount of free memory, or number of I/O read requests).

Figure 3.1 depicts a performance data time series, number of disk transactions per

second z0, � � � , zk, � � � , z2000, collected every τk � 100 seconds during the execution of

19

an application on a computing system.

Our objective is to characterize temporally the behavior of the underlying process

generating the series. This characterization is achieved by exploiting correlations

among observations to identify a qualitative temporal structure for the performance

data processes.

When collecting performance metrics, the value of τ0 corresponds to starting an

application’s execution on a computing system, and h corresponds to the frequency

of sampling of performance data. The value of N corresponds to the completion of

the execution of the application on the computing resource.

Two characteristics of time series are essential to the type of analysis that can be

applied: stationary and non-stationary. In a stationary series, the underlying process

remains in statistical equilibrium, with observations fluctuating around a constant

mean with constant variance. In contrast, a non-stationary series has unfixed mo-

ments (i.e., mean or variance) which tend to increase or decrease over time.

Although many empirical time series are non-stationary, we assume that most

snapshots of the time series analyzed will at least meet the weak stationarity condi-

tion, that is only the first two moments (i.e., mean and variance) do not vary with

respect to time. If most time series analyzed in the experimental setting will not meet

this condition, then estimation formulas for mean, variance and auto-correlation com-

monly utilized under the stationary and weakly-stationary conditions, will result in

biased estimates. The use of such formulas and therefore of our specific temporal

information extraction techniques under non-stationarity will result in a decreased

efficacy for our framework, as the extracted features will not be accurately describ-

ing temporal behaviors. However, other methodologies from pattern recognition and

analysis of time series such as those proposed in [64, 87, 95] can be employed to achieve

the same goal of compact temporal characterization of behavior from performance

20

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Application Execution Time (In Seconds)

Nu
m

be
r o

f D
isk

 T
ra

ns
ac

tio
ns

 P
er

 S
ec

on
d

zN

z0

!0 !N

Figure 3.1: Performance data time series collected during the execution of an ap-
plication.

time series that are non-stationary.

3.1.1 Stationary Time Series

When a time series is stationary, certain statistics such as mean, variance, auto-

covariance, or auto-correlation can be calculated using closed form mathematical

formulas. These measures are important because they help characterize important

features from a time series such as amount of variability and patterns.

The mean of a stationary process, µ, can be estimated by the mean

m � 1

N

Ņ

t�1

zt (3.1)

of the time series, and the variance σ2, of the stationary process, can be estimated

by the variance

s2 � 1

N

Ņ

t�1

pzt �mq2 (3.2)

21

of the time series. Similarly, the covariance between zt and its value zt�k separated

by k intervals of time is called the auto-covariance at lag k and can be estimated by

ck � 1

N

N�ķ

t�1

pzt �mqpzt�k �mq, k � 0, 1, 2, � � � , K. (3.3)

From Equation 3.3 it follows that the auto-correlation of a time series at lag k can

be estimated by

rk � ck
c0
. (3.4)

We are interested in characterizing temporal features of the performance time

series, such as a relative description of the variance in the data (e.g., higher variance

or lower variance), and the type of pattern observed (e.g., oscillatory, random, flat,

ramp). We chose to extract these specific patterns in the performance time series for

three reasons:

1. We have experimentally observed from initial studies of scientific applications

that these patterns are common in the performance time series data analyzed,

2. These patterns have also been documented in several studies [89, 76, 110] as

being commonly observed during scientific application executions, and

3. In engineering and science domains where time series are ubiquitous, some of

these patterns are considered primitives [87, 40] and are fundamental to the

analysis and modeling of behaviors.

Although variance characterization can be derived from a normalization of the

variance equation, Equation 3.2, a description of the pattern in a time series involves

analyzing temporal correlations within the series, which can be achieved by applying

the auto-correlation function (ACF) to the series. The following section defines the

ACF, and describes its mathematical properties which help in pattern identification.

22

3.1.2 The Auto-correlation Function and Its Properties

As shown in Equation 3.4, the auto-correlation coefficient at lag k measures the

covariance between two values zt and zt�k, a distance k apart, normalized by the

value of the covariance at k � 0. The set of all the auto-correlation coefficients of a

time series T constitute the auto-correlation function, ACF of the series T

ACF (T) � tr0, r1, � � � , rk, � � � , rNu, (3.5)

ACF (T) �
!c0
c0
,
c1
c0
, � � � , ck

c0
, � � � , cN

c0

)
. (3.6)

Notice that for a constant, zero-mean time series T , c0 � 0 and therefore the ACF is

undefined

ACF (T(m � 0, s2 � 0)) � Undefined, since c0 � 0. (3.7)

Intuitively, the ACF is the cross-correlation of a time series with a time-shifted

version of itself. Note that the auto-correlation function is dimensionless; it is in-

dependent of the measurement scale in a series. In practice, the auto-correlation

function is used for the following two purposes: (1) to detect non-randomness in the

data, and (2) to identify an appropriate time series model if the data is not random

[14].

When the auto-correlation is used to detect non-randomness, usually only the first,

r1 auto-correlation is of interest. When the auto-correlation is used to identify an

appropriate time series model, the auto-correlations are usually plotted for many lags.

The ACF plots are then inspected for certain characteristics and a time series model is

selected. The time series model is then used to predict values that may be observed in

the future (e.g., stock forecasting, amount of future CO2 in the atmosphere, predicted

number of IO read requests to a disk, and so on).

In this work, our interest lies in finding a compact yet useful representation of a

23

time series and not in finding a time series model in order to forecast future values.

In essence, we want to extract –similarly with [3]– possible features of interest in

the time series that may help differentiate between good and degraded performance

application states.

One of the features of interest is the pattern present in the time series. The

goal is to develop an algorithm capable of identifying patterns of interest only from

analyzing the properties of the ACF, shown in Table 3.1.

Series Pattern ACF Property
Random ACF is effectively zero, for k ¥ 1.
Flat ACF is effectively zero, beyond k ¥ 1.
Periodic ACF is periodic and has positive values at k’s matching peaks

and negative values at ks matching peak-valley regions.
Ramp ACF is monotonically decreasing toward 0.

Table 3.1: Summarized properties of the auto-correlation function for a time series
with specified pattern.

The following examples show random, flat, periodic, and ramp series; we show

how the auto-correlation coefficients are calculated, and how the coefficients’ values

can be used to distinguish different patterns in time series data.

Example of a Random Series and Its ACF

The auto-correlation of a white noise or random series has the maximum value

at r0 � 1 by definition, while the remaining rk are very close to zero for k ¥ 1. This

shows that a sampled instance of a white noise series is not statistically correlated to

a sample instance of the same white noise series at another time.

Figures 3.2(a) and 3.2(b) show a white-noise time series of zero-mean and its ACF.

Consider the synthetic random series with 75 time measurements of 3.2(a) with mean

24

µ � 0 and sample variance s2 � 1.33:

Index 1 2 3 4 5 6 7 8 9 10
�0 0.40 0.74 �1.19 0.63 �0.33 �0.44 1.42 1.45 �0.26 1.52
�10 �1.38 �0.06 �2.45 �1.49 �1.22 �1.39 �0.61 �0.37 �0.46 �1.24
�20 �1.59 �0.33 2.01 0.32 �0.64 0.17 0.70 �0.51 0.41 �0.63
�30 1.33 �0.74 �1.58 �0.99 �0.28 �0.20 2.90 �1.54 0.67 0.84
�40 1.27 �0.17 1.10 0.74 �0.25 �0.25 �1.32 1.19 �0.45 �0.05
�50 1.96 0.97 �1.59 0.94 �0.15 �0.50 0.68 �0.22 1.15 1.14
�60 �0.52 2.22 0.95 �0.77 0.01 �0.29 0.36 0.32 0.70 �1.54
�70 1.72 0.31 2.97 �1.09 �2.30 � � � � �

Initially, the auto-covariance coefficient at lag zero is estimated in order to calculate

the normalized auto-correlation coefficients:

c0 � 1

75

75̧

t�1

z2
t �

98.20

75
.

0 10 20 30 40 50 60 70 80
!3

!2

!1

0

1

2

3

Time

M
et

ric
 o

f I
nt

er
es

t

(a) White noise time series, Trandom

0 10 20 30 40 50 60 70 80
!1

!0.8

!0.6

!0.4

!0.2

0

0.2

0.4

0.6

0.8

1

Time Lag

Au
to

co
rre

la
tio

n
co

ef
fic

ie
nt

(b) ACF for Trandom.

Figure 3.2: Example of a random time series and its auto-correlation function.

The auto-correlation at lag one computes the average variation of observations

25

that are one time step apart:

r1 � c1
c0

r1 � 75

98.20
�
� 1

75

74̧

t�1

pzt � zt�1q
�

r1 � 1

98.20
� pz1 � z2 � z2 � z3 � � � � � z74 � z75q � �0.007.

Similarly, the auto-correlation at lag 37 computes the average variation of observa-

tions that are 37 time steps apart:

r37 � c37

c0

r37 � 75

98.20
�
� 1

75

38̧

t�1

pzt � zt�37q
�

r37 � 1

98.20
� pz1 � z38 � z2 � z39 � � � � � z38 � z75q � 0.15.

Example of a Flat Series and Its ACF

When the time series is flat and has small variance, e.g., 3.3(a), its ACF trans-

formation, 3.3(b), looks similar to the ACF of a random series, though a significant

number of ri coefficients are actually 0 (assuming some degree of variance surrounding

the constant time series). Consider the synthetic flat series with 75 time measure-

ments of 3.3(a) with mean µ � 0 and sample variance s2 � 0.19

26

0 10 20 30 40 50 60 70 80
!2

!1.5

!1

!0.5

0

0.5

1

1.5

2

Time

M
et

ric
 o

f I
nt

er
es

t

(a) Flat time series, Tflat, with some variance.

0 10 20 30 40 50 60 70 80
!1

!0.8

!0.6

!0.4

!0.2

0

0.2

0.4

0.6

0.8

1

Time Lag

Au
to

co
rre

la
tio

n
co

ef
fic

ie
nt

(b) ACF for Tflat.

Figure 3.3: Example of a flat time series and its auto-correlation function.

Index 1 2 3 4 5 6 7 8 9 10
�0 0.00 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 �2.00
�10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
�20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.00
�30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
�40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 �1.00
�50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
�60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
�70 0.00 0.00 0.00 0.00 �1.00 � � � � �

.

The auto-correlation at lag one is r1 � 0, while the coefficient at lag 20 is r20 �
�0.4286, reflecting that when one of the series measurements increases the other one,

20 lags apart, decreases or vice versa.

Example of a Periodic Series and Its ACF

When a series is periodic, the ACF transformation is also periodic. The intuition

behind this property stems from the fact that as one compares two time-shifted

versions of a periodic series, when the series’ peaks overlap, the ACF coefficients are

positive while when the series’ peaks and valleys overlap, the ACF coefficients are

27

0 10 20 30 40 50 60 70 80
!1

!0.8

!0.6

!0.4

!0.2

0

0.2

0.4

0.6

0.8

1

Time

M
et

ric
 o

f I
nt

er
es

t

(a) Periodic time series, Tperiodic, with some
variance.

0 10 20 30 40 50 60 70 80
!1

!0.8

!0.6

!0.4

!0.2

0

0.2

0.4

0.6

0.8

1

Time Lag

Au
to

co
rre

la
tio

n
co

ef
fic

ie
nt

(b) ACF for Tperiodic.

Figure 3.4: Example of a periodic time series and its auto-correlation function.

negative1.

Figure 3.4(a) shows a periodic sinusoidal time series with its ACF illustrated in

Figure 3.4(b). Consider the synthetic periodic series with 75 time measurements of

Figure 3.4(a) with mean, µ � 0 and sample variance, s2 � 0.51

Index 1 2 3 4 5 6 7 8 9 10
�0 0.00 0.15 0.30 0.43 0.56 0.68 0.78 0.87 0.93 0.98
�10 1.00 1.00 0.97 0.93 0.86 0.78 0.68 0.56 0.43 0.29
�20 0.14 �0.01 �0.16 �0.30 �0.44 �0.57 �0.69 �0.79 �0.87 �0.94
�30 �0.98 �1.00 �1.00 �0.97 �0.93 �0.86 �0.77 �0.67 �0.55 �0.42
�40 �0.28 �0.13 0.02 0.17 0.31 0.45 0.58 0.69 0.79 0.88
�50 0.94 0.98 1.00 1.00 0.97 0.92 0.85 0.77 0.66 0.54
�60 0.41 0.27 0.12 �0.03 �0.17 �0.32 �0.46 �0.59 �0.70 �0.80
�70 �0.88 �0.94 �0.98 �1.00 �0.99 � � � � �

.

The auto-correlation coefficient at lag 40 is r40 � 0.44 reflecting that observations that

are 40 time steps apart are increasing at the same time. The lag at 20 is negative,

r20 � �0.72, and reflects that when one of the series measurements increases the

other one, 20 lags apart, decreases or vice versa.

1All the time series analyzed are normalized to zero-mean.

28

0 10 20 30 40 50 60 70 80
!2

!1.5

!1

!0.5

0

0.5

1

1.5

2

Time

M
et

ric
 o

f I
nt

er
es

t

(a) Ramp-up time series, Tramp�up.

0 10 20 30 40 50 60 70 80
!1

!0.8

!0.6

!0.4

!0.2

0

0.2

0.4

0.6

0.8

1

Time Lag

Au
to

co
rre

la
tio

n
co

ef
fic

ie
nt

(b) ACF for Tramp�up.

0 10 20 30 40 50 60 70 80
!2

!1.5

!1

!0.5

0

0.5

1

1.5

2

Time

M
et

ric
 o

f I
nt

er
es

t

(c) Ramp-down time series, Tramp�down.

0 10 20 30 40 50 60 70 80
!1

!0.8

!0.6

!0.4

!0.2

0

0.2

0.4

0.6

0.8

1

Time Lag

Au
to

co
rre

la
tio

n
co

ef
fic

ie
nt

(d) ACF for Tramp�down.

Figure 3.5: Example of ramp time series and their auto-correlation function.

Example of a Ramp Series and Its ACF

When a series resembles a ramp, the ACF transformation is monotonically de-

creasing for the majority of the length of the ACF. Figure 3.5(a) shows a time series

resembling a ramp. Its ACF, illustrated in Figure 3.5(b), decreases as the lag in-

creases up to a minimum after which it increases slowly toward zero. The reason why

the ACF decreases up to the minimum is because latter values of the original series

are not very correlated with earlier ones; also, the reason why there is an increase in

the values of ACF after the minimum is an artifact of the numerical estimation of

the lags at the end of the series, where there are fewer numerical values contributing

29

to a more negative value of the lag. Consider the synthetic ramp series with 75 time

measurements of Figure 3.5(a) with mean µ � 0 and sample variance s2 � 1.33

Index 1 2 3 4 5 6 7 8 9 10
�0 �2.00 �1.95 �1.89 �1.84 �1.79 �1.73 �1.68 �1.63 �1.58 �1.52
�10 �1.47 �1.42 �1.36 �1.31 �1.26 �1.21 �1.15 �1.10 �1.05 �0.99
�20 �0.94 �0.89 �0.83 �0.78 �0.73 �0.68 �0.62 �0.57 �0.52 �0.46
�30 �0.41 �0.36 �0.30 �0.25 �0.20 �0.15 �0.09 �0.04 0.01 0.07
�40 0.12 0.17 0.23 0.28 0.33 0.38 0.44 0.49 0.54 0.60
�50 0.65 0.70 0.76 0.81 0.86 0.91 0.97 1.02 1.07 1.13
�60 1.18 1.23 1.29 1.34 1.39 1.44 1.50 1.55 1.60 1.66
�70 1.71 1.76 1.82 1.87 1.92 � � � � �

.

The auto-correlation coefficient at lag ten is r10 � 0.64, considerably smaller at lag

50, r50 � �0.40 where it is negative because earlier larger negative values from the

beginning of the series are multiplied with later smaller positive values.

3.2 Temporal Signatures

We define a temporal signature to be the a vector containing features of interest for

a group of performance time series data. We explain in the next sections what features

are relevant for scientific applications; we show how those features are extracted, and

how we build a temporal signature.

3.2.1 Feature Selection and Extraction

The process of feature selection refers to identifying a small set of features from

data that can be useful in the characterization and classification of that data given

some objective function. The process of feature extraction refers to the process by

which a selected feature can be extracted from the data.

In our framework, we choose to study features of interest based on domain knowl-

edge in order to classify performance time series data for application performance

validation and diagnosis. If domain knowledge is not available for feature selection,

automated feature selection schemes for time series data, such as those proposed in

30

[87], can be employed. The following sections motivate the choice of our features,

and explain the process of extracting those features from the set of performance time

series data.

Relative Variance

We extract the amount of variability present in time series because it is an indica-

tor of fluctuation around the average resource utilization of applications. This data

can be extracted using the sample variance s2 defined in Equation 3.2. However, the

sample variance depends on the scale of the measurement of a particular performance

data time series. Therefore, we transform the s2 values to a normalized r0, 1s space,

with 0 signifying the lowest variance seen in the particular metric and �1 signifying

the highest variance observed. This data normalization must be performed because

(1) the value of the feature extracted must be independent of the scale of the time

series, and (2) future application of clustering and classification algorithms requires

bounded and normalized values in order to produce unbiased results. The normalized

variance is labeled as s2
n. Furthermore, we discretize this normalized variance into

three different categorical levels: (1) low, (2) moderate, and (3) high, correspond-

ing to normalized variance ranges of [0-0.33], [0.34-0.66] and [0.67-1]. We call our

measure of variability the normalized, categorical variance s2
n,c, and it takes the cat-

egorical values of t1, 2, 3u corresponding to the {low, moderate, high} variability in

the data.

Pattern Identification

Another important feature to extract from a time series is the type of pattern

present in the data. The pattern information supplements the information provided

by the variance in the time series, because it further characterizes how the metric

varies around an expected baseline. Consider there is a pattern identification mech-

anism that, given a time series of interest, can tell if the series is most likely from a

31

random distribution, whether it is oscillatory in nature, whether it is flat or whether

it is similar to a ramp. Other patterns may occur, such as a self-similar pattern; how-

ever, currently we are interested in detecting among four different patterns: random,

periodic, flat or ramp. Treating the pattern identification mechanism as a black box

taking as input time series T and outputting one of the four patterns or an unknown

pattern, we map the results into a numeric space in the discrete set t1, 2, 3, 4, 5u, such

that pattern p takes the numeric ranges shown in Table 3.2. We further describe a

Series Pattern Value for p
Unknown p � 1
Ramp p � 2
Periodic p � 3
Random p � 4
Flat p � 5

Table 3.2: Encoding the pattern into a discrete value within t1, 2, 3, 4, 5u.

simple heuristic methodology that discriminates between time series with these four

different patterns: random, periodic, ramp or flat. The methodology is based on

the properties of the ACF. The enumerated patterns are important because they

are commonly observed patterns in performance data time series of scientific applica-

tions. For example, long-running computationally intensive applications generate flat

CPU time series patterns, while data-intensive applications request data through the

memory hierarchy at periodic intervals, generating disk or network time series with

periodic patterns. These characteristics of scientific applications have been noted in

several papers [89, 76, 110].

We describe the pseudo code for the pattern identification mechanism in Algo-

rithm 1, and summarize the methodologies for Test-RandompT q,Test-RamppT q,
and Test-PeriodicpT q in Algorithm 2.

32

IDENTIFY-PATTERN(TIME SERIES T)

Compute ACF(T): r(1) ... r(N)

if (ACF(T) is defined) then
if (TEST-RANDOM(T) is TRUE) then

if (Variance(T) is LOW) then
T is FLAT, p=5

else
T is RANDOM, p=4

elseif (TEST-PERIODIC(T) is TRUE) then
T is PERIODIC, p=3

elseif (TEST-RAMP(T) is TRUE) then
T is RAMP, p=2

else
Pattern of T is UNKNOWN, p=1

else (ACF(T) is undefined)
T is FLAT, p=5

Algorithm 1: Heuristic algorithm for pattern identification for a zero-mean time
series, T .

MaxR = max(ACF(T)[2:N])
MinR = min(ACF(T)[1:N])
i1 = index(ACF(T), MinR)
Max2R = max(ACF(T)[i1:N])

TEST-RANDOM(T)
if r(1,L) <= r(1) <= r(1,U)

return TRUE

TEST-PERIODIC(T)
if MaxR >= r(1,U) AND

MinR <= r(1,L) AND Max2R >= r(1,U)
return TRUE

TEST-RAMP(T)
% min. occurs towards tail of series
if index(minR) >= 70% N

return TRUE

Algorithm 2: Heuristic methodologies for identification of random, ramp and periodic
patterns.

33

Random Pattern Identification: Test-RandompT q
The function that tests for randomness in a time series T is based on a simple

statistical test applied to the first auto-correlation coefficient, r1. The first-order auto-

correlation coefficient is tested against the null hypothesis that the corresponding

population value ρ1 � 0. The critical value of r1 for a 95% confidence is based on

the two-tailed test [8, 99], since the time series are of zero mean, the auto-correlation

coefficients are both positive and negative:

rk � �1 � 1.96
?
N � k � 1

N � k
(3.8)

where N represents the length of the time series and k is lag. The test is only for

k � 1. The confidence bands for r1 are calculated using the formula:

r1 � �1 � 1.96
?
N � 2

N � 1
(3.9)

The test for deciding with 95% confidence that the series is from a random

distribution reduces to the simple comparison test to verify that the actual r1 of

the ACF of the time series is between the upper r1,U � �1�1.96
?

N�2
N�1

and the lower

r1,L � �1�1.96
?

N�2
N�1

confidence bands:

If r1,L ¤ r1 ¤ r1,U , Series T is RANDOM .

Figure 3.6 illustrates the ACF of a random time series of length N � 100 and the

upper and lower confidence bands at 95% for r1. In this case, this series, although

from a random distribution will be flagged as “unknown” because the value of the r1

coefficient is outside the lower confidence band.

The confidence bands for k � 1 are the tightest possible. Values of rk,U and

rk,L increase and decrease respectively as k approaches N . Figure 3.7 illustrates the

34

0 20 40 60 80 100
!1

!0.8

!0.6

!0.4

!0.2

0

0.2

0.4

0.6

0.8

1

Time Lag

Au
toc

or
re

lat
ion

 co
eff

ici
en

t

ACF of Random Series

r1 = !0.2133

Upper 0.185889

Lower !0.206091

Figure 3.6: ACF of a random time series. Value of r1 is slightly outside confidence
bands; Identify-PatternpT q procedure identifies series as“unknown”.

values of the upper rk,U and lower rk,L confidence bands for k ranging from 1 to 90,

for a time series of length N � 100.

0 10 20 30 40 50 60 70 80 90
!0.8

!0.6

!0.4

!0.2

0

0.2

0.4

0.6

Lag k

AC
F C

oe
ffic

ien
t V

alu
e

Figure 3.7: Computed confidence bands values for k ¥ 1

Alternate methods could be employed to make this decision, such as calculating

35

the Q-statistic as in [63], which requires the stricter condition that all rk beyond a

given lag k are effectively zero.

Periodic Pattern Identification: Test-PeriodicpT q
A function fpxq is periodic with period φ if fpxq � fpx � n � φq. The constant

function fpxq � 0 is also considered theoretically periodic with any period φ, but for

the purposes of our analysis, we consider the constant function as a distinct pattern

to identify in the given time series.

The auto-correlation function of a periodic time series has the important property

that it is also periodic. Periods in the time series will be reflected at lags in the ACF

where the values are positive and closer to one.

Since we are only trying to identify whether a series is periodic or not, the problem

reduces to a simplified one, in comparison to the general problem of periodicity

detection in time series. The heuristic for identifying periodicity in any time series

is based on the properties of the ACF. A periodic series has a periodic ACF that

gradually decays to zero as the lag k approaches N . The heuristic developed is

illustrated in Figure 3.8 and is described below:

If max1 beyond lag k � 1 R rr1,L, r1,U s AND

min1 beyond lag k(max1) R rr1,L, r1,U s AND

max2 beyond lag k(min1) R rr1,L, r1,U s THEN

Series T is PERIODIC .

An alternate method to check for existing periodic behavior may be based on

spectral analysis as in [50]. However, since the auto-correlation function (ACF) and

the spectral density function (SDF) of a series are mathematically equivalent, any

pattern identification technique experimentally successful in one domain of analysis

36

max1: max(ACF(k=2 .. N))

min1: min(ACF(k=kmax1 .. N))

max2: max(ACF(k=kmin1 .. N))

Figure 3.8: ACF of a periodic time series. Illustration of the heuristic for identifying
whether the series is periodic.

is sufficient in the current context.

Ramp Pattern Identification: Test-RamppT q
The auto-correlation function of a ramp-resembling series will slowly decay to

zero in an approximately linear fashion. The intuition is that for a ramp-like series,

initial values of the series are less correlated with later values of the series. Based on

this observation, a simple heuristic for testing for a ramp time series is illustrated in

Figure 3.9 and is described below:

If max1 beyond lag k � 1 R rr1,L, r1,U s AND

min1 beyond lag k(max1) R rr1,L, r1,U s AND

min1 occurs toward tail of the ACF THEN

Series T is RAMP .

During the course of various experiments with the ramp heuristic, checking that the

first minimum occurs beyond any lag k which is greater than 70% of the length of N

37

yields good experimental identification results. Note that we only detect whether the

series is a ramp (i.e., either up or down). In these experiments, we do not discriminate

between the two cases, though that can be easily extended by checking a number of

pairs of consecutive measurements from the original series and deciding whether the

time series is most likely a ramp/slope-up or a ramp/slope-down.

max1: max(ACF(k=2 .. N))

min1: min(ACF(k=kmax1 .. N))

Figure 3.9: ACF of a ramp time series. Illustration of the heuristic for identifying
whether the series is similar to a ramp.

Accuracy of Proposed Pattern Identification Mechanism

We simulated time series with different patterns, amplitudes, and lengths, and

checked the accuracy of the pattern identification mechanism. For all simulated time

series, we generated series with four different lengths, N � t100, 500, 1000, 10000u.
We conducted five different identification tests, and for each test we have generated

100 different time series. Therefore, each test checks the pattern identification on

pN � 4q � 100 � 400 simulated time series.

Simulated Random Series

The statistical test applied to determine if a series is random or not yields an

38

N Test 1 Test 2 Test 3 Test 4 Test 5 Average Accuracy
100 99 98 100 94 91 96.4
500 98 100 93 97 94 96.4
1000 94 95 95 96 95 95
10000 99 98 95 96 95 96.6
Overall 96.1

Table 3.3: Accuracy results for identifying random patterns in time series of different
lengths, N and with varying amplitudes.

overall identification accuracy of 96.1%. The detailed results for the time series of

different lengths, and for the different tests conducted are shown in Table 3.3. The

statistical test on r1 is rather simple and has very good experimental results; from

all the 2000 random time series generated, approximately 1922 have been identified

as random.

Simulated Flat Series

We have generated flat time series with and without added noise. For all the flat

time series with no noise we obtained an accuracy of detection of 100%. For the tests

where white noise is added, the accuracy of identification decreases with the amount

of noise added to the flat series.

Simulated Periodic Series

We have generated a set of sin() and cos() functions of increasing frequency

and different amplitudes. We conducted tests with and without added white noise.

The periodic heuristic test has performed very well in the case of generated peri-

odic time series without added noise. For all the time series with at least one visibly

identifiable period during the length of the time series, the heuristic has correctly

identified all series, with an accuracy of 100%.

In the case of periodic time series with an almost clear visible period, the heuristic

has failed to identify them as periodic, as expected. Figure 3.10 shows the ACF of

such an ”almost” periodic series. For experiments where noise is introduced, the

39

Figure 3.10: ACF of a periodic time series having almost a complete period. Heuris-
tic fails to identify it as periodic since the max2 is within the confidence bands.

identification accuracy decreases as a function of the amount of noise present in the

data. In general, if the periodic signal can be extracted by visual inspection of the

series, then the heuristic algorithm can correctly identify it.

Experiments of time series with different phases of series with multiple periods

show the heuristic identifying the presence of oscillatory behavior with 100% accuracy

where there is no added noise, and with decreased accuracy with increased noise to

signal ratio.

Simulated Ramp Series

We generate ramp time series with a increasing or decreasing slope angle. We

conduct tests with and without added white noise. Experiments conducted with

ramp time series of different slope angles, without added noise show the heuristic

having an accuracy of detection of the actual pattern of 100%.

For experiments where noise is introduced, the identification accuracy decreases

40

Figure 3.11: ACF of a ramp time series with added noise. Heuristic fails to identify
it as ramp, due to amount of noise or possibly to the experimental choice of imposing
the first minimum to be beyond 70% of N .

as a function of the amount of noise present in the data and the obscured noised

ramp series are identified as random series, as expected. Figure 3.11 illustrates such

an example.

Other Simulated Patterns

We have also generated a set of simulated time series that reflect both a periodic

behavior and a ramp behavior. We conduct tests on such mixed pattern time series

with and without added noise. We observe that in most of these combined pattern

types the heuristic proposed fails. For example, Figure 3.12 shows the ACF of a

periodic series that ramps down. The heuristic methodology identifies this series as

unknown, because neither the periodic nor the ramp tests are true. Figure 3.12 show

the ACF of such a series.

This is not considered troublesome, because most performance time series data

observed from real systems do not contain frequently these types of complex series.

41

Figure 3.12: ACF of a periodic+ramp time series. Heuristic fails to identify any of
the present pattern types.

However, if the most common patterns in performance data collected from computing

systems changes, the current heuristics need to be modified to take any new type of

relevant patterns into consideration.

3.2.2 Building Temporal Signatures

Given one performance time series Ti, we define the temporal signature of a series

(s) to be a vector combining a set of m features of interest F � tf1, � � � , fj, � � � , fmu:

s � rf1,Ti
, � � � , fj,Ti

, � � � , fm,Ti
s. (3.10)

The temporal signature of a set of time series S can be generally defined as the

concatenated vector of the temporal signatures for all series:

S � tf1,T1 � � � f1,TM
, � � � , fm,T1 � � � fm,TM

u. (3.11)

Examples of features fi that may be of interest to general time series can include

42

both quantitative or statistical features such as mean, variance, number of outliers,

as well as qualitative features such as pattern, relative variance, sudden changes in

trend, convexity, concavity and so on. We describe in Section 6.1.2 other examples

of feature that can be extracted from time series from other domains.

Temporal Signatures for Scientific Applications

We define the temporal signature of a time series (s) as:

s � rRelative VariancepTiq,PatternpTiqs � rs2
n,cpTiq, ppTiqs.

Given a set of M performance time series, pT1 through TMq, having been selected

a priori to be as independent as possible, we further define the temporal signature

of set of time series, S as the concatenated vector of the temporal signatures of all

series:

S � ts2
n,cpT1q � � � s2

n,cpTMq, ppT1q � � � ppTMqu. (3.12)

The temporal signature captures features of interest for a set of performance time

series; it represents a quantitative vector that carries compressed information about

characteristics of the set of time series. We hypothesize that we can use temporal sig-

natures to differentiate between well-performing and ill-performing application states

executing on distributed computing resources.

3.3 Supervised Learning

Supervised learning is a machine learning technique for creating a function or

mapping from a set of training data to a set of output values [32]. The training

data consist of pairs of input objects (typically vectors), and desired outputs. In our

framework’s case, the training data is the set of feature vectors (temporal signatures

- S) of applications, while the outputs represent a qualitative label of application

performance (e.g., expected, unexpected - slow disk performance, unexpected - memory

43

leak, and so on).

The object of the supervised learner is to predict the value of the function for any

valid input data after being trained on a number of training samples (e.g., pairs of

temporal signatures and target output - qualitative performance of application).

3.3.1 Training

When gathering a set of training data points, one must carefully design experi-

mental conditions in order for the training set to be characteristic of the “real-world”

use of the classifier function. In our framework, we gather a set of performance time

series metrics during application execution, which are transformed in temporal sig-

natures - that is, the input objects to the classification function. The corresponding

outputs are also gathered from either (a) an automatic system defining application

performance, or from (b) workflow application users.

The accuracy of the classifier will depend on how the input object is represented:

that is, it will depend on the temporal signature definition. The temporal signature

is a feature vector, which is descriptive of the original time series data. The number

of features should not be too large, but should be large enough to accurately predict

the output (see more about the issue of over-fitting in Section 3.3.3).

3.3.2 Classification

Classification is the act of distributing objects into classes or categories of the

same type. Classes or categories are defined a priori either by an expert, or found

with unsupervised learning techniques (i.e., clustering techniques). There exist a

wide range of classification techniques available for data analysis. The most widely

used classifiers include k-nearest neighbors, neural networks, fuzzy, Gaussian mixture

model, Bayesian, decision trees and support vector machines [32]. Each of the classi-

fiers have strengths and weaknesses. There is no single classifier that works best on

44

all given problems. Classifier performance depends greatly on the characteristics of

the data to be classified.

In our data analysis, we use a classifier based on the k-nearest-neighbor (knn) rule.

Given a set of n labeled feature vectors ~xj with label D, t ~x1, ~x2, . . . , ~xnu belonging

to label D, let ~xj P D be the training sample nearest to a new test point ~x. Then,

the nearest-neighbor rule (k � 1) for classifying ~x is to assign it the label associated

with ~xj [32]. Figure 3.13(a) illustrates the rule in a 2D space where two prototypes

are labeled as lighter points and darker points. The nearest point is one from the

dark-colored point class, and therefore the new point’s label or class will also be the

dark-colored class.

An extension to the nearest-neighbor rule is the k-nearest neighbor rule. This

rule classifies ~x by assigning it the label most frequently represented among the k

nearest samples. The process is illustrated in Figure 3.13(b). Out of the five nearest

points, three are in the dark-colored class while two are in the light-colored class.

Since the majority of the five points neighboring ~x are in the dark-colored class, the

new point’s class will also be the dark-colored class.

Depending on the data present in the feature vectors ~x, various measures of sim-

ilarity can be used, depending on context. Common choices of similarity definitions

include the squared Euclidean distance, Pearson’s correlation coefficient, the Maha-

lanobis (city-block) distance or the Hamming distance when the data is binary or

categorical. For the specific instance of our current temporal signature S, where the

features have categorical values, we use as a measure of similarity the normalized

Hamming distance. The Hamming distance is defined as the number n of features

(or columns) that must be changed in a feature vector in order to transform one

vector ~xA into another one ~xB. The normalized Hamming distance divides n by

the total number of features in the vector. To illustrate with an example, given

45

x

(a) Nearest neighbor process in
2D.The algorithm leads to a par-
titioning of the space into Voronoi
cells.

(b) K-nearest neighbors process in
2D with K � 5.

Figure 3.13: Example of k-nearest neighbor classifier for k � 1 and k � 5. From
[32].

~xA � t1, 1, 1, 2, 3u and ~xB � t1, 1, 1, 4, 3u, the Hamming distance between ~xA and ~xB

is 1, because we must only change the element in the 4th column in either vector to

obtain the other vector. The normalized Hamming distance is 1
5
. Specifically to our

framework, ~x represents the temporal signature S for the execution of an application

during an experimental condition, while ~x1 represents another temporal signature S 1

for a execution of the application under another experimental condition.

Measuring Classifier Performance

We need a measure to assess how well the classifier identifies new temporal sig-

natures. Ideally, the classification of a new temporal signature S with respect to the

training data set should be both accurate and precise. With respect to qualitative

performance validation of an application, our scope is to assess whether the observed

performance data and its corresponding temporal signature S resembles previously

learned signatures of expected application behavior versus unexpected application be-

havior. This translates to a binary classification problem, where one tries to label a

temporal signature with one of the two labels. A classic measure of classifier perfor-

46

mance is the classification accuracy (A), which is a measure of how well the classifier

correctly identifies or excludes a condition:

A � NTP �NTN

NTP �NFP �NFN �NTN

, (3.13)

that is, the proportion of true results in the population (where NTP is the num-

ber of true positives, NTN is the number of true negatives, NFP is the number of

false positives, and NFN is the number of false negatives). However, in cases where

target classes are rare (e.g., such as performance problems), using the above classi-

fication accuracy as a measure of classifier performance may be misleading, as the

accuracy value (A) may be inflated due to a larger number of expected application

performance states that can typically be gathered. For example, consider that we

have collected n � 100 samples of application performance and have extracted cor-

responding temporal signatures. Consider we have n1 � 80 of the cases representing

expected application behavior and n2 � 20 representing unexpected application be-

havior. Assume that the knn classifier identifies correctly all of the expected cases,

resulting in NTP � 80, and that it miss-classifies all of the unexpected cases, resulting

in NTN � 0. The accuracy of the classifier will be misleadingly high:

A � 80 � 0

100
� 0.8. (3.14)

Our goal is to classify signatures from both expected and unexpected categories. There-

fore, similarly to [21, 30], we additionally use as a measure of classifier performance

the balanced accuracy (BA):

BA � p1 �RFP q � p1 �RFNq
2

, (3.15)

47

where RFP is the ratio of false positives (i.e., indicating there is a performance prob-

lem where there is none), and RFN is the ratio of false negatives (i.e., failing to

indicate there is an actual problem affecting application performance). In the exam-

ple given above, the value of the balanced accuracy will be only 0.5., more indicative

of a less accurate classification.

Furthermore, with respect to qualitative performance diagnosis of an application,

our scope is to identify the most likely performance problem affecting the applica-

tion. This translates to a multi-category classification problem, where the various

categories are the examples of performance problems available in our training data.

We assume in our experimental context that the number of samples of temporal sig-

natures of performance problems is about the same across the different unexpected

categories. Thus, within this context, using the classic measure of classifier perfor-

mance A seems appropriate. However, it is still possible that within the categories of

unexpected behaviors to have more samples for relatively frequently-occurring per-

formance problems, and to have fewer samples for rarer events. If that is indeed the

case, one can choose different metrics of accuracy that account for classes with fewer

samples, such as those proposed in [53].

3.3.3 General Issues Affecting Classifiers

We briefly discuss some important issues affecting any supervised learner tech-

nique. These issues are significant because the different numbers of metrics analyzed,

the different features, as well as the sample size of the training set will affect the

accuracy of our framework.

Problems of Dimensionality

When designing a classifier, one must pay attention to how the accuracy of the

classifier depends upon the dimensionality of the data (e.g., number of features in

48

the temporal signature), and on the amount of training data points (e.g., number

of application experiments which are used for learning a knowledge base). Another

issue of importance is how complex (in terms of time and space) the classifier chosen

should be.

Inductive Bias

The inductive bias of a learning algorithm is a set of assumptions that the classifier

function uses to predict outputs in case of novel input patterns. Below are two

questions we address with respect to this issue.

What happens if the experimental data from which training is per-

formed is actually incorrectly labeled (e.g., data is a false negative or false

positive)? These types of data instances are usually treated as noise as they would

typically be further away from the rest of the crowd from their actual class. It is

usually accepted that the training data sets will not be perfect and therefore the

focus is on making the classifier more robust.

What happens if a new signature to be tested is not like anything ever

seen before in the training data set? Most conventional supervised learning

techniques assume that the training and test data are drawn from the same distribu-

tion. Under this assumption, data from training and testing should be similar. The

opposite case is called ”sample selection bias,” which means the training set is biased

because of some experimental setup difference. When designing learning algorithms,

it is the convention to assume similar data from train and test.

However, we may run in this issue in the cases of performance problems never

encountered. In this case, the data will be incorrectly labeled and the accuracy of the

classifier will decrease over time, as the classifier will be unable to correctly predict

the new cases of performance problems. This issue can be addressed by extending

our framework to include an adaptive learning classifier, that will self-correct over

49

time, and gradually include new samples of performance problems in applications.

Over-fitting

Over-fitting is an important area of research in statistical pattern recognition, as

it is important to strike a balance between the complexity of the classifying function

and the efficacy of classification. A classifier function should be “sufficiently” complex

so that it can capture the differences between categories on training data, yet not too

complex so that it performs poorly on new patterns [32].

3.4 Methodologies for Data Visualization

Our framework analyzes multi-variate time series data and extracts features from

this data; therefore, we must employ the help of any available multi-variate visual-

ization techniques to better understand the data and the efficacy of the techniques

we propose. In the following sections, we describe a series of techniques to visualize

multi-variate performance time series data, temporal signatures, as well as meth-

ods to visualize groups of temporal signatures in the corresponding high-dimensional

variable and feature space.

3.4.1 Performance Time Series Data Visualizations

We consider the case of plotting a set of M time series, T1 � � �TM , where each series

Ti has a set of equidistant sampled values, z1, � � � zn, that have values at potentially

different scales (e.g., T1 has samples revolving around 10 while T5 has samples revolv-

ing around 10, 000). We have studied two different methods of visualizing these sets

of time series data: (1) a semi-log on the y-axis visualization, and (2) a stacked-plots

visualization. Each has advantages and disadvantages, which we further discuss.

50

Semi-log Y-Axis Visualization

We plot all time series on the same plot using a semi-log plot, where we compact

the y-axis to display time series at various scales. Figure 3.14 shows an example of a

set of seven time series metrics on the same plot. Notice that the single plot mostly

preserves the visual information relating to the variance and pattern of each series.

However, it may obscure certain features in the data occurring on the performance

time series with scales closer to zero.

Figure 3.14: Semi-log y-axis visualization of seven time series.

Stacked-Plots Visualization

We also plot all the selected time series as a set of stacked plots, where each

time series is plotted on its own independent axis, according to the scale recorded

for each metric. We show such an example in Figure 3.15. The advantage of this

plotting technique is that all the information in each time series is displayed in each

individual axis. The disadvantage of this technique is that, as the number of time

series increases, it becomes cumbersome to visualize and potentially scroll through a

51

long stack of performance time series plots.

Figure 3.15: Performance time series visualized as a set of stacked individual plots.

3.4.2 Temporal Signatures Visualizations

We present methodologies for visualizing both an individual temporal signature S

and a group of signatures tS1, � � � ,Snu associated with the performance data collected

during the execution of various applications.

52

Individual Signature Visualization

We have created two visualizations for our novel temporal signatures: (1) a bar

chart, and (2) a color vector visualization. The temporal signature S for a set of seven

performance time series as shown in Figure 3.15 is a vector of length 14, encoding

the normalized, categorical variance and the pattern for each of the seven time series

S � r1, 1, 1, 1, 1, 1, 2; 3, 1, 5, 5, 3, 3, 3s. Two different visualizations of this signature

are shown in Figures 3.16 and 3.17. The “bars” visualization separates the two

categories of features –variance, pattern– and displays the values as bars.

Figure 3.16: Visualization of S � r1, 1, 1, 1, 1, 1, 2; 3, 1, 5, 5, 3, 3, 3s as a set of two
bar charts.

The second “color vector” visualization encodes the five different patterns as five

different colors, and it encodes the variance as a bar of three different heights within

each color box. As various people have different ways to perceive information, it is

best to display the same data in forms that appeal to as many uses as possible.

Multiple Signatures Visualization

In our temporal signature methodology, we transform a set of time series into

a compressed feature vector. The vector has length M � Fm, because there are M

53

Height of bar
encodes
variance

Moderate

Colors encode pattern

Low

CPU MPU SPU DBR DBW NPR NPT

Matrix columns represent variables monitored

Figure 3.17: Visualization of S � r1, 1, 1, 1, 1, 1, 2; 3, 1, 5, 5, 3, 3, 3s as color vector.

time series with Fm different features extracted (in our case, Fm � 2). We have

described in the previous subsection methods for visualizing one individual temporal

signature, provided a set of time series data from a specified interval. However, in or-

der to understand characteristics of many temporal signatures for applications across

different configuration parameters (e.g., time intervals, computing environments, ex-

pected and diagnostic states), we need a technique such that we can visualize groups

of signatures.

We have evaluated a set of multi-dimensional visualization techniques such as

parallel coordinates, scatter plots, Andrews plots and Chernoff faces, described in

[36] that are readily available in mathematical software packages such as Matlab [70].

We have found that two different visualizations for groups of temporal signatures

work best for our data. The first method is a relatively new visualization technique

called Star-coordinates, proposed by [55]. The second method is a novel method

called color matrix signature visualization that we have developed based on the color

vector representation proposed for an individual signature visualization.

54

Star-coordinates Visualization. We use a freely available visualization soft-

ware called VISTA [19], which is an extended implementation of the original tech-

nique. The author of [55] has also provided us access to an implementation of the

proposed technique, and we illustrate the technique as well.

(a) Vector P of length 8.

(b) Projection for P , from [55].

Figure 3.18: Example of the projection of a data point P in 8 dimensions. From
[55].

Star-coordinates can be seen as an extension of the 2D scatter plot to dimensions

higher than three. The technique arranges coordinates on a circle sharing the same

origin at the center, and it uses points to represent the multi-dimensional data,

treating each dimension uniformly [55]. Figure 3.19 illustrates the methodology for

projecting a vector of length n � 8 (or equivalently, a point P in 8 dimensions). The

55

purpose of the technique is not numerical analysis but to gain insight of the data.

It performs well and has been found to support users in detecting true clusters in

high-dimensional data with dimensions ¤ 50.

For temporal signatures, the star-coordinates method can help us visualize how

temporal signatures look in expected versus diagnostic states or under different vari-

ations (i.e., across applications or execution environments). It is also important to

note that the visualization introduces some ambiguity, as a single data point P may

correspond to a number of data values. However, this drawback is remedied by the

availability of interactive features in the software, allowing the user to apply different

operations on the visualization (scaling, rotation, and so on) to help resolve these

ambiguities.

Pi [d1 d2 d3 d4 d5 d6 d7 d8]
P1 [0.1 0.0 0.2 0.1 1.0 0.9 0.8 1.0]
P2 [0.0 0.2 0.3 0.0 0.7 0.9 1.0 1.0]
P3 [0.1 0.0 0.2 0.1 0.9 0.9 0.9 1.0]
P4 [1.0 0.9 0.8 1.0 0.1 0.0 0.2 0.0]
P5 [0.7 0.9 1.0 1.0 0.2 0.2 0.1 0.2]
P6 [0.9 0.9 0.8 1.0 0.3 0.0 0.1 0.2]

Table 3.4: Values for six vectors in 8D, comprising two different categories.P1 � P3
have low values on d1�d4 and high values on d5�d8, while P4�P6 have high values
on d1 � d4 and low values on d5 � d8.

Consider an example displaying a set of vectors in 8D shown in Table 3.4. The

star-coordinates visualizations shown in Figures 3.19(a) and 3.19(b) display the six

points in 8D, preserving characteristics of their data, and correctly suggesting that

there are two groups of categories in this data.

Although the technique may seem similar to Kiviat diagrams1, there are some

important differences to note. The vector P is represented on a Kiviat diagram by

the closed polygon marked by the values in the vector, as shown in Figure 3.20(a).

1Or star glyph plots.

56

P1

P6

P5

P4

P3

P2

(a) StarDeck Software, by [55].

P1

P6P5
P4

P3

P2

(b) VISTA Software, by [19].

Figure 3.19: P1 � P6 using two different software implementations of Star-
Coordinates.

Similarly, the set of vectors P1-P6 are displayed in Figures 3.20(b) and 3.20(c). Notice

that Kiviat diagrams work well only for visualizations of a small set of vectors (even

tens of vectors, where each vector is plotted on its own set of radial graph axes).

However, the Star-coordinates projection will scale better with an increase in the

number of vectors to be displayed.

Color Matrix Visualization. While an individual temporal signature visu-

alized as a color-vector may not have a great advantage over alternate representa-

tions, such as the “bars” visualization, groups of these color vectors displayed adja-

cently may be suggestive of differences in groups of signatures. We call a stacked

set of color vectors a color matrix visualization. Consider a set of eight signa-

tures, tS1,S2,S3,S4,S5,S6,S7,S8u generated from sets of time series data. The data

can be data generated for a set of eight different MPI tasks of a scientific applications

for the same time interval, or it can represent a set of eight consecutive intervals of

time for one single application. Our focus is to see what groups of signatures look like;

Figures 3.21(a) and 3.21(b) display two different sets of eight temporal signatures.

57

(a) Vector P plotted on a Kiviat diagram.

(b) Vectors P1-P3 on a Kiviat dia-
gram.

(c) Vectors P4-P6 on a Kiviat dia-
gram.

Figure 3.20: P1 � P6 visualized on a Kiviat diagram. Notice that each vector Pi is
represented by a closed polygon, in comparison to the Star-coordinates representa-
tions where each vector is represented as a point. The advantage of Star-coordinates
over Kiviat diagrams increases significantly with an increase in the number of vectors
that must be displayed simultaneously.

58

1 2 3 4 5 6 7
Variables

S7

S8

S6

S5

S4

S2

S3

S1

(a) Temporal signatures exhibiting low
variance on all variables and various
patterns on each variable.

1 2 3 4 5 6 7
Variables

S7

S8

S6

S5

S4

S2

S3

S1

(b) Temporal signatures exhibiting
high variance on the first two variables
and various patterns on each variable.

Figure 3.21: Visualization of groups of temporal signatures using our novel color
matrix visualization.

Groups of temporal signatures displayed as color matrices may help inform a user

or a system administrator about a possible problem in a given environment (system

or application). While this is a first attempt at visualizing our feature vectors (i.e.,

our temporal signatures), there are great opportunities for research leveraging exper-

tise from the user-interface and visualization communities in order to support visual

analytics for performance monitoring data across distributed systems. Moreover, we

do acknowledge that while we do use such visualizations in our specific framework to

help represent multi-variate data, it is difficult in general to evaluate the quality of

such visualizations that may be deployed in an on-line performance analysis system

without extensive user studies targeted at system administrators or other human

users.

59

3.5 Summary

We described the core data analysis and visualization methodologies employed in

this framework. This chapter presented how we:

1. Select and extract relevant features from performance time series data in order

to generate a compact representation of the data,

2. Build temporal signatures for scientific applications,

3. Use concepts from supervised learning to gather a knowledge base of qualitative

performance states,

4. Evaluate the efficacy of our classifier for both qualitative performance validation

and diagnosis, and

5. Employ multi-variate visualization techniques to aid in representation and anal-

ysis of our results.

60

Chapter 4

Qualitative Performance Analysis
Framework

This chapter describes Teresa, (Temporal Reasoning for Scientific Applications),

a general qualitative performance analysis framework that monitors long-running

tasks of a scientific workflow to qualitatively validate and diagnose their performance

in distributed Grid environments. Teresa has four high-level processing steps:

1. Selection of long-running computational tasks in workflows,

2. Collection of available performance time series data from environments where

these tasks execute,

3. Analysis of data to extract characteristics correlated with well-performing and

ill-performing executions of these tasks, and

4. Reasoning about the qualitative performance state of the workflow over time.

Figure 4.1 presents a diagram of the above high-level process.

4.1 Architecture

While Figure 4.1 presented a high-level, “black-box” view of our framework, we

further elaborate on its composition. Teresa has three components: (1) a temporal

signature design component, (2) a supervised learning component, and (3) a qualita-

tive reasoning component. Figure 4.2 expands on the components within Teresa.

Teresa analyzes input data from a set of workflow monitoring tools, such as

Grid infrastructure monitoring or workflow monitoring (e.g., execution engine, task

61

Qualitative
Performance

Analysis
Framework

Long-running tasks

Terrain data

Surface,
terrestrial

data

Radar data (Level II)

Radar data (Level III)

Satellite data

NAM, RUC,
GFS data

Surface, upper air
mesonet, wind

profiler data

Terrain
Preprocessor

1

WRF Static
Preprocessor

2

3D Model Data
Interpolator

(Initial Boundary
Conditions)

3

88D Radar
Remapper

4

NIDS Radar
Remapper

5

Satellite Data
Remapper

6

ADAS
7

3D Model Data
Interpolator

(Lateral Boundary
Conditions)

8

ARPS to
WRF Data
Interpolator

9

IDV
Bundle

11

ARPS
Plotting
Program

13

WRF to
ARPS Data
Interpolator

12

10

WRF

LEGEND
Real-time dataStatic data Initialization Forecast Visualization

RUN ONCE PER

FORECAST REGION

TRIGGERED IF

STORM IS DETECTED

REPEATED FOR

PERIODICALLY NEW DATA

Visualization on

user's request

Scientific Workflow

Performance
time-series

data

Qualitative
workflow

performance
assessment

Qualitative
performance
visualization

Qualitative

Assessment

Quantitative

Data

Expected

E

Unexpected

U

Terrain data

Surface,
terrestrial

data

Radar data (Level II)

Radar data (Level III)

Satellite data

NAM, RUC,
GFS data

Surface, upper air
mesonet, wind

profiler data

Terrain
Preprocessor

1

WRF Static
Preprocessor

2

3D Model Data
Interpolator

(Initial Boundary
Conditions)

3

88D Radar
Remapper

4

NIDS Radar
Remapper

5

Satellite Data
Remapper

6

ADAS
7

3D Model Data
Interpolator

(Lateral Boundary
Conditions)

8

ARPS to
WRF Data
Interpolator

9

IDV
Bundle

11

ARPS
Plotting
Program

13

WRF to
ARPS Data
Interpolator

12

10

WRF

LEGEND
Real-time dataStatic data Initialization Forecast Visualization

RUN ONCE PER

FORECAST REGION

TRIGGERED IF

STORM IS DETECTED

REPEATED FOR

PERIODICALLY NEW DATA

Visualization on

user's request

Scientific Workflow

?

HOW IS MY

WORKFLOW

PERFORMING?

Performance time-

series data

over a time interval

CPU-0

Memory

utilization

CPU-1 Disk TPS

Network

KB Read

Disk

KB Read

Figure 4.1: Teresa, qualitative performance analysis framework: high-level process
overview.

INPUT
Performance time-series data

1. Temporal Signature Design

2. Supervised Learning

3. Qualitative Reasoning

OUTPUT
Qualitative performance assessment

for scientific workflows

Task-level
Applied to each

long-running task

Workflow-level
Cumulative reasoning

for all long-running tasks

Figure 4.2: Teresa: framework components.

62

monitoring, etc). The temporal signature design component takes quantitative perfor-

mance time series data over a specified time interval and transforms it into a temporal

signature, S, for each long-running task in a workflow. The supervised learning com-

ponent assesses whether an application’s temporal signature matches expected or

unexpected behaviors. Previous application behaviors are learned in a training phase

off-line. If the application behaves in an unexpected way, the qualitative reasoning

component, which operates at the global workflow level, considers the implication

to the global workflow performance of the unexpected behaviors of the flagged long-

running tasks. A multitude of policies can be specified and invoked, depending on

the characteristics of the scientific workflow (e.g., if 50% of the workflow tasks seem

to be affected by a congested network, then checkpoint the application and restart

in an hour).

We illustrate more detailed description of the framework, with the flow of infor-

mation between components and their sub-components in Figure 4.3. The framework

has on-line and off-line sub-components. On-line sub-components are utilized when

the framework analyzes performance time series as they are received from monitor-

ing software; the on-line sub-components are: (a) temporal signature generation, (b)

on-line classification (of temporal signatures), and (c) qualitative reasoning.

The framework utilizes off-line sub-components in the configuration and training

phases; the off-line sub-components are: (a) performance time series selection, (b)

features selection, (c) temporal signature definition, (d) expected & unexpected tem-

poral signatures training, and (e) policies for reasoning with qualitative diagnostic

information.

Within the service oriented environment of Grids, the framework is a performance

analysis service for scientific workflows, providing a periodic qualitative evaluation

of performance of long-running tasks in a workflow. Grid infrastructure or workflow

63

LEGENDINPUT
Performance time-series data

1. Temporal Signature Design

2. Supervised Learning

3. Qualitative Reasoning

OUTPUT
Qualitative performance assessment

for scientific workflows

Temporal Signature
Generation

Time-series
Selection

Feature
Selection &
Extraction

Signature
Definition

Online Classification
Performance

Validation & Diagnosis

Training Phase
Expected and

Unexpected Temporal
Signatures

Qualitative
Reasoning

Policies for
reasoning with

qualitative task states

EXPECTED
SIGNATURES?

UNEXPECTED
SIGNATURES?

KEEP
MONITORING

online
offline

Figure 4.3: Flow of information through Teresa, its three components and its on-
line and off-line sub-components.

monitoring services provide the performance time series data as input to the Teresa

service, whose output can be utilized by a scheduling service and/or by a fault-

tolerance service such as [54] to improve the performance of the monitored workflow,

as shown in Figure 4.4.

64

Teresa
Qualitative

Performance
Analysis Service

Workflow
Monitoring Service
- Grid infrastructure

- Workflow monitoring

Grid Computing
Resources

Terrain data

Surface,
terrestrial

data

Radar data (Level II)

Radar data (Level III)

Satellite data

NAM, RUC,
GFS data

Surface, upper air
mesonet, wind

profiler data

Terrain
Preprocessor

1

WRF Static
Preprocessor

2

3D Model Data
Interpolator

(Initial Boundary
Conditions)

3

88D Radar
Remapper

4

NIDS Radar
Remapper

5

Satellite Data
Remapper

6

ADAS
7

3D Model Data
Interpolator

(Lateral Boundary
Conditions)

8

ARPS to
WRF Data
Interpolator

9

IDV
Bundle

11

ARPS
Plotting
Program

13

WRF to
ARPS Data
Interpolator

12

10

WRF

LEGEND
Real-time dataStatic data Initialization Forecast Visualization

RUN ONCE PER

FORECAST REGION

TRIGGERED IF

STORM IS DETECTED

REPEATED FOR

PERIODICALLY NEW DATA

Visualization on

user's request

Scientific Workflow

Scheduling
Service

Fault-Tolerant
Service

Terrain data

Surface,
terrestrial

data

Radar data (Level II)

Radar data (Level III)

Satellite data

NAM, RUC,
GFS data

Surface, upper air
mesonet, wind

profiler data

Terrain
Preprocessor

1

WRF Static
Preprocessor

2

3D Model Data
Interpolator

(Initial Boundary
Conditions)

3

88D Radar
Remapper

4

NIDS Radar
Remapper

5

Satellite Data
Remapper

6

ADAS
7

3D Model Data
Interpolator

(Lateral Boundary
Conditions)

8

ARPS to
WRF Data
Interpolator

9

IDV
Bundle

11

ARPS
Plotting
Program

13

WRF to
ARPS Data
Interpolator

12

10

WRF

LEGEND
Real-time dataStatic data Initialization Forecast Visualization

RUN ONCE PER

FORECAST REGION

TRIGGERED IF

STORM IS DETECTED

REPEATED FOR

PERIODICALLY NEW DATA

Visualization on

user's request

Scientific Workflow

Figure 4.4: Teresa: a qualitative performance analysis service for scientific work-
flows.

4.2 Characteristics

The framework addresses a set of fundamental characteristics needed for a practi-

cal performance analysis tool operating on high performance computing environments

and applications:

1. Scalability. Scientific workflows execute on Grids containing large numbers of

computational resources. Therefore, Teresa must be scalable to accommodate

processing data from all computational resources involved in supporting the ex-

ecution of workflows. The monitoring infrastructure used must also be scalable,

since the input is provided by Grid monitoring services. We address scalability

by defining and generating temporal signatures of applications, which are very

compact representations of information carried in time series performance data.

With these temporal signatures we show how to achieve performance validation

and diagnosis under certain cases.

65

2. Metric independence. The framework must be flexible; given a set of monitored

metrics that reflect the temporal performance of the application, it must be

possible to assess and diagnose the observed temporal behavior. However, if

another set of metrics is deemed more representative of application behavior,

the framework principles must still apply and behavioral reasoning must still be

possible. We address this by including in our framework design the ability for

the user to define different application signatures from different metrics. The

off-line sub-component time series Selection allows for this flexibility.

3. Accuracy of qualitative performance assessment. The framework must make de-

cisions based on qualitative data obtained by transforming/compressing large

amounts of quantitative information. This process results in loss of information

which may have implications on the accuracy of the qualitative transformations.

However, the framework should provide simple and intuitive performance as-

sessment answers, and should offer a statistical estimation of the correctness of

the qualitative assessment. We address the issue of the accuracy of validation

and diagnosis by associating with our framework an accuracy-of-assessment

metric within the on-line classification sub-component. If the framework con-

sistently falls below a specified accuracy threshold, Ta, then it will go into

a training mode, until a better accuracy of performance assessment can be

achieved.

4. Assessment over appropriate time scale. Due to the nature of the long duration

of resource consumption by the distributed scientific workflows, the reasoning

decisions made by the framework should similarly be made on a longer tempo-

ral scale, typically of the order of several tens of minutes. The framework’s goal

is to detect persistent behavioral violations and ignore small-scale variability,

because the cost of performing any type of performance recovery mechanisms

66

for these applications is extremely high. We address this issue within each of

the scientific application studied by generating temporal signatures only when

specified percentage of the progress of the long-running application toward the

scientific result has been reached. This specified percentage corresponds to

a fixed time interval for performance evaluation. The interval can be differ-

ent depending on the characteristics of the computational resource where the

application executes.

4.3 Temporal Signature Component

The temporal signature design component receives performance time series data as

input and generates a compressed temporal signature. It has four sub-components,

shown in Figure 4.5: (1) a performance time series selection sub-component, (2) a

feature selection and extraction sub-component, (3) a temporal signature definition

sub-component, and (4) a temporal signature generation sub-component.

INPUT
Performance time-series data

1. Temporal Signature Design

Temporal Signature
Generation

Time-series
Selection

Feature
Selection &
Extraction

Signature
Definition

LEGEND
online
offline

OUTPUT
Temporal Signature

Figure 4.5: Temporal signature design component.

67

4.3.1 Performance Time Series Selection

Application users or system administrators can select a subset of performance

metrics time series of interest, reflecting the performance of their workflows. Such a

set is given in Table 4.1 and is justified because:

1. We are interested in capturing metrics easily available with standard moni-

toring tools (i.e., such as those coming from Grid infrastructure monitoring ,

NWS [115], Ganglia [69], and Monitoring and Directory Service (MDS) [24] or

HAPI [97]), and easily available across a variety of platforms without requiring

application instrumentation, and

2. The metrics reflect the resource usage of the application over time and are

correlated with application performance over time.

A requirement of the selected set of metrics is that they must be as uncorrelated

as possible. While total independence of metrics in a computer system is an unrea-

sonable requirement, quasi-independent is satisfactory. If the user makes a selection

that does not meet this requirement, principal component analysis as described in

classical statistical analysis books [31], may be used as a tool to guide a more appro-

priate choice. Principal component analysis can transform a multi-dimensional data

set to a lower dimensional one. The reduced data set contains the most important

characteristics that contribute most to its variance.

Preprocessing

We preprocess the selected performance time series before analysis; in particular,

the time series are smoothed and zero-mean normalized.

We perform smoothing because it filters out both the inherent noise present in

the data collection process and potential significant transient changes (i.e., on the

68

Workload Metrics
Percentage CPU Utilization
Amount of Free Memory
Number of Local Disk Transactions per Second
Local Disk Number of Bytes Read per Second
Local Disk Number of Bytes Written per Second
Network Number of Bytes Read per Second
Network Number of Bytes Written per Second

Table 4.1: An example set of easy-to-collect, non-invasive performance time series
metrics that can be used as input to the qualitative performance analysis framework.

scale of a couple of seconds or minutes), which are typically insignificant in the case

of long-running scientific workloads (i.e., longer than 30 minutes).

We also normalize the time series to a zero-mean, to ease pattern analysis due to

the metrics reflecting different measuring scales.

4.3.2 Features Selection and Extraction

We are interested in characterizing the selected performance time series such that

we extract the maximum amount of information in the least amount of space. Our

approach is to extract from the quantitative time series features that may correlate

with performance variability, such as amount of variability and the type of pattern

of the series. Both features are of interest because performance time series may

have a similar amount of variability but different temporal patterns. The specific

methodologies by which we perform the feature extraction are described in more

detail in Chapter 3.

4.3.3 Temporal Signature Definition

Once the performance time series have been selected, together with the features

of interest, we define the temporal signature of a series, s, to be a vector combining

69

the selected features:

s � rRelative Variance,Patterns.

Given M selected performance time series, pT1 through TMq, we further define the

temporal signature of set of time series S as the concatenated vector of the temporal

signatures of all series:

S � tRelative VariancepT1 � � �TMq,PatternpT1 � � �TMqu. (4.1)

The S vector captures the features of interest for all selected performance time series;

it represents a compressed quantitative vector that ideally should carry sufficient

information to enable discrimination between series with different characteristics. For

example, if a time series has a large amount of variance, that feature will be reflected

in a larger quantitative value of its normalized,categorical variance s2
n,c. Similarly, if

another time series has a random pattern, that will be reflected in its corresponding

pattern feature value.

Applications executing on varied Grid resources may exhibit over time different

characteristics of these features. Some performance time series may be high varying

and periodic while others may be low varying and flat; we hypothesize that these

differences in temporal application behaviors can be captured via temporal signature

vectors, S.

4.3.4 Temporal Signature Generation

Given a definition for a temporal signature, the next step involves generating

such signatures from performance time series. The temporal signature generation

component generates S vectors from applications’s performance time series data.

It uses the configuration information set off-line in the previous three components

(i.e., time series selection, feature selection & extraction, and temporal signature

70

definition). The resulting temporal signatures are received as input by the supervised

learning component where they are further analyzed.

4.4 Supervised Learning Component

The supervised learning component receives temporal signatures as input. It has

two different sub-components, as shown in Figure 4.6: (1) an offline training compo-

nent, and (2) an on-line classification component.

4.4.1 Training: Learning Expected and Unexpected Signa-
tures

The training sub-component of our framework must gather various instances of

temporal signatures that are indicative of both well-performing and ill-performing

application states. We conduct this necessary acquisition of training samples as

explained in the following subsections.

Signatures Associated with Expected Application Behaviors

In a controlled environment, we conduct performance studies of long-running

tasks within workflows to capture temporal signatures in instances where the tasks

complete successfully and in a well-performing manner (i.e., no resource contentions

or faults). The definition of a successful and well-performing experiment is further

discussed in more detail in Chapter 5, with specific examples as to how it can be

defined in the context of different scientific workflows.

We hypothesize that the temporal signatures of these tasks have similar character-

istics that can be compactly grouped in classes of behaviors. The intuition behind our

hypothesis stems from previous large-scale application performance studies showing a

small number of equivalent classes of behaviors characterizing collected performance

data [85, 23].

Therefore, via passively running experiments, we label a set of successful experi-

71

INPUT
Temporal Signature

2. Supervised Learning

Online Classification
Performance

Validation & Diagnosis

Training Phase
Expected and

Unexpected Temporal
Signatures

LEGEND
online
offline

OUTPUT
Classified Signatures

(Expected or Unexpected)

Figure 4.6: Supervised learning component.

ments with the qualitative label of expected, and generate temporal signatures which

are also labeled in the training data set as being expected signatures for a specific

application.

Signatures Associated with Unexpected Application Behaviors

Similarly, we perform various executions of long-running workflow tasks and cap-

ture temporal signatures in instances where stimuli affecting the application perfor-

mance are introduced. One can learn unexpected or diagnostic temporal signatures

in two modes:

1. utilize a benchmark application, such as [7, 82, 67] to generate known instances

of issues affecting performance during application execution, and

2. manually label a set of performance time series known to have caused a specific

type of failure in a real environment.

There are advantages and disadvantages to both approaches. The first approach

enables us to acquire, in a controlled fashion and relatively quickly, instances of un-

72

expected temporal signatures for an application, and to label them with a known

diagnostic state (e.g., signature was captured during known memory leak issue af-

fecting the application). The disadvantage lies in potentially capturing signatures

that will not have the same characteristics with signatures captured during a real

performance problem. For the second approach, we are presented with the opposite

situation: we capture within signatures real instance of performance problems, but

are not able to learn these instances fast, as severe problems affecting the application

may not occur frequently. Furthermore, we do rely on a third-party (e.g., such as

a system administrator or application user) to correctly label the performance time

series captured during such an event.

4.4.2 Classification: Performance Validation and Diagnosis

The on-line classification sub-component takes the temporal signature generated

by the first component and assesses whether the signature matches expectations.

Let us call this input temporal signature S. The classification component applies

the knn classifier method as described in Section 3.3.2 against the training data set,

and assess whether S is closest to signatures in expected behavioral classes, Ei or to

signatures in unexpected behavioral classes, Ui. The resulting classification label for

S represents the qualitative temporal behavioral state of the application for the time

interval of analysis. If S belongs to an unexpected behavioral class, the classification

label represents the possible diagnostic problem affecting the performance of the

application.

For example, consider that a set of long-running workflow tasks have three ex-

pected qualitative behaviors, E � tE1, E2, E3u, and two unexpected behaviors U �
tU1, U2u, characterized by different examples of temporal signatures labeled in the

training phase with these class labels. The Ei classes represent expected labels while

the Ui classes represent unexpected labels as follows: U1 corresponds to temporal

73

signatures gathered under network contentions, while U2 corresponds to temporal

signatures gathered under near-disk failures. We monitor the workflow tasks on-line

and observe behavior S for one of the task, which is not similar with any of the previ-

ously known expected behaviors E1, E2, and E3. However, the unexpected behavior

S resembles temporal signatures from class U1 representing example signatures of

network contention behaviors. Therefore, the currently analyzed temporal signature

of the monitored task is classified as belonging to class U1, and the qualitative diag-

nostic answer is that the tasks is performing unexpectedly due to a possible network

contention.

4.5 Qualitative Reasoning Component

INPUT
Classified Temporal Signatures

(Expected and Unexpected)

3. Qualitative Reasoning

OUTPUT
Qualitative performance assessment

for scientific workflows

Qualitative
Reasoning

Policies for
reasoning with

qualitative task states

LEGEND
online
offline

Figure 4.7: Qualitative reasoning component

While the supervised learning component analyzes data independently from each

distinct long-running task in a workflow, the qualitative reasoning component sets

the stage for interpreting the meaning of qualitative behaviors across all tasks in

a workflow. Therefore, at the global workflow level, we interpret the cumulative

qualitative states observed in all of a workflow’s tasks, N , during a time interval.

74

In this work we show how to reason with qualitative behavioral information as-

sociated with each long-running workflow tasks; our focus is to demonstrate modes

of utilization of our qualitative performance analysis framework and not explore the

space of policies that may be developed within this context.

We describe in Chapter 5 a couple of simple policies for interpreting the global

workflow performance by analyzing the number of tasks in desirable versus undesirable

qualitative states for a given temporal interval of analysis. Within this context, global

workflow performance validation checks the ratio of number of tasks in an undesired

qualitative state, NU , versus the tasks in an expected qualitative state, NE:

R �

�
NU

N

	
�

NE

N
� 1

	 . (4.2)

For our evaluation, we assume the tasks analyzed have the same utility to the user:

(1) they are all equally important to complete timely, and/or (2) they are on a

workflow’s critical path. Optimally, one desires NU=0 and NE=N , such that R=0

when all tasks are in an expected state and R=1 when they are not, as shown in

Figure 4.8. The user needs to specify a threshold for R, TR, that is acceptable to his

or her workflow application.

Global performance diagnosis reports, when TR has been surpassed, the types of

unexpected behavioral states observed and the location of the task where the behav-

ior occurred. A system administrator or application user can utilize this information

to learn where the performance problem lies across the computational resource space

used by the workflow; furthermore, the user can specify qualitatively remedy oper-

ations to be triggered such as: if the majority of the tasks in diagnostic mode are

labeled with diagnostic problem U1, class for network contention behaviors, for two

consecutive analysis intervals, then check-point the application and try an alternate

75

0 250 500 750 1000 1250

0.25

0.5

0.75

1

1.25

1.5

Max R=1

x = NU, Number of tasks with unexpected states

y=
R

Ra
tio

 o
f t

as
ks

 in
 u

ne
xp

ec
te

d
vs

. e
xp

ec
te

d
st

at
es

N=256 tasks N=512 tasks N=1024 tasks

Figure 4.8: Values of R for workflows with 256, 512 or 1024 long-running tasks.

network location for reading or writing data.

4.6 Summary

This chapter described the architecture, components, sub-components and core

characteristics of Teresa, a qualitative performance analysis framework, together

with the set of methodologies which implement it. Teresa consists of tree compo-

nents:

1. a temporal signature design component,

2. a supervised learning component, and

3. a qualitative reasoning component.

The components are configurable in an offline setting, and they jointly contribute to

a qualitative performance assessment of scientific applications at both the task and

global workflow level.

76

Chapter 5

Framework Evaluation

In this chapter we describe the data sets we use to evaluate our qualitative per-

formance analysis framework, Teresa, as well as the results of the evaluation. We

conduct benchmark experiments with long-running tasks from two different large-

scale scientific workflows executing on four different architectural configurations of

Grid resources.

We first describe characteristics of the computational environments from which

we gathered our data sets, the performance time series metrics collected from each

environment and characteristics of the scientific workflows studied. Next, we de-

scribe how to generate temporal signatures for our experimental data and study the

differences in temporal signatures for application executions in cases of good qualita-

tive performance versus cases of known degraded performance due to a performance

stress factor or bottleneck. We then evaluate the efficacy of our framework by of-

fering supporting evidence for our two hypotheses. For the first hypothesis we show

how signatures based on temporal information are superior to signatures based on in-

stantaneous values of the performance metrics. We show supporting evidence for the

second hypothesis by computing the balanced classification accuracy for never-seen

temporal signatures of different expectation labels (i.e., expected or unexpected),

which is an indicator of how well our framework will be able to distinguish accurately

and precisely both healthy and unhealthy application performance states. Finally, we

discuss the performance impact of our framework, limits of our current evaluation,

as well as limitations of our overall approach.

77

5.1 Execution Environment

We describe the Grid scientific applications, the computing environments, and

the type of performance time series metrics collected.

5.1.1 Computational Resources

To validate our framework, we conducted experiments with two Grid scientific

applications, Montage [81] and LEAD [29] on four different system configurations,

shown in Table 5.1. We present more detailed architectural diagrams for the selected

computational resources in Figures 5.1 and 5.2.

Resource Handle slowio lowmem himem fastcpu
Name Dante Mercury1a Mercury1b Mercury2
Nodes 32 128 128 633
CPU Type Intel Xeon Intel IA64 Intel IA64 Intel IA64
CPU Speed 3.2 GHz 1.3GHz 1.3GHz 1.5GHz
Processors 2 2 2 2
Memory 6 GB 4 GB 12 GB 4 GB
Disk 60 GB 60 GB 60 GB 60 GB
Interconnect 1 GigE GigE GigE GigE
Interconnect 2 Infiniband Myrinet Myrinet Myrinet
Network File Sys. NFS PVFS PVFS PVFS
Number NFS Servers. 1 54 54 54
*Net. Bandwidth 1 GigE 40 GigE 40 GigE 40 GigE
OS Software RedHat SuSE SuSE SuSE
OS Version 3.2.3-42 2.4.21-309 2.4.21-309 2.4.21-309

Table 5.1: Architectural characteristics of computing resource sites.* indicates the-
oretical network bandwidth between application data location and location of the
compute nodes.

While the type of selected resources are classified architecturally as clusters, sim-

ilar experiments can be conducted on other categories of HPC architectures, such as

Massively Parallel (MPPs) or Shared Memory Systems (SM). The choice of running

experiments on clusters was based on the statistic that the cluster architecture repre-

sents a common computational resource in Grid environments today; as of November

2007, clusters represent 81.20% of the share of supercomputers in the world as cate-

gorized by the Top 500 Organization [71].

78

Da
nt

e
Cl

us
te

r A
rc

hi
te

ct
ur

e
(In

te
l X

eo
n)

St
or

ag
e

1
Fi

le
 S

er
ve

r
in

te
rn

al
.re

nc
i.o

rg

Lo
gi

n
No

de
s

1G
b/

s

Si
ze

: 1
.8

 T
B

d0
0

1
2

3
4

5
6

d1
7

8
9

10
11

12
13

d2
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

LE
G

EN
D

Et
he

rn
et

 C
on

ne
ct

io
n:

 E

In
fin

iB
an

d
Co

nn
ec

tio
n:

 IB
,

PC
I-X

 c
ar

ds
 @

 1
33

M
G

z
re

su
ltin

g
in

 m
ax

 2
G

bi
ts

 /
no

de
.

NO
TE

S:
- I

nfi
ni

ba
nd

 C
on

ne
ct

io
n:

 D
ed

ica
te

d
to

 M
PI

 T
ra

ffi
c

- L
og

in
 n

od
es

 c
an

 a
cc

es
s

co
m

pu
te

 n
od

es
 v

ia
ei

th
er

 E
th

er
ne

t c
on

ne
ct

io
n

(c
0-

0)
 o

r I
nfi

ni
ba

nd
 c

on
ne

ct
io

n
(ib

0-
0)

- N
at

ive
 In

fin
ib

an
d

10
G

b,
 b

ut
 lim

ite
d

by
 P

CI
-X

 @
 2

G
b

- O
n

co
m

pu
te

 n
od

es
, o

nl
y

et
h0

 a
nd

 ib
0

ar
e

ac
tiv

e.
 e

th
1

an
d

ib
1

ar
e

in
ac

tiv
e.

- O
n

lo
gi

n
no

de
s,

 b
ot

h
et

h0
 a

nd
 e

th
1

ar
e

ac
tiv

e.
 e

th
1

is
fo

r e
xt

re
na

l t
ra

ffi
c.

0

Co
m

pu
te

 N
od

e
Sp

ec
ific

s

3.
2

G
Hz

CP
U

Sp
ee

d

Du
al

-c
or

e

M
em

or
y

6.
0

G
B

Di
sk

~
60

 G
B

E/
IB

 S
wi

tc
h

31
32

33

et
h0

ib
0

1G
b/

s

Figure 5.1: Architecture overview: Dante cluster.

79

M
er

cu
ry

 C
lu

st
er

 A
rc

hi
te

ct
ur

e
(In

te
l I

A-
64

)

8.
5

TB

t1
t2

t3

LE
G

EN
D

Et
he

rn
et

 C
on

ne
ct

io
n:

 G
ig

E

M
yr

in
et

 C
on

ne
ct

io
n:

 M
Lo

gi
n

No
de

s

1G
b/

s

t4
Fi

be
r C

ha
nn

el

Th
eo

re
tic

al
: 1

G
b/

s
Ha

rd
 L

im
it:

 8
00

M
b/

s
Pr

ac
tic

al
: 1

60
-3

20
M

b/
s

Co
m

pu
te

No

de

Sp
ec

ific
s

1.
3

G
Hz

CP
U

Sp
ee

d
Du

al
-c

or
e

M
em

or
y

12
.0

 G
B

Di
sk

:
~6

0
G

B
et

h0
m

yr
i0

0

Co
m

pu
te

No

de

Sp
ec

ific
s

1.
5

G
Hz

CP
U

Sp
ee

d

M
em

or
y

4.
0

G
B

Di
sk

:
~6

0
G

B
et

h0
m

yr
i0

Ph
as

e
1-

a
No

de
s:

In

te
l I

ta
ni

um
 2

, D
ua

l C
or

e
1.

3
G

Hz
, 4

G
B

RA
M

Ph
as

e
1-

b
No

de
s:

In

te
l I

ta
ni

um
 2

, D
ua

l C
or

e
1.

3
G

Hz
, 1

2G
B

RA
M

Ph
as

e
2

No
de

s:

In
te

l I
ta

ni
um

 2
, D

ua
l C

or
e

1.
5

G
Hz

, 4
G

B
RA

M

12
8

no
de

s

12
8

no
de

s

63
1

no
de

s

Co
m

pu
te

No

de

Sp
ec

ific
s

1.
3

G
Hz

CP
U

Sp
ee

d

M
em

or
y

4.
0

G
B

Di
sk

:
~6

0
G

B
et

h0
m

yr
i0

Ph
as

e
1-

a
No

de
 S

pe
cs

.

et
h1

et
h1Ph

as
e

1-
b

No
de

 S
pe

cs
.

Ph
as

e
2

No
de

 S
pe

cs
.

 e
th

1

PB
S

Re
so

ur
ce

De

sc
rip

tio
n

fa
st

cp
u

PB
S

Re
so

ur
ce

De

sc
rip

tio
n

hi
m

em
G

PF
S

Se
rv

er
s

(4
)

G
PF

S
Se

rv
er

s
(5

4)

PB
S

Re
so

ur
ce

De

sc
rip

tio
n

fa
st

io

c0
01

 -
c1

28

c1
87

 -
c2

56

c2
57

 -
c9

26

58
 T

B

/h
om

e

/g
pf

s_
sc

ra
tc

h1

NO
TE

S:
 e

th
0

is
re

se
rv

ed
 fo

r m
an

ag
em

en
t t

ra
ffi

c,
 e

th
1

is
de

fa
ul

t f
or

 u
se

r t
ra

ffi
c.

Fo
rc

e
10

G

ig
E

Sw
itc

he
s

NC
SA

Ce

nt
ra

l
Sw

itc
h

10
G

b/
s

10
G

b/
s

10
G

b/
s

10
G

b/
s

Du
al

-c
or

e
Du

al
-c

or
e

Figure 5.2: Architecture overview: NCSA TeraGrid Mercury Cluster.

80

5.1.2 Performance Time Series Data Collection

We gathered system-level performance time series data with sar[43], a utility

commonly available on a variety of platforms that collects and efficiently stores in a

binary data format various performance metrics. While we collected all the available

metrics provided by sar on each system, we focus our analysis on a subset of metrics

of interest. Furthermore, because different network interfaces are active on differ-

ent clusters, we only analyzed network traffic on specific active network interfaces

(e.g., on the Dante cluster, eth0 is active for user application traffic, while on the

Mercury clusters, eth0 is active but dedicated for network management traffic, while

eth1 is active and dedicated to application traffic). Metrics names, units, and their

abbreviations are identified in Table 5.2.

i Time Series Metric (Ti) Unit Abbr.
1 Available CPU % CPU
2 Memory % Used % MPU
3 Swap % Used % SPU
4 Disk Blocks Read KB/s DBR
5 Disk Blocks Writ. KB/s DBW
6 *Eth 0 or 1 # Pkts. Recd. pk/s NPR
7 *Eth 0 or 1 # Pkts. Trans. pk/s NPT

Table 5.2: Set of system-level performance time series.* indicates we only analyze
data for active Ethernet interfaces over which application traffic passes.

As all application executions are submitted via a batch scheduler controlling job

executions on the specified cluster, we have carefully started the sar collection of data

before application execution and have terminated it as soon as the job has finished

execution.

5.2 Scientific Workflows

We conducted experiments with long-running computational tasks which are part

of two large-scale scientific workflows from meteorology [29] and astronomy [60, 12].

81

Below we introduce each scientific workflow, we describe the longest running com-

ponent application within each workflow, and we characterize the input application

data sets.

5.2.1 Montage

Montage [81] is a set of modules that can collectively be used to generate large

astronomical image mosaics by composing multiple small images. There are five

high-level steps to building a mosaic with Montage which we show in Figure 5.3; they

include (1) distributed data query, (2) image re-projection, (3) background modeling,

(4) background matching, and (5) image co-addition, resulting in a final large-scale

mosaic [81, 56].

DPOSS

SDSS

2MASS

DSS

Astronomy
Sky Survey

Archives

mArchive
List

mArchive
Exec

1

2

1
DISTRIBUTED
DATA QUERY

FINAL MOSAIC

5
IMAGE

CO-ADDITION

11

mJPEG
12

mAddmAddmAdd

4
BACKGROUND

MATCHING

mBgModel
9

10

mAddmAddmBgExec

3
BACKGROUND

MODELING

mOverlaps
6

7

8

mAddmAddmFitExec

mAddmAddmDiffExec

mImgTbl
3

4

mImgTbl

5

2
IMAGE

REPROJECTION

mAddmAddmProjExec

Sequential
Component

Parallel
Component

Optional
Execution BlocksLEGEND

Figure 5.3: Montage workflow for astronomical data query, preprocessing and mo-
saic creation [56].

Long-running Component Application

Previous experiments with Montage showed that the image re-projection module,

mProjExec (i.e., Task 4 in the Montage Workflow from Figure 5.3) dominates execu-

tion time [56]. mProjExec performs image re-projection on a set of astronomy data

images downloaded from sky survey repositories. Each file is processed independently

of all the other files in a given data set. The more files and the larger the size of each

82

file in the data set, the longer the time it takes for mProjExec to finish the required

processing. We conduct experiments with this module on two different data sets,

described in the following section.

Astronomy Data Sets

One data set, which we label M101, represents 7902 image files from a 15 0 area

of the sky around the spiral galaxy, M101 in the U band obtained from the SDSS

data archive. Each file has an approximate size of 5.8 MB, resulting in a total size

of 45 GB for all the files in the data set. The application, mProjExec reads all these

files and generates re-projections of these images, generating as output a data set

of approximately 99 GB. The second data set, which we label M57, represents 7422

image files from a 15 0 area of the sky around the ring nebula, M57, in the J band

obtained from the 2MASS data archive. Each file in the second data set has an

approximate size of 2.0 MB, resulting in a total size of 15 GB for all the files in

the data set. Similarly, mProjExec reads all these files and generates re-projections

of these images, generating as output a data set of approximately 30 GB. All the

experiments with data set M101 are listed in Table 5.3, while all experiments with

data set M57 are listed in Table 5.4.

5.2.2 LEAD

Mesoscale weather causes hundreds of deaths, routinely disrupts transportation

and commerce and results in significant economic losses [91]. Mitigating the impact of

such events implies significantly changing the traditional weather sensing and predic-

tion paradigm, where forecasts are static, linear workflows with no adaptive response

to weather. The Linked Environments for Atmospheric Discovery (LEAD) project

[29] addresses the fundamental technological challenges of real-time, on-demand,

dynamically-adaptive needs of mesoscale weather research. Figure 5.4 shows an exam-

83

JobID Cluster N:PPN Time(s) Valid? User Expectation
1 1336927 fastcpu 64:1 2748 Yes Expected
2 1336939 fastcpu 64:1 2850 Yes Expected
3 1337050 fastcpu 64:1 2854 Yes Expected
4 1337063 fastcpu 64:1 2830 Yes Expected
5 1337251 fastcpu 32:1 5281 Yes Expected
6 1337321 fastcpu 32:1 5271 Yes Expected
7 1337366 fastcpu 32:1 5271 Yes Expected
8 1337411 fastcpu 32:1 5322 Yes Expected
9 1337732 himem 64:1 3194 Yes Expected

10 1337764 himem 64:1 3185 Yes Expected
11 1337812 himem 64:1 3184 Yes Expected
12 1337845 himem 64:1 3186 Yes Expected
13 1337573 himem 32:1 6143 Yes Expected
14 1337603 himem 32:1 6145 Yes Expected
15 1337652 himem 32:1 6145 Yes Expected
16 1337696 himem 32:1 6150 Yes Expected
17 1338089 lowmem 64:1 3183 Yes Expected
18 1338104 lowmem 64:1 3181 Yes Expected
19 1338112 lowmem 64:1 3181 Yes Expected
20 1338145 lowmem 64:1 3180 Yes Expected
21 1338205 lowmem 32:1 6137 Yes Expected
22 1338264 lowmem 32:1 6141 Yes Expected
23 1338452 lowmem 32:1 6229 Yes Expected
24 1338563 lowmem 32:1 6176 Yes Expected
25 248416 slowio 30:1 6332 Yes Unexpected
26 248418 slowio 30:1 5870 Yes Unexpected
27 248420 slowio 30:1 5939 Yes Unexpected

Table 5.3: mProjExec with data set M101 on all four clusters. Column -#- represents
the experiment number and column -JobID- represents the PBS job identification
number assigned to the execution. Column -Cluster- indicates the resource on
which the application was run. Column -N:PPN- represents the number of nodes the
application was executed on and the number of assigned processors per node. Column
-Time- represents the total execution time in seconds for the experiment. Column
-Valid?- labels whether a valid scientific result was obtained for the application run.
Column -User Expectation- labels the experimental application run as expected or
unexpected.

ple of a LEAD workflow. Meteorological data sets and streams generated by radars,

satellites, weather balloons and other weather instruments are transported via shared

networks to computing resources for processing. The data types are integrated and

84

JobID Cluster N:PPN Time(s) Valid? User Expectation
28 1345633 fastcpu 64:1 904 Yes Expected
29 1345702 fastcpu 64:1 974 Yes Expected
30 1345712 fastcpu 64:1 933 Yes Expected
31 1345757 fastcpu 64:1 900 Yes Expected
32 1345795 fastcpu 32:1 1643 Yes Expected
33 1345800 fastcpu 32:1 1615 Yes Expected
34 1345815 fastcpu 32:1 1647 Yes Expected
35 1346744 fastcpu 32:1 1641 Yes Expected
36 1347621 himem 64:1 1027 Yes Expected
37 1347631 himem 64:1 1026 Yes Expected
38 1347637 himem 64:1 1027 Yes Expected
39 1347641 himem 64:1 1029 Yes Expected
40 1348357 himem 32:1 1893 Yes Expected
41 1348388 himem 32:1 1885 Yes Expected
42 1348405 himem 32:1 1889 Yes Expected
43 1348431 himem 32:1 1887 Yes Expected
44 1347582 lowmem 64:1 1027 Yes Expected
45 1347586 lowmem 64:1 1025 Yes Expected
46 1347600 lowmem 64:1 1022 Yes Expected
47 1347604 lowmem 64:1 1025 Yes Expected
48 1347182 lowmem 32:1 1887 Yes Expected
49 1347234 lowmem 32:1 1897 Yes Expected
50 1347241 lowmem 32:1 1893 Yes Expected
51 1347286 lowmem 32:1 1884 Yes Expected
52 248471 slowio 30:1 3569 Yes Unexpected
53 248475 slowio 30:1 5836 Yes Unexpected
54 248476 slowio 30:1 6390 Yes Unexpected

Table 5.4: mProjExec with data set M57 on all four clusters. Column -#- represents
the experiment number and column -JobID- represents the PBS job identification
number assigned to the execution. Column -Cluster- indicates the resource on
which the application was run. Column -N:PPN- represents the number of nodes the
application was executed on and the number of assigned processors per node. Column
-Time- represents the total execution time in seconds for the experiment. Column
-Valid?- labels whether a valid scientific result was obtained for the application run.
Column -User Expectation- labels the experimental application run as expected or
unexpected.

transformed such that numerical weather forecast codes can be initiated. Automated

data mining algorithms analyzing forecast output can dynamically request new real-

time data from instruments when severe weather patterns are detected. The entire or

85

part of the workflow process is repeated following the arrival of new real-time data.

Terrain
data

Surface,
terrestrial

data

Radar data (Level II)

Radar data (Level III)

Satellite data

NAM, RUC,
GFS data

Surface, upper air
mesonet, wind

profiler data

Terrain
Preprocessor

1

WRF Static
Preprocessor

2

3

88D Radar
Remapper

4

NIDS Radar
Remapper

5

Satellite Data
Remapper

6

ADAS
7

3D Model Data
Interpolator

(Lateral Boundary
Conditions)

8

ARPS to
WRF Data
Interpolator

9

IDV
Bundle

11

ARPS
Plotting
Program

13

WRF to
ARPS Data
Interpolator

12

10

WRF

LEGEND
Real-time dataStatic data Initialization Forecast Visualization

RUN ONCE PER
FORECAST REGION

TRIGGERED IF
STORM IS DETECTED

REPEATED PERIODICALLY
FOR NEW DATA

Visualization on
user's request

3D Model Data
Interpolator (Initial

Boundary
Conditions)

Figure 5.4: LEAD workflow for data ingestion, analysis and weather forecast.
Source: LEAD project [29, 61].

The meteorological issues arising from the LEAD project are producing accurate

and immediate severe weather forecasts. To obtain more accurate forecasts, scientists

perform ensemble forecasts, which are grouped executions of the weather forecasting

model numerical software, WRF [73]. One of the common use-case of running LEAD

workflows is to initially run a wide-area, low-resolution forecast followed by a smaller-

area, high-resolution forecast if a meteorological event of interest was detected in the

first low-resolution forecast.

One experiment we performed involves executing WRF Version 2 [111] with the

ARW dynamical core and with a benchmark real data set [116]. The initialization

data set represents a 48-hours, 12 km resolution forecast of the weather over the

continental U.S. domain. The data set is preprocessed by the WRFSI component

and is provided as input to the ARW dynamical core. A default configuration file,

namelist.input, accompanies the benchmark data, setting configuration parameters

appropriately.

86

While this particular data set may run to completion on a couple of tens of com-

puting nodes within a reasonable amount of time (i.e., 5396 seconds on 32 machines

with an Intel Xeon 3.2 GHz, 6 GB RAM and Infiniband interconnect), hundreds of

these data sets forming large ensembles will require a significant amount of resources

to finish in time for the actual weather prediction to be useful. Larger Grids will

provide the necessary computing power to process computationally intensive forecast

ensembles processing streamed, distributed data sources.

Long-running Application Component

Within such LEAD workflows, the longest-running component is the numerical

code, Weather Research and Forecasting (WRF) [73] (i.e., Task 10 in the LEAD

Workflow from Figure 5.4). Therefore, we conduct experiments with WRF on two

different data sets representing weather with different characteristics.

Weather Data Sets

One data set, which we label mesoscale, represents a 48-hour forecast during

mesoscale weather from 24th October 2001, over a low-resolution of 12 km within the

entire continental United States. The input files have an approximate size of 0.34 GB

and the output data is 0.64 GB. The second data set, which we label non-mesoscale,

represents a 24-hours forecast during non-mesoscale (i.e., good) weather from Novem-

ber 6th, 2007 over a high-resolution of 4 km in a grid of 1000 km2 within the conti-

nental United States. The input files have an approximate size of 0.25 GB and the

output data is 2.9 GB. All experiments with the mesoscale data set are listed in

Table 5.5, and all experiments with the non-mesoscale data set are listed in Table

5.6.

87

JobID Cluster N:PPN Time(s) Valid? User Expectation
1 1351014 fastcpu 60:2 1151 Yes Expected
2 1351287 fastcpu 60:2 1085 Yes Expected
3 1351292 fastcpu 60:2 1095 Yes Expected
4 1351297 fastcpu 60:2 1187 Yes Expected
5 1351634 fastcpu 30:2 1760 Yes Expected
6 1351643 fastcpu 30:2 1694 Yes Expected
7 1351702 fastcpu 30:2 1646 Yes Expected
8 1351752 fastcpu 30:2 1682 Yes Expected
9 1351487 himem 60:2 1214 Yes Expected

10 1351581 himem 60:2 1219 Yes Expected
11 1351625 himem 60:2 1211 Yes Expected
12 1351628 himem 60:2 1214 Yes Expected
13 1352492 himem 30:2 1866 Yes Expected
14 1353639 himem 30:2 1870 Yes Expected
15 1353659 himem 30:2 1858 Yes Expected
16 1353833 himem 30:2 1852 Yes Expected
17 1351337 lowmem 60:2 1210 Yes Expected
18 1351348 lowmem 60:2 1214 Yes Expected
19 1351467 lowmem 60:2 1293 Yes Expected
20 1351469 lowmem 60:2 1208 Yes Expected
21 1351860 lowmem 30:2 1874 Yes Expected
22 1351880 lowmem 30:2 1877 Yes Expected
23 1351887 lowmem 30:2 1863 Yes Expected
24 1351899 lowmem 30:2 1884 Yes Expected
25 248477* slowio 30:2 4270 Yes Expected
26 248478* slowio 30:2 4223 Yes Expected
27 248479* slowio 30:2 4216 Yes Expected
28 248480* slowio 30:2 4219 Yes Expected

Table 5.5: WRF2.2 and WRF2.0* with mesoscale data set on all four clusters. Col-
umn -#- represents the experiment number and column -JobID- represents the PBS
job identification number assigned to the execution. Column -Cluster- indicates the
resource on which the application was run. Column -N:PPN- represents the number
of nodes the application was executed on and the number of assigned processors per
node. Column -Time- represents the total execution time in seconds for the experi-
ment. Column -Valid?- labels whether a valid scientific result was obtained for the
application run. Column -User Expectation- labels the experimental application
run as expected or unexpected. *While the data set for WRF2.2 and WRF2.0 is the same,
the experiments from WRF2.2 executions should not be compared directly with the
ones from WRF2.0 executions because these may represent different implementations
of the numerical forecasting algorithms, and may represent WRF application binaries
possibly compiled with different compilation options.

88

JobID Cluster N:PPN Time(s) Valid? User Expectation
29 1343612 fastcpu 64:1 1973 Yes Expected
30 1343619 fastcpu 64:1 1940 Yes Expected
31 1344102 fastcpu 64:1 1980 Yes Expected
32 1344269 fastcpu 64:1 2006 Yes Expected
33 1351201 fastcpu 32:1 3042 Yes Expected
34 1351228 fastcpu 32:1 3073 Yes Expected
35 1351241 fastcpu 32:1 3056 Yes Expected
36 1351275 fastcpu 32:1 2885 Yes Expected
37 1349185 lowmem 64:1 2296 Yes Expected
38 1349479 lowmem 64:1 2272 Yes Expected
39 1349558 lowmem 64:1 2316 Yes Expected
40 1349726 lowmem 64:1 2293 Yes Expected
41 1349892 lowmem 32:1 3416 Yes Expected
42 1350100 lowmem 32:1 3306 Yes Expected
43 1350157 lowmem 32:1 3285 Yes Expected
44 1350339 lowmem 32:1 3281 Yes Expected
45 1347747 himem 64:1 2295 Yes Expected
46 1348035 himem 64:1 2289 Yes Expected
47 1348905 himem 64:1 2346 Yes Expected
48 1349133 himem 64:1 2325 Yes Expected
49 1351016 himem 32:1 3345 Yes Expected
50 1351037 himem 32:1 3332 Yes Expected
51 1351166 himem 32:1 3352 Yes Expected
52 1351180 himem 32:1 3392 Yes Expected

Table 5.6: WRF2.2 with non-mesoscale data set on all clusters except* slowio.
Column -#- represents the experiment number and column -JobID- represents the
PBS job identification number assigned to the execution. Column -Cluster- indi-
cates the resource on which the application was run. Column -N:PPN- represents
the number of nodes the application was executed on and the number of assigned
processors per node. Column -Time- represents the total execution time in seconds
for the experiment. Column -Valid?- labels whether a valid scientific result was ob-
tained for the application run. Column -User Expectation- labels the experimental
application run as expected or unexpected. We did not have WRF2.2 compiled on the
slowio cluster.

5.3 Labeling Application Performance Expectation

Our approach relies on a set of previously known labels of application behaviors

to assess and diagnose the performance behavior of the application. We assume that

a group of workflow users may label, over the time of their experiments, instances

89

of workflow executions where the application did not perform as expected. We define

the user performance expectation as a set of conditions that must be met in order

to correlate any instance of application execution with an expected performance be-

havior. Such conditions can include: (1) a valid scientific result for the application,

and (2) total execution time within one standard deviation of previous execution

times. We believe that in the case of long-running scientific applications, it is not

sufficient to equate an application’s successful completion (i.e., condition (1)) with

an expected performance state, as the application may have a degraded performance

over the course of its execution that can be attributed to multiple factors. Typically,

a significantly degraded performance will manifest itself in significantly longer execu-

tion times, so we believe the example of the second condition described is justified in

our context. Other conditions may be included in the definition. In our experimental

results, we do use these two conditions to label an application’s execution expected

or unexpected.

Consider the running times of mProjExec with data sets M101 and M57 shown in

Figures 5.5(a) and 5.5(b). From comparing the running times of either of the data

sets for the 32 nodes executions on the fastcpu, himem, lowmem clusters with the 30

nodes execution on the slowio cluster, the user may expect the application to run at

least as fast as the fastcpu executions, assuming nothing else is significantly different

between the cluster configurations. Unfortunately, while the slowio cluster may be

equipped with faster processors, the network bandwidth between the compute nodes

and the location of the data on the network storage is unfit for the data intensive

demands of this astronomy data mosaic application. While the application does

produce a valid scientific result, it takes a considerable longer amount of time than

if the cluster network architecture was adequate to its demands.

90

64 tasks on
1.5 GHz

64 tasks on
1.3 GHz

64 tasks on
1.3 GHz

32 tasks on
1.5 GHz

32 tasks on
1.3 GHz

32 tasks
1.3 GHz

30 tasks
3.2 GHz

(a) Execution times for all experiments with M101 data set.

64 tasks on
1.5 GHz

64 tasks on
1.3 GHz

64 tasks on
1.3 GHz

32 tasks on
1.5 GHz

32 tasks on
1.3 GHz

30 tasks
3.2 GHz

32 tasks on
1.3 GHz

(b) Execution times for all experiments with M57 data set.

Figure 5.5: Execution times for all experiments with mProjExec. User may be
expecting significantly faster execution times from the slowio - 3.2GHz nodes cluster.
The last three marked bars in (a) and (b) represent the execution times for the
application running on 30 nodes on the slowio cluster; these times are significantly
longer than running times for the executions of the same application on the fastcpu
- 1.5GHz nodes cluster.

91

5.4 Temporal Signatures of Expected Application

Executions

We generated temporal signatures for all experiments listed for both workflow

component applications mProjExec and WRF. In the following sections, we will take a

bottom-up approach and show (1) characteristics of individual temporal signatures,

(2) characteristics of groups of signatures for each of the component applications

studied, and (3) characteristics of signatures across applications and execution plat-

forms.

5.4.1 Temporal Signature for a Task Within an Experiment

We begin by illustrating in Figure 5.6(a) characteristics of the temporal signature

for an expected behavioral task within one of the experiments performed, mProjExec

Experiment #5. The temporal signature for the data is a vector of length 14, encoding

the normalized, categorical variance and the pattern for each of the seven time series

S � r1, 1, 1, 1, 1, 1, 2; 3, 1, 5, 5, 3, 3, 3s. Two different visualizations of this signature are

shown in Figures 5.6(b) and 5.6(c). The “bars” visualization on the left separates the

two features and display the values as bars. The second “color vector” visualization

encodes the five different patterns as five different colors, and it encodes the variance

as a bar of 3 different heights within each color box.

Characterization

The data and its corresponding signature represent characteristics of the selected

task for an instance of expected application behavior. Generally, there is low variance

on all the metrics, with periodicity detected on the CPU, disk and network metrics.

92

(a) Performance time series for one task from experiment mProjExec Experiment #5.

(b) Bars Visualization

Height of bar
encodes
variance

Moderate

Colors encode pattern

Low

CPU MPU SPU DBR DBW NPR NPT

Matrix columns represent variables monitored

(c) Color Vector Visualization

Figure 5.6: Performance time series and temporal signature for one task from
mProjExec Experiment #5. The performance data from which the temporal sig-
nature is generated has no smoothing applied (i.e. Smoothing Factor - S.F. = 1
second). We learn that the temporal signature of an expected application task has
generally low variance on all the metrics, with periodicity detected on the CPU, disk
and network metrics.

93

5.4.2 Temporal Signatures for a Group of Tasks in an Ex-
periment

Next, we illustrate in Figure 5.7 how Experiment #5 mProjExec’s execution on

32 tasks in parallel can be characterized with temporal signatures. We generate a

temporal signature for the entire duration of execution for each of these 32 tasks.

The color matrix visualization summarizes the studied temporal features in all the

time series data for this experiment.

Characterization

We generally observe for a group of tasks in an experiment the following charac-

teristics: low variance on all the metrics except on the network-packets-transmitted

metric, which has a moderate amount of variance. Furthermore, the CPU, the disk-

writes and all the network metrics are periodic; the memory-swap, disk-reads and

disk-writes are mostly flat while the memory utilized is detected as an unknown,

periodic or ramp pattern.

5.4.3 Temporal Signatures Across Experiments

Next, we illustrate in Figure 5.8 how repeated experiments (i.e., # 5,6,7) of

mProjExec are characterized via temporal signatures on the same architectural con-

figuration. We observe how signatures of the entire application (i.e., all its tasks)

are very similar to each other over repeated executions, when there is no known

performance stress factor affecting the application. Figures 5.9 and 5.10 provide

further proof that repeated experiments within the same architecture exhibit very

similar characterizations in terms of the features selected by our temporal signature

mechanism.

Similarly to the mProjExec application, we do obtain similar temporal signature

characterizations for WRF. We illustrate one such example in Figure 5.11.

94

CPU MPU SPU DBR DBW NPR NPT

Task 1
Task 2
Task 3
Task 4

Task 29
Task 30
Task 31
Task 32

. . .

Figure 5.7: Temporal signatures represented as a color matrix for mProjExec Exper-
iment # 5, with S.F.�1 second. Temporal signatures for all tasks in this experiment
reveal how similar the tasks are with each other in terms of their temporal signa-
ture characteristics: low variance on most metrics and periodicity observed on the
CPU, disk-writes and all the network metrics. The memory-swap, disk-reads and
disk-writes are mostly flat, while the memory utilized is detected as an unknown,
periodic or ramp pattern.

95

Figure 5.8: Temporal signatures across experiments: mProjExec experiments # 5,
6, 7, with S.F.�1 second. We learn from these repeated experiments and their corre-
sponding temporal signature characterizations that signatures of expected behaviors
are very similar over repeated executions of the application on the same architecture.

96

Figure 5.9: Temporal signatures across experiments: mProjExec experiments #
12,13,14, with S.F.�1 second. We learn from these repeated experiments and their
corresponding temporal signature characterizations that signatures of expected be-
haviors are very similar over repeated executions of the application on the same
architecture.

97

Figure 5.10: Temporal signatures across experiments: mProjExec experiments #
20, 21, 22, with S.F.�1 second. We learn from these repeated experiments and
their corresponding temporal signature characterizations that signatures of expected
behaviors are very similar over repeated executions of the application on the same
architecture.

98

Figure 5.11: Temporal signatures across experiments: WRF experiments # 35, 36,
37, with S.F.�1 second. Similarly to mProjExec, we observe that repeated experi-
ments and their corresponding temporal signature characterizations that signatures
of expected behaviors are very similar over repeated executions of the application on
the same architecture.

99

5.4.4 Summary

We have described characteristics observed in performance time series data col-

lected from two different scientific applications during instances of expected perfor-

mance. Generally, the temporal signature characterization of the time series data

reveals low variance on the majority of metrics with some occasional moderate vari-

ance on the network metrics. In terms of patterns, we observe typically periodicity

on the CPU, disk-writes, network-reads and network-writes metrics; we observe flat

behaviors with low variance on the swap-memory, and on the local disk-reads metrics.

Finally, the memory-utilization metric seems to vary considerably more in terms of

the patterns we observe, as we observe ramp, periodic, flat and unknown patterns sys-

tematically across experiments and applications. This fact results from two sources:

1) the sensitivity of our pattern detection mechanism, and 2) other system processes

or daemons running at the same time with the application, causing some fluctuation

on the metric.

5.5 Temporal Signatures for Unexpected Applica-

tion Executions

We describe two instances where we label the performance of application exe-

cutions as unexpected or problematic, and describe the context. We also describe

an instance where the temporal signatures are indicating a known problem on some

resources (i.e., monitoring data corrupted on one specific node on the slowio clus-

ter), and another instance suggesting a possible problem with a specific node in the

Teragrid cluster. Both of these later instances do not seem to affect application per-

formance for our experiments, but can help system administrators easily investigate

reasons why certain resources do not behave similarly with other nodes in the cluster.

100

5.5.1 Case 1: Diagnosed Data-Intensive Application Run-
ning on Slow Network

We illustrate in Figure 5.12(a) the performance time series data collected during

mProjExec Experiment # 23 executing on the slowio cluster. During this experi-

ment, 30 compute nodes attempt to continuously read and write from the network

7902 files totaling 45 GB. While the application does produce a valid scientific result,

as all images are processed correctly, the total execution time on these compute nodes

is significantly longer than what a user may expect had the network configuration

of cluster not be the bottleneck for processing. This mismatch case of running a

data intensive application over an low-bandwidth network (i.e., there is one shared

1 Gb Ethernet link between all the compute nodes and the network file server) has

the following effects on the application and environment: (1) the application’s run

time increases significantly because the CPU must wait for the data to arrive from

the network (and this behavior is seen in the high variance and high amplitude peri-

odicity of the CPU metric), and (2) the operating system keeps allocating memory

buffers to handle the file IO requests submitted by the application. We believe that

this allocation goes unbounded, as one observes the memory utilization on the sys-

tem to be slowly but consistently increasing until all the memory of the system is

fully utilized. While this behavior may be the result of a possible memory leak of

the application, we believe that this is not the case, as the swap memory metric

remains at zero even after all the memory on the system has been used. Figure 5.13

shows all signatures generated for each unexpected performance experimental run

from mProjExec Experiments # 23, 24 and 25.

101

(a) Performance time series metrics of one task from unexpected mProjExec experiment
#23.

(b) Bars Visualization

CPU MPU SPU DBR DBW NBR NBW

(c) Color Vector Visualization

Figure 5.12: Performance time series and temporal signature for one task from
unexpected mProjExec experiment #23, S.F�1 second. We observe significant dif-
ferences both in the data which are consequently reflected in characteristics of the
temporal signature. The primary differences are the high variance, high periodicity
of the CPU metric and the slow but gradually increasing memory utilization ramp.

102

Figure 5.13: Unexpected temporal signatures for mProjExec Experiments # 23,
24, 25, with S.F. �1. We observe significant differences both in the data which
are consequently reflected in characteristics of the temporal signatures. The main
differences from samples of expected application performance are the high variance,
high periodicity of the CPU metric and the slow but gradually increasing memory
utilization ramp.

103

Missing monitoring data: Corrupted sar file binary.
Figure 5.14: Temporal signatures across slowio cluster for unexpected mProjExec
application executions. Missing monitoring data for task executing on compute node
c0-24.

104

5.5.2 Case 2: Diagnosed Corrupted Monitoring Data File
Binary

Compute node c0-24 on the slowio cluster has been generating corrupted sar

binary files (i.e., the performance monitoring data) for many of the experiments

we have ran on the cluster, which results in empty monitoring data files or zero-

time series for the performance metrics that we capture. The results of our scientific

application experiments were not affected, though the presence of such a problem can

be indicative to a system operator that configuration settings may not be properly set

on that host or that the monitoring application’s daemon may need to be restarted

to produce valid monitoring data. Figure 5.14 shows how all the temporal signatures

from the flat, zero-valued time series immediately indicate the lack of data.

5.5.3 Case 3: Undiagnosed Consistently Different Resource
Characteristics Across Experiments

We have noticed during the execution of WRF on the himem cluster, Experiments

51, 52 and 53, that the temporal signature of one task running across executions

on the Teragrid node tg-c256 is significantly different than most of the signatures for

other tasks, as emphasized in Figure 5.15). When inspecting the performance time

series data which generated those abnormal temporal signatures, we also noticed an

abnormality on the memory metrics (MPU: percent-utilization and SPU: percent-

swap-utilization), as they vary highly between 0 and 100%. While this behavior does

not seem to affect our application and we do not know the source of this behavior,

it may be prudent for a system operator to investigate such behaviors on the node,

in order to prevent the node’s possible future failure during a user’s application

execution.

105

Tasks executing on node: tg-c256

Figure 5.15: Unexpected temporal signatures on specific nodes during WRF experi-
ments # 51, 52, 53. It is reasonable to assume from all the other temporal signatures
generated for WRF during expected application states that behavioral characteristics
manifesting in a high variance on both memory metrics is the likely result of some
abnormality happening on the specific resource node, tg-c256, and its unlikely to be
a characteristic of that specific task of the application. A system operator may want
to investigate the cause of the abnormality.

106

Figure 5.16: Time series data from WRF Experiment #51 for the compute node
tg-c256 exhibiting the abnormal behavior. We observe a very regular and marked
periodicity on the CPU metric, and a very high oscillation between 0 and 100% on
both the percent memory utiliztion and the percent memory swap metrics.

5.5.4 Summary

We have described characteristics observed in performance time series data col-

lected from two different scientific applications during true instances of unexpected

107

performance. Generally, the temporal signature characterization of the time series

data in degraded performance instances reveals higher variance on metrics on which

the expectation was lower variance; similarly, in terms of patterns, we observe sig-

nificant changes in patterns from cases of expected performance executions. The

ability to make an automatic distinction between performance data collected dur-

ing expected and unexpected behavior circumstances is fundamental to performance

problem identification for applications and systems.

5.6 Qualitative Performance Validation and Diag-

nosis

We describe in the following sections the process of qualitative performance vali-

dation and diagnosis in scientific workflows using temporal signatures. We associate

high-level, qualitative behaviors of applications with their corresponding temporal

signatures and show how this correlation can provide, in a simple and intuitive man-

ner, answers about the behavior of workflow components as well as interpret the

global behavior of the application.

5.6.1 Task-Level

For the duration of each task within a workflow we can generate temporal sig-

natures as illustrated in Figure 5.17. The evaluation epochs can be determined in

several ways. In the case of scientific applications that output progress logs (i.e., logs

recording the amount of work already performed -such as how many astronomy files

have been reprojected or how many forecast hours have been computed), it is rela-

tively simple to correlate the information in the logs with monitoring time-stamps in

order to get evaluation time points across all tasks within a workflow instance. If

the scientific application does not produce a progress output log that can be easily

used for time-stamp generation, or in the case of a scientific application that cannot

108

S1 S2 S3

Figure 5.17: Time series data from mProjExec with M101 on fastcpu from Experi-
ment 1337251; Periodic evaluation of application behavior using temporal signatures
generated when approximately 33% of the files have been processed.

estimate a progress-to-completion metric due to the nature of numerical algorithms

(e.g., non-convergent), then the application can be instrumented with simple markers

throughout the code that can serve as time-stamps for generating temporal signatures

across tasks.

5.6.2 Workflow-Level

We present two scenarios that reflect how our qualitative performance analysis

framework informs the workflow user with simple, qualitative descriptions of the

109

behavior of long-running workflows and how, in cases of degraded performance, a

scheduler or a fault-tolerance mechanism may use such qualitative information for

triggering appropriate remediation mechanisms to help improve the total workflow

execution time.

Scenario 1: Expected Workflow Qualitative Behavior

Consider a simple instantiation of a LEAD workflow where 32 WRF tasks run in

parallel on compute nodes on the himem cluster. Each task analyzes the same weather

data set but with slightly different initial conditions. Each task is expected to output

a weather forecast corresponding to the specified initial condition. At the completion

of the workflow, the user inspects all the results from each task and analyzes the

results. For this scenario illustrated in Figure 5.18, the total number of concurrently

monitored tasks is 32. The user specifies a threshold value of TR � 0.1, representing

the ratio of unexpected to expected behavioral observations she is willing to tolerate.

At periodic intervals correlated with application progress, the framework generates

temporal signatures across all tasks. The following sequence of events illustrates

global performance validation and diagnosis. During each analysis interval, 31 tasks

are classified as expected and 1 task is classified as unexpected, reflecting the behavior

of a possible problem computational node (i.e., compute node tg-c256 of experiment

#51 from the WRF experiments). The threshold value R is 0.02, which is well below

the set TR � 0.1; therefore, during all analysis intervals, the behavior of the workflow

is deemed expected. In this scenario, notice that the tasks are independent of one

another, and the possible performance degradation or failure of one task will not

impact significantly the results the user expects. However, in circumstances where

the performance degradation of one task can induce performance degradation in

dependent tasks, the policy mechanism for interpreting the overall behavior of the

workflow needs to be changed to reflect such dependencies. We address this issue

110

more in Section 5.9.1, which addresses limitations of the current evaluation.

Weather
Data Set

1

32

[...]

himem
Tasks

Result
from task 1

Result
from task i

Result
from task 32

User analyzes
one weather data
set with 32 slightly

different initial
conditions

Data is
downloaded from

data archives or from
meteorological

instruments

Experiments are
automatically run
on best available

resources

User analyzes
and interprets

all results

Figure 5.18: Scenario 1: Workflow instance with expected qualitative behavior.

Scenario 2: Unexpected Workflow Qualitative Behavior

Consider an instantiation of a Montage workflow illustrated in Figure 5.19,where

64 mProjExec tasks run in parallel on compute nodes on the himem cluster and 30

mProjExec tasks execute on the slowio cluster. The total number of concurrently

monitored tasks is 94. The user specifies a threshold value of TR � 0.1, representing

the ratio of unexpected to expected behavioral observations he is willing to tolerate.

At periodic intervals correlated with application progress, the framework generates

temporal signatures across all tasks. The following sequence of events illustrates

global performance validation and diagnosis. During the first analysis interval, all

tasks executing on the himem cluster are classified as belonging to an expected behav-

ioral state, while all tasks executing on the slowio cluster also belong to an expected

behavioral class previously observed on that particular system. The threshold value

R is zero because there are no unexpected states. Since R ¤ Tr, the overall qualitative

111

User analyzes
two areas of the sky

for comparisson

Downloads
representative

data sets

Experiments are
automatically run

on best available resources

Sky Area #1,
Data Set 1

Sky Area #2,
Data Set 2

1

64

[...]

Tasks

1

30

[...]

himem

slowio

Result
Data Set 1

Result
Data Set 2

Interpret
Merged
Results

User analyzes
and interprets
both results

Figure 5.19: Scenario 2: Workflow instance with unexpected qualitative behavior.

performance of the workflow is deemed expected.

During the next analysis interval, all the qualitative signatures generated on the

slowio cluster reveal a strong similarity with signatures from the unexpected behav-

ioral signatures associated with perturbations due to an slow network. The threshold

value R � 0.19 becomes greater than the user specified value TR � 0.1. Our frame-

work would report that the overall qualitative performance state of the workflow is

unexpected with the possible diagnostic being a slow or shared network connection

on the slowio cluster. A fault-tolerance service or a scheduler can take this infor-

mation into consideration and may decide, based on a variety of factors (i.e., number

of available resources, number of queued applications, time to completion of the ap-

plication, etc), to migrate the application from the slowio cluster to another cluster

with appropriate network bandwidth.

112

5.7 Framework Evaluation

We infer the efficacy of our framework based on temporal signatures from the

main usage modality for signatures: classification. The evaluation criteria is based

on the ability of a classifier to correctly classify a new, “never-seen” signature as

belonging to the correct category of performance behaviors, expected and unexpected.

Similarly to [22], to say that temporal signatures are accurate, meaningful and of

high-quality is to imply that classification based on those signatures performs well.

Furthermore, in order to test the first hypothesis, we analyze a subset of the ex-

perimental data to show an example where performance data signatures based on

temporal information are superior –in terms of accuracy of classification– to signa-

tures based on instantaneous data values, which do not carry temporal information.

To test our second hypothesis, we analyze all the experimental data for which we

have examples of both expected and unexpected behaviors, and report the overall

balanced accuracy obtained. For both cases of our evaluation, we use K-fold cross-

validation1 as the technique to help test the accuracy of our classifier in the absence

of new experimental samples of behavior.

5.7.1 Comparison of Classification Accuracy Between Instan-
taneous Values Signatures and Temporal Signatures

In this section, we test the validity of our first hypothesis which states that it is

necessary to extract temporal information in performance time series data for the case

of long-running scientific applications. We show need by providing an example where

instantaneous values of performance metrics are not able to accurately distinguish

cases of expected and unexpected performance behaviors.

1Cross-validation is a statistical method of partitioning existing sample data into subsets such
that learning is performed on a subset of the data, while validation of the learning is performed
on another subset of the data. In K-fold cross-validation, the data is partitioned randomly into
K subsets; training is performed on K-1 of the subsets, while the validation is done with the
remaining subset. This process is repeated K times (or folds) such that each of the K subsets is
used exactly once as a validation subset.

113

We make the following high-level deductive argument and substantiate it with

experimental results. If instantaneous values signatures are sufficient for an accurate

classification of expected and unexpected behaviors then temporal signatures are

not probably needed for performance analysis. However, if we show at least some

cases where instantaneous values signatures result in a significantly lower accuracy

of classification than temporal signatures, then it is reasonable to conclude that

temporal signatures help improve performance analysis and are therefore needed.

We use as a validating example the performance data collected from the mProjExec

application during Experiment #25, which represents the unexpected behavior of 30

tasks for a duration of 6332 seconds. Because the characteristics of the environment

(i.e., low bandwidth) do not enable us to collect an expected set of behaviors for the

IO intensive application, we infer from the characteristics of the application observed

on different environments that the expected behavior of mProjExec on the slowio

cluster should look similarly to the expected behaviors found in the environments

with a well-provisioned network. Therefore we generate a simulated data set for the

slowio architecture that looks as shown in Figure 5.20(a). We generate simulated

data resembling the expected behavior of 30 tasks and we compare the performance of

instantaneous signatures with temporal signatures on these expected and unexpected

data-sets.

We sample instantaneous, raw-values signatures for the same data by constructing

a simple signature which incorporates the raw values of the seven selected metrics.

An illustration of instantaneous signature extraction is shown in Figures 5.20(a) and

5.20(b). The “raw-values” are normalized for each metric by the maximum value

ever seen, such that the highest value in a instantaneous, “raw-value” signature can

be 1 and the lowest value can be 0. We perform this normalization as is customary

in data analysis methodology in order to be able to correctly compare signatures

114

Instantaneous
Signature

(a) Examples of instantaneous signatures for ex-
pected performance data.

Instantaneous
Signature

(b) Examples of instantaneous signatures for unex-
pected performance data.

Figure 5.20: Examples of instantaneous signatures extracted from both expected
and unexpected performance data. Performance data is smoothed with a window
size of 60 seconds and instantaneous signatures are extracted every 60 seconds. Some
of the instantaneous signatures sampled from the unexpected data are very similar
to instantaneous signatures sampled from expected data which will likely reduce the
ability of the classifier to correctly classify this data based on this information alone.

115

and to rely on classification results. We also extract temporal signatures from the

same data as described in the previous sections and compare the results of accuracy

classification. The distance metric used for instantaneous signatures is the Euclidean

distance while for temporal signatures it is the normalized Hamming distance, as

each distance metric is appropriate given each signature definition.

The performance data sets are analyzed as an example for the first 1000 seconds

of the duration of the experiment, in order to reduce the number of instantaneous

samples collected. The data is smoothed with a window of 60 seconds for each task

in both expected and unexpected data, resulting in 30 temporal signatures and 480

instantaneous signatures for each behavioral class.

We use cross-validation with K � 10 on the database of both instantaneous and

temporal signatures and compare the results of classification using the knn classifier

with k � 1 in Figure 5.21. In this example data set, temporal signatures outperform

instantaneous signatures considerably, as the balanced accuracy for using temporal

signatures is 0.9858 while the balanced accuracy for using instantaneous signatures

is 0.7848. Analyzing the sensitivity and the specificity values for the classification

results, we note that the temporal signature classification is able to classify, equally

well instances of expected (i.e., high specificity–close to 1) and unexpected (i.e, high

sensitivity–close to 1) behaviors. However, in the case of instantaneous signatures,

while the sensitivity is relatively high, the specificity is a lower 0.6174, implying that

it is more difficult to distinguish unexpected behaviors, because there are samples of

instantaneous signatures which, although they are labeled as unexpected due to the

poor performance of the application, are very similar to instantaneous signatures of

known expected behaviors. This result could have been predicted as instantaneous

signatures tend to give a local view of behaviors, not the needed longer, temporal

one. We therefore conclude that these results show an initial support for our first

116

Figure 5.21: Balanced accuracy results for classification with instantaneous signa-
tures and with temporal signatures.

hypothesis that temporal information is necessary, under certain circumstances, to

help a performance analysis framework better assess application behavior. While we

have shown the potential utility of our temporal signatures, we note that, depending

on the characteristics of the application and of the performance data, there will

likely be experimental data cases where simpler signatures may perform as well or

better than temporal signatures. Therefore, for a full validation of our hypothesis,

more experiments would need to be conducted, supported by more examples of both

expected and unexpected instances of long-running application behaviors.

5.7.2 Classification Accuracy Using Temporal Signatures

In this section, we test the validity of our second hypothesis which states that

temporal signatures based on qualitative variance and pattern as instances of tem-

poral information are sufficient for an accurate performance validation and diagno-

sis. We quantify the accuracy of our framework by testing how well new samples

of temporal signatures are classified into the expected or unexpected behavior cate-

gories. As previously noted in the methodology chapter, we use as the classifier the

k nearest-neighbor algorithm with k � 1 and with the normalized Hamming distance

117

as the similarity metric between temporal signatures. The classification of temporal

signatures corresponds to performance validation (i.e., deciding whether the label

is expected or unexpected), and diagnosis (i.e., deciding which type of unexpected

behavior is detected).

We generate a temporal signature for the entire duration of each task from each

experiment described in Tables 5.3 and 5.4, resulting in a total of 1242 signatures for

the first Montage data set, and 1242 signatures of the second Montage data set. Out

of these signatures, there are 90 instances of unexpected behaviors and 1152 instances

of expected or good-performance behaviors. We note that the ratio of samples of ex-

pected to unexpected behaviors is 1142:90 which represents approximately 13:1. This

ratio strongly supports our choice of balanced accuracy as a measure of evaluating

framework efficacy, because a simpler accuracy metric may inflate accuracy results

due to a larger sample of expected signatures.

Cross-validation with K � 20 partitions all 1242 signatures from each Montage

data sets into subsets, where training is performed on approximately 1085 signatures

and validation is performed on the remaining 157 signatures. Both the training and

validation data sets are randomly chosen each time from both sets of expected (1152)

and unexpected signatures (90).

Table 5.7 shows supportive evidence for our secondary hypothesis that qualita-

tive variance and pattern as instances of temporal information are sufficient for the

creation of performance signatures that can accurately –with accuracies higher than

98.66%– detect instances of expected and unexpected behaviors in long-running sci-

entific applications.

Although these results reflect a very good, high-accuracy of detection, we cau-

tiously note that the accuracy of our framework will most likely decrease as more

experimental data from more applications, configurations and different instances of

118

unexpected behaviors are included. However, our current results offer an initial valid

substantiation of the utility of temporal signatures for performance validation and

diagnosis in long-running scientific applications.

mProjExec

with M101

mProjExec

with M57

Average B.A. (S.F.=1 s) 0.9979 0.9976
Average B.A. (S.F.=10 s) 1.0000 0.9947
Average B.A. (S.F.=60 s) 0.9975 0.9929
Average B.A. (S.F.=300 s) 0.9934 0.9866

Table 5.7: Evaluating the efficacy of our framework with K-fold cross-validation,
whereK � 20 and with various smoothing factors applied to the data before signature
generation. The maximum variance ever-seen for each metric is also calculated on
correspondingly smoothed data. It is ideal to obtain a balanced accuracy of 1.0,
which means the classifier does a good job of classifying equally well both expected
and unexpected instances of behaviors.

Considerate Use of Smoothing

We note that smoothing must be carefully applied to the performance time series

data as its misguided application may have a significant impact on our framework’s

accuracy. We describe below an instance showing the effect of mis-application.

Smoothing the performance data prior to calculating the qualitative variance and

normalizing by the maximum variance ever-seen that has not been computed from

similarly smoothed data, will significantly decrease the accuracy of the framework.

The reason for this is because the variance feature contributes to distinguishing the

expected from the unexpected performance behaviors. Normalizing the variance by

a higher maximum value (i.e., the maximum variance value will be higher when

computed from raw data versus smoothed data) will reduce the ability of a temporal

signature to capture the difference between our experimental examples of expected

and unexpected behaviors. We support this statement by running the same type

of cross-validation experiments as done in the previous section, in which we obtain

119

the balanced accuracy rates for this instance of calculating the qualitative variance.

Table 5.8 shows the accuracy results obtained for the unfit application of smoothing

and the impact on the framework efficacy. Figure 5.22 compares the accuracy levels

between the appropriate (i.e., the two top curves), and the inappropriate application

(i.e., the two lowest curves) of smoothing on the calculation of the qualitative feature

variance and shows the significantly reduced accuracy in the case of the inappropriate

use of smoothing.

mProjExec

with M101

mProjExec

with M57

Average B.A. (S.F.=1 s) 0.9993 0.9975
Average B.A. (S.F.=10 s) 0.9326 0.6867
Average B.A. (S.F.=60 s) 0.6839 0.6072
Average B.A. (S.F.=300 s) 0.7164 0.6150

Table 5.8: Considerate use of smoothing: impact of unfit application of smoothing
for calculation of variance feature. Evaluating the efficacy of our framework similarly
as before, with K-fold cross-validation, where K � 20. Accuracy decreases with
smoothing because the temporal features of the diagnostic problem manifest them-
selves at the raw data sampling rate (S.F.=1 s); smoothing, as applied in this case,
reduces the variability and amplitude of the periodicity present in the diagnostic data
and effectively creates signatures more similar to previously known expected states.

While we do not specifically study in this work the effect of smoothing the data

on the pattern feature and its direct impact on the efficacy of the framework, our

experiments with accuracy of the pattern identification mechanism suggest that while

smoothing will increase the accuracy of the pattern identification, over-smoothing can

significantly change the patterns observed. This can lead to an overall decrease in

accuracy of the framework, because some patterns that are present in data for some

level of smoothing may be transformed into different patterns belonging to a different

performance expectation category.

120

Figure 5.22: Impact of smoothing on the variance feature calculation and the direct
impact on framework accuracy. When the qualitative variance feature is calculated
from smoothed performance data normalized by the maximum variance ever-seen that
has not been computed from similarly smoothed data, the accuracy of the framework
decreases significantly, because the variance feature contributes to distinguishing the
expected from the unexpected performance behaviors.

5.8 Performance Impact of Framework

There are three factors within our approach that may add a computational, data

storage or time cost to any system or application using our proposed framework. The

three factors are:

1. Overhead of collecting the data (Overheads: computational and storage),

2. Temporal signature computation (Overheads: computational, storage), and

3. Temporal signature classification (Overheads: computational, storage, and time).

The performance time series data is collected by a widely available and deployed

system monitoring tool, sar [43] which has a low overhead (i.e., observed and reported

overheads for CPU memory resources 0.1%). The overhead may increase and may

affect slightly the disk and the network resources, depending on the sampling rate and

on the duration of monitoring (i.e., writing the collected data to the binary monitoring

121

mProjExec

with M101

mProjExec

with M57

WRF 2.0

with meso

WRF 2.2
with
non-meso

Epoch Length (min) 2748 s 900 s 4216 s 1940 s
Epoch Length (max) 6332 s 6390 s 4270 s 3416 s
Generated Signatures 1242 1242 150 1152
Time to Generate All Signatures 183.23 s 88.24 s 24.49 s 121.76 s
Classification of ONE signature 1 s 1 s 1 s N.A.

Table 5.9: Performance impact of temporal signatures and their subsequent classi-
fication. All timing measurements were done on a Mac Book Intel Core Duo, with
2.0 GHz processor speed and 1 GB RAM. All algorithms were implemented using
Matlab 7.4.0 Release 2007a.

file). However, we plan to take snapshots of the monitoring data at small intervals,

such as 30 - 60 minutes, and automatically generate the compressed signatures from

the data, meaning that we automatically eliminate the cost involved in storing large

amounts of monitoring data that may accumulate over the long-running execution

of a scientific workflow. Only performance time series data representing failed or

important diagnostic cases may be stored, since diagnostic raw data sets are very

valuable for future detection of potential problems.

The temporal signatures are very fast to compute as shown in Table 5.9, and there

is sufficient time to compute hundreds or thousands of signatures during each epoch

of periodic evaluation of performance. Also, the classification of a signature is done

in under a second on a Intel Dual Core 2.0 GHz notebook. We conclude from this

information that signature generation and classification is fast enough to be done as

needed during the performance evaluation of workflows on distributed resources.

The last significant overhead to consider relates to the amount of time needed

to capture samples of expected and unexpected application behavior. Currently,

our framework takes a passive learning approach, where signatures are labeled with

expected or unexpected labels as experiments are performed. This passive approach

can take a long period of time to learn a statistically significant database of samples

122

of behavior. However, this can be remedied by using an active learning approach such

as proposed by [101], where known stress factor can be applied to the applications

of interest in a controlled fault-injection test-bed, and signatures of diagnostic states

can be generated at a much faster rate and with more accurate labels.

5.9 Limitations

We address limitations of our current framework evaluation as well as higher-

level limitations of the approach. First, we list and describe ways in which our

framework could be improved by further evaluation and expansion. Last, we de-

scribe circumstances that will likely cause our approach to perform poorly and may

require significant changes in operating assumptions, implementation techniques, and

evaluation.

5.9.1 Limitations of the Current Evaluation

We list and describe several avenues which we believe would significantly improve

the current framework and expand on its current evaluation.

Passive Learning of Behaviors

Currently, we have passively learned instances of expected and unexpected be-

haviors for our experimental data sets. The major disadvantage of a passive learning

approach is that gathering a representative sample of behaviors will be slow. An al-

ternative approach can leverage an active learning technique, such as that proposed

in [101]. We could construct a fault-tolerance test bed where we inject a variety

of common faults known to affect the performance of long-running applications in

production environments.

This approach would enable us to acquire, in a controlled fashion and relatively

quickly, instances of expected and more importantly –unexpected– temporal signa-

123

tures for an application, and to label them with a known diagnostic state (e.g.,

signature was captured during known memory leak issue affecting the application).

The disadvantage of using temporal signatures of applications under a controlled,

fault-tolerance test bed lies in the fact that such signatures may not have the same

characteristics with signatures captured during a performance problem occurring in

real production environments.

Adaptation to Change

The current framework assumes that once a set of behaviors has been learned, the

overall accuracy of validation and diagnosis will remain constant due to the assump-

tion that behaviors drawn from the same distribution with the training data set will

be analyzed. Because the space of parameters that can affect temporal signatures and

application behaviors is large and complex, it is likely that new application behaviors

will cause a reduction in framework’s accuracy because they are not captured in the

baseline learning set. Under this circumstance, Teresa would need to be enhanced

with a dynamic learning mechanism that would re-learn baseline behaviors once the

overall accuracy decreases below an accepted user value.

Workflow Tasks Independence

While the use of temporal signatures is independent on the dependence relation-

ship in a set of workflow tasks, we currently evaluate workflow-level behavior under

the assumption that behaviors of the tasks do not have a significant dependence on

the temporal observed behavior. The current time series collected and analyzed may

not specifically expose dependent behaviors in a group of tasks (e.g., MPI communica-

tion patterns), but such performance time series may be captured and characteristics

of the temporal signatures can be further studied, together with the implication on

variation of observed temporal signatures for a set of interdependent tasks.

124

Alternate Signature Definitions

In this work we have defined and presented results for a specific instance of a

temporal signature, containing structural and temporal features of performance time

series with two discrete features: relative variance and pattern. There are many other

possibilities of defining signatures for performance time series data. For example, a

continuous feature version of our current signature may capture as one feature, f1,

the continuous normalized variance r0, 1s as well as a feature for each of the pattern of

interest, f2 for the periodic pattern, f3 for the ramp pattern, f4 for the flat pattern,

and f5 for the random pattern, each varying from r0, 1s, where the values in the

interval may represent confidence levels for the detection of each pattern (i.e., 0: non-

confident, and 1: complete confidence). The signature would encode five features for

each of the selected time series.

Additionally, signatures could be also created by varying the number of time

series for which features are extracted. Coupled with the metric attribution work

by Cohen [21], we can use different subsets of times series for different signatures

targeted at identifying different performance problems. For example, time series M �
t1, 2, 3, 4, 5u with the discrete features f1 and f2 may be used to identify problems

related to memory and disk, while time series M � t1, 2, 6, 7u with the same discrete

features, may be used to identify problems related to the network.

Impact of Smoothing the Data on Signatures

Smoothing must be carefully applied to the raw performance data, as it has a

direct impact on the two features we selected for our particular signature definition,

as discussed in Section 5.7.2. If the data is unprocessed, with no smoothing filter

applied, small amounts of variance may have an impact on the pattern identification

mechanism, as patterns may be incorrectly classified. At the other extreme, too

much smoothing can significantly reduce the amount of variance in the series, and

125

may change patterns.

As smoothing will often be used to pre-process monitored data in order to reduce

noise or local variations, care must be taken in applying it because smoothing over

large windows of time may hide some important variations in the data which are

correlated with a significant and persistent performance problem. To support identi-

fication of problems without worrying about finding an optimal smoothing window,

signatures can be generated for different windows, and performance validation and

diagnosis can be done on all these signatures, potentially triggering performance

problem identification for some smoothing levels and not for others.

Transferability of Temporal Signatures

One question that arises from the characteristics of temporal signatures for Mon-

tage and LEAD is whether temporal signatures are transferable – that is, if we learn

a set of expected and unexpected temporal signatures for an application, can we

use them to validate the performance for a new application that exhibits expected

signatures similar to a known application? A further study expanding on this issue

could be of great value in providing further evidence for the practicality and general

applicability of such a qualitative performance analysis approach.

5.9.2 Limitations of the Approach

There are two main circumstances of our approach under which if the operating

assumptions change, they will likely impact the accuracy of our framework. The

contexts refer to our approach’s (1) reliance on an expert for supporting the initial

learning of expected and unexpected behavioral instances, and (2) assumption that

the behaviors of the applications are not dependent on the scientific data analyzed

and on the application’s configuration. Furthermore, there is an inherent loss of

accuracy of validation and diagnosis because we correlate a limited set of performance

126

metrics with higher-level application states. We describe these issues in the following

subsections.

Reliance on Expert for Learning Behavior Instances

Our framework does rely on a human expert or a semi-automated expert to label

samples of performance data associated with both good and degraded performance

behaviors. This setting allows our framework to assess performance via classifiers

in an on-line setting. However, the disadvantage of relying on a human or semi-

automated experts for gathering of training data sets is that accurate labels of be-

haviors are very hard (in terms of time and expertise) to acquire.

In the absence of training data, the alternative is to use unsupervised learning

techniques (i.e., clustering) that may automatically discover groups of behaviors,

which over time, can be associated with various qualitative behavioral descriptions

for a given application. Neither technique (classification or clustering) lacks disad-

vantages. While the disadvantage of the supervised learning technique is that it

requires an expert’s pre-labeled instances of behaviors, the disadvantage of the unsu-

pervised learning technique is that deciding how many behavioral clusters truly exist

in a sampled training set and their practical meaning is typically hard to interpret.

These disadvantages suggest that maybe combining both techniques in an effort to

strengthen their individual advantages may be most practical under certain contexts.

Application Data and Configuration Dependence

Teresa currently assumes that the scientific applications executions do not exhibit

parameter or data dependent behavior. If this assumption is removed, our framework

needs to allow for two modifications: (a) a methodology for deciding the appropriate

time interval for generating signatures periodically, and (b) a characterization how

differences in application data characteristics impact the performance time series

collected and the generated temporal signatures.

127

Characteristics of temporal signatures under these changed assumptions can be

learned by analyzing the impact of various parameters and the contents of the input

data on the time series analyzed. Our work can be expanded by including methods

to map such dependencies described in work by [33, 103].

Non-uniqueness of Diagnostic Signatures

Our temporal signatures correlate symptoms of performance problems in scientific

applications and their execution environments. There could be many problem root

causes that manifest themselves in similar symptoms; therefore, temporal signatures

associated with one symptom may represent different causes or types of problems.

The goal of our framework is to offer guidance in identifying the most likely type

of problem affecting the application and not necessarily to find the root-cause of

the problem. Because it is likely that different behaviors will exhibit similar signa-

tures, this will reduce the ability with which our framework can pinpoint the most

likely problem affecting an application. We discuss more about the related issue of

correlation and causation in the concluding Section 7.2.4.

5.10 Summary

This chapter demonstrated how Teresa reasons qualitatively about temporal be-

haviors for long running components within two large-scale scientific workflows. We

described the scientific applications, their components, and characteristics of the com-

putational environment where we conducted data collection experiments. We further

showed instances of temporal signatures for applications during good performance

executions and during degraded performance executions, and described scenarios of

how the qualitative performance information can be used in practice to reason about

application behavior.

We have presented evidence supporting the hypothesis that temporal information

128

is necessary to extract and analyze in order to achieve performance validation and

diagnosis for the class of long-running scientific applications. Furthermore, temporal

signatures incorporating variance and pattern information generated for these ap-

plications reveal signatures that have distinct characteristics during well-performing

versus poor-performing executions. This leads to the framework’s accurate classifi-

cation of instances of similar behaviors, which represents supporting evidence for the

second hypothesis that it is sufficient to extract variance and pattern as instances of

temporal information available in performance data.

We described the performance impact of using our framework in practice and

addressed both limitations of our current evaluations and limitations of the overall

approach.

129

Chapter 6

Related Work

This thesis uses concepts and techniques spanning several areas, including time

series analysis, pattern recognition, dimensionality reduction and compression, learn-

ing algorithms for problem diagnosis, methodologies for multi-variate data analysis,

and visual analytics. We apply the framework in the context of performance analy-

sis of Grid scientific applications1. Figure 6.1 shows a visual map of the techniques

borrowed from related areas, and how we combine them to achieve a qualitative

performance assessment in scientific workflows.

The following sections describe some of the more relevant examples of approaches

similar to our own as they have been used in the analysis of distributed systems and

applications.

6.1 Temporal Signatures

Our framework generates a compressed representation of data in performance time

series during application execution. For this purpose, it uses some methodologies

employed in classical time series analysis as well as techniques for feature extraction

from time series data.

While there is a significant body of research in computer science, engineering and

other fields employing similar methodologies, we describe only the ones most similar

with our proposed work.

1Used interchangeably with scientific workflows or scientific Grid workflows.

130

Application &
System Signatures

PERFORMANCE ANALYSIS
of SCIENTIFIC WORKFLOWS

Performance Monitoring
- Grid infrastructure
monitoring
- Workflow monitoring
- Application
instrumentation / profiling

Workflow Optimizations:
minimize total execution time
- Middleware optimizations
(resource mapping, scheduling,
performance prediction)
- Workflow loss-of parallelism
- Data Transfer (file staging,
database access, etc)
- Task-level (parallel
overheads, external load)

Performance
Analysis & Visualization
- Few approaches to date
- Threshold-based
- Visualize metrics of interest,
plots, charts (activity status over
time, % of failed activities, data
transfer rates, infrastructure
monitoring data)

Uses As
Input

Can Help
Optimize
Workflow
Execution

Time

Offers Simple
Visualizations
of Qualitative
Performance

State

Policies
for Reasoning
with Qualitative

States

1

3

Supervised
Learning

Problem
Diagnosis

2 SUPERVISED LEARNING
FOR PROBLEM DIAGNOSIS
IN DISTRIBUTED SYSTEMS

& APPLICATIONS

Time-Series
Analysis

TEMPORAL
SIGNATURES

REASONING WITH
QUALITATIVE PERFORMANCE

INFORMATION

Qualitative
Reasoning / Policies

Feature Extraction
in Time-Series

Figure 6.1: Qualitative performance analysis framework: related areas and problem
context.

6.1.1 Time Series Analysis

A time series is an ordered sequence of values for a variable at specific, often

equidistant, time intervals. Time series analysis focuses on: (1) understanding the

structure and underlying forces that produced the data, and (2) finding a model

that fits the given time series data as well as possible in order to correctly forecast

future values of the variable [35]. Our framework focuses only on the former part

of classical time series analysis; we strive to understand characteristics and special

features present in the observed performance time series during application execution.

We do not attempt to fit a model to the series and/or make predictions about future

131

performance metric values.

There are two common classes of techniques applied to time series analysis: fre-

quency domain techniques and time domain techniques. Frequency domain method-

ologies, such as spectral analysis or wavelet analysis, investigate a given time series

with respect to frequency, while time-domain ones, such as auto-correlation and cross-

correlation analysis, investigate the series with respect to time. In our work, we rely

primarily on using time domain methodologies, in particular we make use of auto-

correlation analysis for pattern detection.

Examples of Time Series Analysis for Performance Analysis

Various time series analysis methodologies have been widely employed in under-

standing and improving the performance of applications and systems. We present

a small subset of such examples and discuss similarities and differences with our

approach.

Tran addresses in [105] the Input/Output (I/O) performance in high-performance

computing (HPC) systems. An adaptive framework, called TsModeler, automati-

cally models I/O requests using auto-regressive integrated moving average (ARIMA)

time series models to predict temporal patterns of I/O requests. The resulting time

series models coupled with spatial Markov model predictions enable more efficient

prefetching of blocks in I/O systems. Our framework uses similar time series analysis

techniques, in particular aspects related to auto-correlation analysis for automatic

time series model identification. However, mathematical properties of the ACF are

only used for a heuristic pattern identification mechanism, instead of more complex

methods, such as periodicity detection mechanisms [4, 34]. We do not attempt to

find a best model for any of the performance time series; we are only interested in

extracting a small set of features from the series that we hypothesize can be used for

problem diagnosis in long-running scientific Grid applications.

132

Brutlag [18] proposes a mathematical model based on exponential smoothing and

Holt-Winters forecasting for the automatic aberrant behavior detection in network

time series. Aberrant network behavior in performance time series data is decom-

posed in three components: (1) an algorithm for predicting values of a time series

one time step into the future, (2) a measure of deviation between the predicted and

observed values, and (3) a mechanism to reason if one or more observed values are

“significantly deviant” from the prediction. A similar approach is also described in

[112], where the focus is to detect as soon as possible network performance failures

by studying deviations in the performance time series data of number of Internet ser-

vice requests processed over a specific time interval. While they do not use specific

time series model fitting for forecasting as in [18], they do use the expected mean

and variance of each process to identify whether the observation is within expected

norms. While we are also interested in detecting unexpected or aberrant behavior in

time series, we do not take the same approach with [18]. As previously stated, we do

not use techniques for time series forecasting. Furthermore, we analyze characteris-

tics of a set of time series, not only an individual time series, as we are interested

in an application’s behavior as it utilizes necessary resources within a system (e.g.,

CPUs, memory, disk, network).

6.1.2 Dimensionality Reduction for Time Series Data

Massive data sets have become common in many applications and pose new chal-

lenges for knowledge discovery. When dealing with massive multi-variate time series

data, we must employ specific techniques that analyze these data as automatically

as possible and provide us with the needed information to make a specific decision

within a specific context. This general problem is known as dimensionality reduc-

tion, and various techniques have been developed to address it. The techniques are

broadly classified in two categories: (1) variable selection, and (2) feature selection

133

& extraction. The process of variable selection refers to identifying a small set of

time series metrics variables that are most useful in identifying or detecting a specific

objective function. Feature selection refers to the automatic process of identifying a

small set of relevant features or characteristics within the selected variables that can

be of further use for the same objective function; feature extraction is the process

by which a selected feature can be extracted from the data. There are significant

benefits to using techniques for dimensionality reduction. Benefits include: (1) mak-

ing easier data understanding and visualization, (2) reducing the measurement and

storage requirements, (3) reducing the time needed to train a classifier for the data,

and (4) defying the curse of dimensionality to improve the classifier efficacy [46].

In this work we assume that variable selection has been already performed by

either a domain expert or by an automatic technique such as the metric attribution

described by Cohen [21]. Our focus is on deciding on a set of features in time series

that would be most useful and relevant to distinguish between possible persistent

problem states affecting application performance.

The types of features that one can select and extract form time series data can

be broadly classified in two categories: (1) statistical features, and (2) structural

features.

Statistical features are extracted using established concepts from statistical de-

cision theory to discriminate among data from different groups based on quantita-

tive features of the data [87]. Common techniques for statistical feature extraction

include various time series transformations, including the identity transformation,

Fourier transformations and wavelet transformations. Examples of statistical fea-

tures in time series data include mean, variance, frequency counts, auto-correlation

coefficients, wavelet transform coefficients and so on.

Structural features are extracted using methods relied on syntactic grammars to

134

discriminate among data from different groups based upon the morphological in-

terconnections present within data. Examples of structural features in time series

include the extraction of presence of straight lines, parabolas, peaks, sinusoidal, tri-

angular or rectangular patterns.

Limitations of using statistical features for classifications include the difficulty of

extracting structural patterns or sub-patterns from the data using only quantitative

features, while the limitation of using structural features for classification include the

difficulty of implementing the feature extraction in general, in the absence of specific

domain knowledge.

Below we give some selected examples from both approaches using both types of

features to achieve classification of time series data.

Use of Statistical Features for Time Series Classification

Nurmi and Floréen [86] propose a method to selecting features in time series

data that is generated in adaptive, context-aware systems. Data available in these

contexts include time series data from a user’s GPS, cellular phone, car accelerometer

reading. Other sensors may measure physical characteristics of the user context,

and the potential for data generation is enormous. Therefore, the authors devise a

scheme involving feature selection in time series in order to reduce communications

and computational costs. The features used are statistical measurements of the time

series and include the mean, variance, auto-correlation and absolute magnitude and

they various subsets of them are selected for transmission at different times, ti, based

on their relevance to the user activity.

Mierswa [74, 75] describes a methodology that extracts and uses a set of statistical

features from audio data. Statistical features extracted include the average loudness,

average distance and variance between extreme values, tempo and variance of the

auto-correlation, k highest peaks after a Fourier transfomration and so on. The

135

features are used to identify the genre of a set of users’ music files, in order to make

automatic music recommendations to users of “Internet” music players (e.g., Itunes,

Musicmatch).

Use of Structural Features for Time Series Classification

We present an example of structural pattern recognition [87] in time series that

comes from the medical domain, specifically electrocardiogram diagnosis. Each time

series records the electrical activity recording during a patient’ heartbeat by a single

electrode. The electrocardiogram of a healthy patient looks similarly to the time se-

ries from Figure 6.2(a) while the electrocardiogram of a patient who may suffer from

a cardiac condition called myocardial infarction resembles the time series from Fig-

ure 6.2(b). The structural features present in the time series (e.g., peaks and valleys)

have been encoded using symbols and a grammar, which helps identify automatically

the expected versus the unexpected cardiac condition.

(a) Normal Electrocardiogram: Parse string:
P+ Q- R+ S- T+.

(b) Abnormal Electrocardiogram: Parse
string: P+ Q- R* S- T-.

Figure 6.2: Examples of time series from a cardiogram of a healthy patient (a) and a
patient suffering from an unhealthy condition (b). Structural features are encoded in
a parse string representing peaks (+) or valleys(-) in the data and a specific grammar
describing the expectation of a specific symbol with respect to time. From [87].

Xie and Yan [51] recently proposed a structural (or qualitative) feature extraction

136

method for time series data from the financial domain. The authors use the domain

knowledge from the financial field with respect to analyzing stock prices: that is,

they try to identify shapes of the price patterns, in particular they identify convex or

concave features in the time series data. These qualitative features are independent

of the actual numerical values of the time series. Identifying these features in time

series data can guide the decision on when to buy or sell various stocks in order to

maximize profit.

Other Approaches for Dimensionality Reduction in Time Series

Within the context of very large time series, there are an abundance of techniques

that have explored methods for time series clustering and compression based on

feature extraction and representation; a notable recent technique is SAX [64]. We

believe there are vast amount of opportunities for using techniques developed in the

space of time series clustering and compression together with multi-dimensional data

visualization designed for user-centric performance analysis approaches.

Our Approach

Methodologies and applications for feature selection and extraction in time series

abound in many domains. Within our framework, we employ structural feature ex-

traction from time series data. The structural features of interest, (e.g., pattern in

the time series data: random, flat, periodic, ramp) are based on specific knowledge

of characteristics of large-scale scientific applications. Furthermore, we also extract

a “qualitative feature” from the time series data, which is the relative variance of

a metric given a scientific application’s execution in a given computational environ-

ment. The choice of a structural feature selection versus the more common statistical

feature selection was guided by the hypothesis that we could extract information from

performance time series data that could be used to compare and understand the be-

havior of scientific applications across different computational systems. Notice that

137

the structural/qualitative features provide independence on the actual numeric value

of a time series, suggesting the possibility of multi-environment behavioral compari-

son.

6.1.3 Application and System Signatures

Our work analyzes time series data and strives to extract a compressed represen-

tation or signature that may help in problem diagnosis and remediation. There are

many existing techniques which have been developed that analyze data and extract

a signature from it for the purpose of problem identification (e.g., intrusion detec-

tion, system health, application performance, to name a few). In essence, application

and system signature approaches are another form of dimensionality reduction in

data, calibrated to specific domain knowledge. Below, we highlight some of these

approaches.

Jain [49] describes examples of visual signatures of performance problems, dis-

played with the help of Kiviat graphs. Kiviat graphs of different systems or of the

same system at different times allow the system administrator to detect resource bot-

tlenecks and imbalances. These simple visual performance signatures represent an

early approach of qualitatively describing a good (i.e., graph has star-like appearance

as shown in Figure 6.3(a)) versus a bad (i.e., graph looks more like a polygon than a

star Figures 6.3(b) and 6.3(c)) system state.

Lu and Reed [66] describe compact application signatures for parallel and dis-

tributed scientific codes, an approach that summarizes using poly-lines, as shown in

Figure 6.4, the time-varying resource needs of applications from historical trace-data.

Applications of interest are instrumented to collect event traces as well as to insert

markers that aid in comparing signatures across executions and platforms. Applica-

tion signatures are used in combination with performance contracts [109] to validate

execution performance.

138

(a) Balanced. (b) CPU-Bound. (c) IO-Bound.

Figure 6.3: Examples of Kiviat graphs for visually detecting performance issues in
a system. Kiviat graphs having a star-shape as in a) are ideal cases.

Figure 6.4: Example of a performance time series metric (dashed line) and its
compressed, poly-line representation (solid line), from [66].

Mirgorodskiy et al [77] describe an approach for locating causes of certain types

of abnormalities in distributed applications that contain multiple identical processes

executing similar activities. They instrument the application and use function-level

traces to capture behavioral information of the processes during execution. The

core of the approach is using time profiles for each process for possible problem

identification. A time profile p for a given host h where a process executes is defined

as a vector of length F , where F represents the total number of functions in the

application. The time profile, pphq simply counts the cumulative amount of time

spent in each of the process’ functions f1, � � � , fi, � � � , fF and could be easily thought

of as a compact representation or signature of the performance data collected. Because

139

the processes are assumed to be doing the same activities, each process should have

about similar time profiles for each fi. If one of the process deviates from the time

profiles of all its peers, the approach signals the process as problematic. Figure 6.5

illustrates the time profile approach.

Figure 6.5: Example of two simple time profiles of identical processes that have only
two functions, A and B. The time profile for g � p0.6, 0.4q while for h � p0.8, 0.2q.
Processes experiencing performance problems tend to have dissimilar time profiles.
From [77].

Jones and Li [52] build temporal signatures of application to perform intrusion

detection. A temporal signature in this context is defined as a system-call sequence

augmented with time-stamp of the system-call. Figure 6.6 shows two temporal signa-

tures of system-calls where one signature is flagged as a potential security risk due to

the large delay between certain system-calls. Possible intrusions are simply detected

by comparing the signature of the intrusion with an expected temporal signature of a

normal application.

Figure 6.6: Example of two temporal signatures of system-calls used for intrusion
detection; signature B is anomalous. From [52].

Cohen et al. [21] propose the use of Tree-Augmented Bayesian Networks (TAN) to

identify combinations of system-level metrics and threshold values that correlate with

140

high-level performance states in a three-tier Web service. TAN models are further

used for offline forensic diagnosis and in limited settings for performance forecasting.

More recent work by Cohen et al. [22] presents a method for automatically extracting

an indexable signature that distills the essential characteristics from a system state.

The technique clusters system states corresponding to similar problems, allowing

diagnosticians to identify recurring problems and to characterize the core features of

a group of problems.

6.2 Learning Techniques for Problem Diagnosis

There exist two fundamental approaches by which one can learn from perfor-

mance data cases of expected or unexpected behavior. One approach, called super-

vised learning (or classification), relies on an expert to provide samples of behaviors

that correspond to healthy and unhealthy performance states. The other approach,

called unsupervised learning (or clustering), attempts to discover groups of data that

correlate with performance states. While there are a large number of works employ-

ing such techniques, we only present a few examples to illustrate the techniques as

applied to performance data.

6.2.1 Classification Techniques

A component of our framework includes a supervised-learner (or classifier) that

trains to distinguish good versus bad performance cases. In an on-line-setting, it

helps to distinguish possible problem states affecting application performance.

Classification techniques used for a wide range of data abound in literature [32,

47]. Methods include k-nearest-neighbor search, neural networks classifiers, fuzzy

classifiers, Bayesian classifiers, or support vector machines. The current work uses

a classifier based on the k-nearest-neighbor algorithm. In the next section, we will

describe some approaches that use classification to help with problem diagnosis in

141

distributed systems and applications.

Yuan et al [117] describe a technique based on supervised learning to identify

reproducible failures from system call traces of applications. Similarly to the approach

we take in our framework, the label of the trace determines the type of observed

problem and in the case described the root cause of the problem.

6.2.2 Clustering Techniques

In [77], the authors use dynamic instrumentation to collect control-flow traces of

each process in a distributed application that contains multiple identical processes

performing similar activities. Because the processes are assumed to behave similarly

by having the same control-flow, problems such as fail-stop2 are detected by identi-

fying processes that stopped earlier than the rest, while non-fail-stop problems are

detected using outlier detection techniques to identify processes that behave differ-

ently from the rest.

Roth and Miller [98] introduce a scalable performance diagnosis approach for

finding performance problems in applications with a large number of processes. The

approach employs two techniques: (1) a well-established technique for methodically

examining the solution space and (2) a Sub-Graph Folding Algorithm for bottleneck

search, that dynamically clusters application processes based on their qualitative

behavior.

6.3 Context: Performance Analysis of Scientific

Workflows

The fundamental metric that defines performance in the case of workflow appli-

cations is the total time to execute the entire instance of a workflow, Tworkflow. This

time depends on several factors, including (1) the amount of resources allocated to it,

2A problem in which some processes stop earlier than the rest.

142

(2) the type of computational resources assigned (e.g., CPU speed, memory size, disk

and network resources), and (3) characteristics of the workflow/application executing

on these resources.

Because of these factors, researchers have employed a variety of techniques to

improve the overall execution time, including mechanisms that optimize the amount

and types of resources available to the workflow before and during execution as well as

methodologies to understand characteristics of the specific application and optimize

for those specific characteristics (e.g., load imbalance, communication, external load,

etc). Moreover, very recent approaches have looked at building the infrastructure and

required tools to provide performance monitoring data, analysis and visualization for

scientific workflows at multiple levels of abstraction, ranging task-level monitoring to

global workflow level monitoring.

In the following section, we present an overview of some of these key approaches.

We then present our framework within this larger context and discuss similarities,

differences and interactions between our framework and these related approaches.

6.3.1 Performance Monitoring

There are many distributed performance monitoring tools available for Grids; a

detailed categorization and comparison of the tools is done in [41]. Our focus is to

be aware of performance monitoring tools that have been made available to support

performance monitoring of scientific workflows, as this data can be used as input by

our framework.

SCALEA-G [108] is one of the few unified monitoring and performance analysis

for Grid applications. The framework offers support for both source code and dy-

namic instrumentation for profiling and monitoring events of Grid applications. The

performance monitoring data is used by methodologies for performance analysis and

143

visualization for scientific workflows. Some of these approaches are detailed later, in

Section 6.3.4. Another performance monitoring framework is MonALISA [62], which

is a widely used distributed service for collecting and processing monitoring infor-

mation for Grids and distributed applications. The monitoring information gathered

can be used by higher-level services to provide decision support, in order to maintain

and optimize workflow through the Grid.

Another widely used performance data monitoring for clusters and Grids is Gan-

glia [69]. Ganglia utilizes a hierarchical design to gather data from federations of

clusters. It employs the use of commonly used technologies for data representation

(XML), data compaction and transport (XDR), and for storage and visualization

(RRDtool). It utilizes carefully designed data structures and algorithms to have a

low overhead at both the individual node resource level and for groups of resources.

Ganglia is currently used on thousands of clusters around the world [1].

Our methodology can easily integrate with any Grid application performance

monitoring system and provide a qualitative performance analysis service to the Grid

application users.

6.3.2 Workflow Optimizations

Because there are many different levels at which a scientific workflow’s execution

time can be improved, we present a brief overview of related work studying effi-

cient resource selection and mapping, scheduling strategies, methods to detect loss

of parallelism in workflows, optimizations for data transfers, as well as comprehen-

sive methods attempting to optimize workflow performance by optimizing at multiple

levels at once.

144

Resource Mapping and Workflow Refinements

Resource mapping refers to finding a best set of available resources that match

an application’s needs. A number of frameworks have been developed to address

these issues for scientific workflows. They include Pegasus [25], the Virtual Grids

Execution System (VGES) [57] - which exposes techniques for resource allocation

and execution, and flexible resource selection via qualitative description of resources

[20, 48], GridARM [102] - which negotiates, reserves and allocates best available

resources.

Another related technique helping the effort of appropriate resource mapping

refers to the concept of workflow refinements, where a workflow is analyzed, before

resource mapping and allocation, to determine whether some of the workflow com-

ponents do not require computing resources, as they may already been computed.

Such an technique is used by Pegasus within Montage - an astronomical workflow

application for computing sky mosaics. In Montage’s case, existing data catalog in-

formation is used to discover whether intermediate sky mosaics have previously been

computed.

Workflow Scheduling

Workflow scheduling refers to the act of scheduling the set of a workflow’s task

on the set of mapped resources. The workflow scheduling engine typically maps a

workflow instance to actual Grid resources. A workflow scheduler typically imple-

ments a variety of Directed Acyclic Graphs (DAGs)-based scheduling heuristics which

can have varying levels of accuracy and different optimization goals. Scheduling al-

gorithms take as input information about predictions of execution times for every

workflow task or activity3, as well as predictions about the availability and quality

of resources to be used (i.e., predicted bandwidth on each data link in a workflow)

3From this point forward, we will refer interchangeably to workflow task and activity.

145

and output a static schedule.

Given the uncertainty and varied availability of resources on Grids, allowing a

workflow execution system to respond to changes in the execution environment can

significantly improve the overall performance of a workflow. Below are some tech-

niques based on specifying and monitoring performance or execution contracts of

workflow tasks.

Threshold-based approaches supporting adaptive scheduling

In [93], the authors specify and monitor a fixed set of performance metrics for each

workflow task. The metrics include: (1) structural assumptions within a workflow

(e.g., such as dynamic expansion of the workflow, due to the need to compute more

calculations on-demand), (2) external load on processors, (3) processors no longer

available, (4) low-bandwidth, high-latency networks and (5) new Grid sites available.

When any of these metrics are above or below a specified threshold and violate

initially specified contracts, a rescheduling event is triggered that makes the scheduler

to re-evaluate current workflow and execution environment conditions and output a

new schedule.

Similarly to the above, the authors in [96] describe performance contracts [109, 9],

and real-time adaptive control, two possible mechanisms to realize soft performance

guarantees for Grid applications. Performance contracts formalize the relationship

between application performance needs and resource capabilities. Contract moni-

tors use performance data to verify quantitatively (i.e., using performance metric

thresholds) if expectations are met. If contract specifications are not met, the system

adapts the application accordingly.

More recently, the authors of the K-WfGrid and DIPAS projects [106, 107] study

how performance problems in Grid workflows can be determined by examining the

value of thresholds specified for a set of workflow performance metrics of interest to

146

the user. A performance problem occurs when the value of the metric is greater than

the threshold. For example, they define a set of workflow performance metrics that

track various overheads for workflows [84], such as those resulting from scheduling or

resource management overhead or data transfers. The authors define a global work-

flow performance metric called performance severity that indicates the importance

of a performance overhead to the total execution time of the workflow, Tworkflow.

When the performance severity passes a predefined threshold, an alarm is triggered

and the user or some workflow service can provide a specific solution to reducing or

eliminating the source of the overhead.

Fault-tolerance and Recovery

In [54], the authors propose a Fault-Tolerance and Recovery (FTR) service which

uses information from application performance models, resource availability models,

network latency and bandwidth, and queue wait times for batch queues on compute

storage to determine whether application over-provisioning or migration is the better

strategy to reduce individual workflow task failure rates. Their results show that such

recovery mechanisms can help improve the overall failure rate of a meteorological-

based large-scale workflow, LEAD [29] considerably (e.g., from 79.39% to 23.03%).

6.3.3 Comprehensive Workflow Performance Analysis

In [84] and more recently in [94], the authors propose an overhead analysis model

for scientific workflows executing on Grids. The total execution time of a work-

flow, Tworkflow is defined as the sum of a theoretical ideal time, Tideal, and a set of

temporal overheads originating from various sources, Toverheads. In this setting, the

analysis efforts focus on describing, classifying and measuring sources of overheads

in a systematic manner in order to minimize the overhead time. Scientific workflow

overheads are classified into four main types: middleware (e.g., impact of resource

147

brokerage, scheduling algorithms, performance prediction, security, service latency),

loss of parallelism (e.g., load imbalance, serialization, replicated job), data transfer

(e.g., file staging, database access, input from user) and workflow task/activity (e.g.,

parallel overheads or external load). Their experimental analysis for one workflow

scientific workflow application, WIEN2K [13], results in five major types of overheads

due to: (1) serialization due to a limited Grid size, (2) loss of parallelism due to load

imbalance of the application, (3) job preparation overhead for compression and de-

compression of a large amount of files, (4) data transfer overhead and (5) external

load overhead depending on the number of Grid sites used by the workflow and also

depending on the nature of the SMP architecture that executes workflow tasks or

activities concurrently. The overhead on this specific architecture stems from remote

memory accesses and contention on the shared memory bus, parallel process manage-

ment and cache coherency protocols. If compute clusters are used, the external load

overhead for their specific application is insignificant because of dedicated access to

individual compute nodes within a cluster.

6.3.4 Performance Analysis and Visualization

SCALEA-G [108] is a recent effort towards a unified monitoring and performance

analysis for Grid applications. The framework exposes data within a workflow envi-

ronment from multiple levels, including (a) monitoring of events from Grid applica-

tions, (b) profile data from both source code and dynamic instrumentation, and (c)

from Grid infrastructure monitoring tools such as Ganglia [69], the Network Weather

Service (NWS) [115], or Monitoring and Discovery Services (MDS) [24]. The authors

in [17] use the foundation provided by SCALEA-G and provide the scientific workflow

user with the ability to monitor different kinds of data about their workflow and to

inspect graphs that visualize metrics of interest, such as status of various workflow

events (e.g., activity has been initialized, queued, failed), data transfer rates between

148

Grid sites, analysis and comparison of activity distribution for Grid sites as well as

querying of infrastructure monitoring information during execution (e.g., what is the

CPU load on host A at a specified Grid site).

Another similar project aimed at expanding the number of performance moni-

toring and analysis tools for scientific workflows is the K-WfGrid project, [106]. It

exposes the monitoring and analysis of workflows and the corresponding computa-

tional infrastructure through a Web portal. The difference from [17] appears to be

the introduction of XML-based representations for describing application structures

and specifying instrumentation requests, to ease the interaction between the many

services and clients involved in providing monitoring data and analysis services.

6.3.5 Discussion

In our research, we assume that the workflow application has already been mapped

and scheduled on the best computational resources available. Furthermore, we do

not address the issue of distributed performance monitoring for a scientific workflow,

as our framework strictly analyzes easily available time series data correlated with

workflow or task performance. For example, our approach can use data provided

at the workflow level by an integrated Grid performance monitoring tool such as

SCALEA-G [108] or that in the related K-WfGrid project [106], and transform it to

a compact representation so as to learn essential characteristics of data that correlate

well with workflow performance states. Performance monitoring and visualization

tools such as those in [17] are very valuable since they enhance the support provided

to a scientific user to understand the performance of a workflow. However, they do

rely on the user to “analyze” the data charts, plots and other visual information. This

analysis process may be reasonable for a user with prior experience to performance

analysis tools and for inspection of moderate amounts of data and plots. However,

when the workflow scales to thousands of nodes, and the amounts of data monitored is

149

very large, even experienced performance analysts will have difficulties understanding

the performance of the analyzed workflow. Our approach represents a small-step

towards a self-assessing and self-diagnosing performance framework, where we rely

a user’s notion of a successful and well-performing workflow or activity execution to

learn patterns in the performance data associated with these qualitative performance

states.

The qualitative performance analysis framework we propose in this thesis is in-

tended to help minimize the total workflow execution time, Tworkflow, by analyzing,

during execution, performance data characteristics of the longest-running workflow

tasks, and offering qualitative and intuitive interpretations of performance to both

the scientific application user and a fault-tolerance and recovery service, such as [54],

which can use the information to trigger recovery/scheduling events based on specific

policies.

Comprehensive Workflow Performance Analysis

Using the overhead terminology introduced by [84], this thesis concentrates on

understanding the overhead involved only in long-running activities (or tasks) within

a scientific workflow, the reasoning being that since long-running components con-

stitute a significant time of the total running time, optimizing this subset of tasks

will result in the optimization of the overall execution time of a workflow, Tworkflow.

Our framework can analyze activities that are either individual programs or parallel

programs; we only require a labeling of whether the long-running activity was suc-

cessful, as well as performance monitoring data of interest collected from where each

studied activity executes.

Threshold-based Approaches

Threshold-based approaches such as those in [93, 96, 106], are definitely useful to a

user who knows (1) the key metrics to monitor, and (2) the best value of the threshold

150

that would capture the most important performance problems without triggering false

alarms. The major weakness of threshold-based approaches that rely on static, non-

adaptive thresholds is the assumption that these meaningful threshold values are

known in advance. This is seldomly true in practice. Furthermore, in a complex

and dynamic environment such as a Grid on which different scientific workflows with

varied characteristics execute, finding meaningful performance metric thresholds for

a scientific workflow is extremely difficult.

While there are no formal service-level agreements (SLA) for scientific workflows

as in the commercial Grid domain (though specific threshold methods could be con-

sidered in essence, SLAs for workflows), we attempt to define the concept of an SLA

in terms of the qualitative notion of performance as understood by the scientific user.

Our approach will integrate well with self-healing, fault-tolerance and recovery ap-

proaches for scientific workflow tasks as described in [54], because in the cases of

long-running workflow tasks, the FTR framework does not need to wait for the task

to fail in order to initiate a remedy action. The qualitative performance output of our

framework can notify FTR of persistent performance problems/degradations affect-

ing long-running activities and various policies for triggering an FTR action can be

implemented, depending on each tasks’s effect on the global workflow performance.

Problem Diagnosis in Large-Scale Distributed Environments

Because of the assumption of process similarity, the methodology in [77] does not

require learning a database of reference data to distinguish good versus anomalous

behaviors. On the contrary, our approach relies on a supervised learning technique

to identify in a training phase well-performing versus poor-performing application

states. The performance data we collect is also different in two ways: (1) it does not

come from sources involving application instrumentation (static or dynamic), and (2)

it is collected at much coarser time scales then instrumentation traces. As a result,

151

the types of diagnostic problems we are able to detect are dependent on whether the

specific problem will manifest itself persistently over a longer period of time within

the data we analyze.

6.4 Summary

We described in this chapter selected works spanning three main domains: time

series analysis and dimensionality reduction, supervised learning for problem diag-

nosis and qualitative reasoning. We have discussed how our proposed framework

compares and contrasts with these selected works.

The performance analysis framework we propose in this thesis is different from

existing approaches supporting the performance scientific workflows in several ways:

1. We focus only on the performance of long-running tasks within a scientific

workflow,

2. We analyze and extract information only from performance time series data

and not qualitative variables such as those describing the execution status of a

task (e.g., running, started, failed),

3. We do not currently analyze data that require instrumentation of application

code,

4. We target the scientific workflow user who does not have the experience of using

traditional performance analysis tools for the science applications,

5. We show how to correlate qualitative behavioral task states to performance

time series metrics and how to use it for problem diagnosis and remediation.

While similar methodologies at the intersection of machine learning, statistical

induction, and systems [44] have been previously applied in different domains [21, 22,

152

15], we believe, to the best of our knowledge, this to be a first work looking at a user-

centric, qualitative performance evaluation and failure detection by automatically

deriving correlations from the data in the context of scientific workflows executing in

Grid environments.

153

Chapter 7

Conclusion and Future Directions

This thesis presented a general qualitative performance analysis framework that

incorporated (a) techniques from time series analysis and machine learning to extract

and learn from data, features of interest associated with application performance

in order to reach a qualitative interpretation of the application’s behavior, and (b)

mechanisms and policies to reason over time and across the distributed resource space

about the qualitative behavior of the application.

7.1 Conclusions

Our empirical evaluation with two real Grid applications from meteorology and

astronomy on diverse physical computing resources showed support for our two stated

hypotheses: (1) for the class of long-running scientific applications it is necessary to

analyze temporal information present in performance data, and (2) that variance

and pattern as specific instances of such information are sufficient for accurate per-

formance validation and diagnosis.

The proposed framework’s ability to generate a qualitative assessment of per-

formance behavior for scientific applications using temporal information present in

performance time series data represents a step towards simplifying and improving

the quality of service for Grid applications.

7.2 Future Directions

We look forward to future research that will strive to achieve a comprehensive

qualitative performance analysis of scientific workflows, by transforming information

found in performance metrics into meaningful, qualitative information useful to both

154

a workflow user and a performance analyst/or performance analysis service.

Additionally, it would be very interesting to test the efficacy of our approach given

variations on the techniques we proposed, as shown in the x-axis, and variations on

context, as described in the z-axis of Figure 7.1.

Below we discuss four potential directions for improvement specific to our context:

scientific workflow applications executing in distributed Grid environments.

7.2.1 Variable and Feature Selection for Performance Data

In this thesis we have chosen a set of variables (e.g., system-level time series

data), and a set of features of the variables (e.g., relative variance and pattern) to

build temporal signatures of applications for performance validation and diagnosis.

Our choices were guided by specific domain knowledge of scientific applications. How-

ever, many performance time series variables can be collected and used for analysis.

For this purpose, the analyst may want to consider existing techniques for automatic

variable and feature selection in order to build a good predictor of application per-

formance. Guyon et al [46] present a good overview of available techniques, which

include independent variable ranking based on correlation criteria or information the-

oretic criteria, variable subset selection based on wrappers and embedded methods

or filters, and feature selection methods employing clustering or matrix factorization

techniques. More specifically to feature extraction in time series data, the work of

Olszewski [87] presents a good overview of existing statistical and structural feature

extraction techniques for time series; the author also proposes a generalized approach

for automatic structural feature extraction, which would be especially useful in do-

mains where one may not know a priori features of interest to investigate.

155

Ef
fic

ac
y o

f F
ra

mew
or

k

Clas
sif

yin
g N

ew
 S

ign
atu

res
 (B

ala
nc

ed
 Ac

cu
rac

y)

Y

X

Z

FRAMEWORK

CO
NT

EX
TS

 (W
or

kl
oa

d,
 E

nv
iro

nm
en

t)

0

100

Temporal Signature
Component

Supervised
Learning Component

Workflow Qualitative
Reasoning Component

CHANGES IN:

- Set of Metrics
- Set of Features

- Classification Schemes - task modeling,
- global performance

interpretation / definition

Scientific Workflows
(Grids, Clusters, HPC arch.)

Databases
(Different Environments)

Web Service Applications
(Different Environments)

Figure 7.1: Other contexts where Teresa may be applied. Variations within both
framework techniques and definitions, as well as the context of applicability can be
explored.

7.2.2 Learning Techniques

Our framework relies on previously labeled samples of performance data to make

the distinction between good and degraded application behaviors. Therefore, we

employ the use of classifiers to assess performance in an on-line setting. Depending

on the definition and size of a temporal signature, different classifiers may yield

better accuracy rates; exploring the impact of various classifiers on the framework

with various signature definitions may be further investigated.

A practical disadvantage of employing a supervised learning technique (i.e., clas-

sification) is that it relies on the availability of a “good” training set of data and

156

signatures for classification. In the absence of training data, the alternative is to use

unsupervised learning techniques (i.e., clustering) that may automatically discover

groups of behaviors, which over time, can be associated with various qualitative be-

havioral descriptions for a given application.

7.2.3 Reasoning with Qualitative Information

In this framework, we have only presented a couple of simple examples of how

one can implement global workflow policies based on the performance states of a

workflow’s long-running tasks to reason about workflow behavior over time, and to

trigger an adaptive re-scheduling if needed. We have assumed that each task within

a workflow has the same utility to the user; this however can be expanded in order

to reflect alternate scenarios.

Towards a Comprehensive Qualitative Performance Analysis for Work-
flows

We presented a prototype framework that uses easy-to-collect, non-instrumented

performance time series, and makes a qualitative assertion about the performance of

the long-running tasks in a workflow. It would be ideal to extend our current frame-

work so that other qualitative information can be extracted from performance data

correlated with factors causing different types of workflow performance overheads as

described in [84], such as middle-ware, loss of parallelism, or data transfer.

7.2.4 Problem Diagnosis: Correlation and Causation

In diagnosis problems across science and engineering domains, it is important to

achieve two goals:

1. distinguish between normal and abnormal data within the target domain, and

2. identify the cause of the abnormal/ symptomatic data observation (and possibly

157

the chain of events from cause to symptom).

As applied to the domain of computing systems, the first goal is called problem

diagnosis or identification, while the second goal is called root cause analysis. The task

of root cause analysis is in general more difficult than problem identification because,

in essence, reverse-engineering the system that produced the diagnosis symptom data

is more challenging than observing expected and symptomatic states and building a

predictor. The crux of the problem lies in the distinction between correlation and

causation.

The performance time series data analyzed in this work allows our framework to

observe correlations between temporal features in time series data and symptoms of

performance for long-running scientific applications. Our work could be expanded

by addressing the challenging root-cause problem and incorporating techniques from

the causality inference literature [90].

158

Appendix A

Upper Bound Calculation for Sample
Variance

Given a time series Z � z1, � � � , zt, � � � , zN sampled at a fixed interval of time, h,

we define the sample mean, m as:

m � 1

N

Ņ

t�1

zt (A.1)

and the sample variance, s2 as:

s2 � 1

N

Ņ

t�1

pzt �mq2. (A.2)

If the time series Z is bounded, that is zt P rzmin, zmaxs, so is its mean, m:

zmin ¤m ¤ zmax (A.3)

�zmin ¥ �m ¥ �zmax (A.4)

�zmax ¤ �m ¤ �zmin, (A.5)

but,

zmin ¤zt ¤ zmax. (A.6)

159

We add (A.5) and (A.6):

zmin � zmax ¤ pzt �mq ¤ zmax � zmin

�pzmax � zminq ¤ pzt �mq ¤ zmax � zmin

|zt �m| ¤ pzmax � zminq

pzt �mq2 ¤ pzmax � zminq2

s2 � 1

N

Ņ

t�1

pzt �mq2 ¤ 1

N
�Npzmax � zminq2.

Therefore, the sample variance will also be bounded:

s2 ¤ pzmax � zminq2. (A.7)

160

Bibliography

[1] Ganglia Web Site. http://www.ganglia.info, 2008.

[2] The Two Micron All Sky Survey. http://www.ipac.caltech.edu/2mass/,
2006.

[3] M. Adya, F. Collopy, J. S. Armstrong, and M. Kennedy. Automatic Identifica-
tion of Time Series Features for Rule-Based Forecasting. International Journal
of Forecasting, 17:143–157, 2001.

[4] M. Ahdesmaki, H. Lahdesmaki, R. Pearson, H. Huttunen, and O. Yli-Harja.
Robust Detection of Periodic Time Series Measured from Biological Systems.
BMC Bioinformatics, 6(117), 2005.

[5] The Amazon Elastic Compute Cloud (EC2). http://www.amazon.com/b/

?node=201590011, 2008.

[6] Amazon Simple Storage Service (Amazon S3). http://www.amazon.com/gp/

browse.html?node=16427261, 2008.

[7] D. Anderson and J. Chase. Fstress User Manual. http://www.cs.duke.edu/

ari/fstress/, 2002.

[8] R. L. Anderson. Distribution of the Serial Correlation Coefficients. Annals of
Mathematical Statistics, 8(1):1–13, 1941.

[9] R. Aydt, C. Mendes, D. A. Reed, and F. Vraalsen. Specifying and Moni-
toring GRaDS Contracts. Technical report, University of Illinois at Urbana-
Champaign, July 2001.

[10] S. Baker. Google and the Wisdom of Clouds: A Lofty New Strat-
egy Aims to Put Incredible Computing Power in the Hands of
Many. http://www.businessweek.com/magazine/content/07_52/

b4064048925836.htm?chan=magazine+channel_top+stories, December
13th 2007.

[11] F. Berman and T. Hey. The Scientific Imperative. In The Grid 2: Blueprint
for a New Computing Infrasctructure, pages 13–24. Morgan Kaufmann, 2004.

[12] B. G. Berriman, E. Deelman, J. C. Good, J. Jacob, D. Katz, C. Kesselman,
A. C. Laity, T. Prince, G. Singh, and M.-H. Su. Montage: A Grid Enabled En-
gine for Delivering Custom Science-Grade Mosaics on Demand. In Proceedings
of SPIE: Astronomical Telescopes and Instrumentation, volume 5487, Glasgow,
Scotland, 2004.

161

[13] P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz. Wien2k: An
Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal
Properties. Technical report, Institute of Physical and Theoretical Chemistry,
Technische Universitat, 2001.

[14] G. Box and G. Jenkins. Time Series Analysis: Forecasting and Control.
Holden-Day, 1970.

[15] D. Breitgand, E. Henis, and O. Shehory. Automated and Adaptive Threshold
Setting: Enabling Technology for Autonomy and Self-Management. In Second
International Conference on Autonomic Computing (ICAC’05), 2005.

[16] K. Brewster. Application of a Bratseth Analysis Scheme Including Doppler
Radar Data. In Proceedings of the 15th Conference on Weather Analysis and
Forecasting, pages 92–95, 1996.

[17] P. Brunner, H.-L. Truong, and T. Fahringer. Performance Monitoring and
Visualization of Grid Scientific Workflows in Askalon. In High Performance
Computing and Communications, volume 4208, pages 170–179. Springer Berlin
/ Heidelberg, 2006.

[18] J. Brutlag. Aberrant Behavior Detection in Time Series for Network Monitor-
ing. In Lisa XIV, New Orleans, LA, USA, 2000.

[19] K. Chen and L. Liu. Vista: Validating and Refining Clusters Via Visualization.
Information Visualization, 3(4):257–70, 2004.

[20] A. Chien, H. Casanova, Y.-S. Kee, and R. Huang. The Virtual Grid Description
Language: VgDL. Technical report, University of California San Diego, UCSD,
2005.

[21] I. Cohen, M. Goldszmidt, T. Kelly, J. Symons, and J. Chase. Correlating
Instrumentation Data to System States: A Building Block for Automated Di-
agnosis and Control. In Proceedings of the OSDI, 2004.

[22] I. Cohen, S. Zhang, M. Goldszmidt, J. Symons, T. Kelly, and A. Fox. Captur-
ing, Indexing, Clustering, and Retrieving System History. In In Proceedings of
SOSP, Brighton, United Kingdom, 2005.

[23] P. E. Crandall, R. A. Aydt, A. A. Chien, and D. A. Reed. Input/Output
Characteristics of Scalable Parallel Applications. In Proceedings of the 1995
ACM/IEEE Supercomputing Conference, volume 2, page 1643, San Diego, CA,
USA, 1995. ACM.

162

[24] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid Information
Services for Distributed Resource Sharing. In Proceedings of IEEE Interna-
tional Symposium on High Performance Distributed Computing, page 181, San
Francisco, CA, 2001. Institute of Electrical and Electronics Engineers Inc.

[25] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman, G. Mehta,
and K. Vahi. Pegasus: A Framework for Mapping Complex Scientific Workflows
onto Distributed Systems. Scientific Programming, 2005.

[26] S. G. Djorgovsky, R. R. Gal, S. C. Odewahn, R. R. de Carvalho, R. Brun-
ner, G. Longo, and R. Scaramella. The Palomar Digital Sky Survey
(DPOSS). http://www.citebase.org/cgi-bin/citations?id=oai:arXiv.

org:astro-ph/9809187, 1998.

[27] J. Doyle and M. McGeachie. Exercising Qualitative Control in Autonomous
Adaptive Survivable Systems. In Self-Adaptive Software: Applications, pages
1–6. 2003.

[28] K. Droegemeier. Linked Environments for Atmospheric Discovery. Technical
report, University of Oklahoma, 1st July 2005.

[29] K. Droegemeier, D. Gannon, D. Reed, B. Plale, J. Alameda, T. Blatzer,
K. Brewster, R. Clark, B. Domenico, S. Graves, E. Joseph, D. Murray, R. Ra-
machandran, M. Ramamurthy, L. Ramakrishnan, J. A. Rushing, D. Weber,
R. Wilhelmson, A. Wilson, M. Xue, and S. Yalda. Service-Oriented Envi-
ronments for Dynamically Interacting with Mesoscale Weather. Computing in
Science and Engineering, 7(6):12–29, 2005.

[30] S. Duan and S. Babu. Processing Forecasting Queries. In Proceedings of the
33rd international Conference on Very Large Data Bases (VLDB)., Vienna,
Austria, 2007.

[31] R. O. Duda, P. E. Hart, and D. G. Stork. Chapter 10: Unsupervised Learning
and Clustering. In Pattern Classification, pages 568–573. John Wiley & Sons,
2001.

[32] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. John Wiley
& Sons, Inc, 2nd edition, 2001.

[33] L. Eeckhout, H. Vandierendonck, and K. De Bosschere. Quantifying the Impact
of Input Data Sets on Program Behavior and Its Applications. Journal of
Instruction-Level Parallelism, 5:1–33, 2003.

[34] M. Elfeky, W. Aref, and A. Elmagarmid. Periodicity Detection in Time Series
Databases. IEEE Transactions on Knowledge and Data Engineering, 17(7),
2005.

163

[35] NIST/SEMaTECH E-Handbook of Statistical Methods. http://www.itl.

nist.gov/div898/handbook/index.htm, 2003.

[36] B. S. Everitt and G. Dunn. Chapter 3: The Initial Examination of Multivariate
Data. In Applied Multivariate Data Analysis. Edward Arnold; A division of
Hodder & Stoughton, London, 1991.

[37] T. Fahringer, R. Prodan, R. Duan, J. Hofer, F. Nadeem, F. Nerieri, S. Podlip-
ing, J. Qin, M. Siddiqui, H.-L. Truong, A. Villazon, and M. Wieczorek.
ASKaLON: A Development and Grid Computing Environment for Scientific
Workflows. In Ian J. Taylor, Ewa Deelman, Dennis B. Gannon, and Matthew
Shields, editors, Workflows for E-Science: Scientific Workflows for Grids,
pages 450–471. Springer-Verlag, 1st edition, 2006.

[38] I. Foster. What Is the Grid: A Three Point Checklist. Grid Today, 2002.

[39] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: Enabling
Scalable Virtual Organizations. International Journal of High Performance
Computing Applications, 15(3):200, 2001.

[40] D. G. Galati and M. A. Simaan. Automatic Decomposition of Time Series into
Step, Ramp, and Impulse Primitives. Pattern Recognition, 39:2166–2174, 2006.

[41] M. Gerndt, R. Wismuller, Z. Balaton, G. Gombas, P. Kacsuk, Z. Nemeth,
N. Podhorszki, H. L. Truong, T. Fahringer, M. Bubak, E. Laure, and T. Mar-
galef. Performance Tools for the Grid: State of the Art and Future, Apart
White Paper. Technical report, Technische Universitaet Muenchen, 2004.

[42] T. Gneiting and A. E. Raftery. Athmospheric Science: Weather Forecasting
with Ensemble Methods. Science, 310(5746):248–249, 2005.

[43] S. Godard. The Sysstat Utilities. http://perso.orange.fr/sebastien.

godard/.

[44] M. Goldszmidt, I. Cohen, A. Fox, and S. Zhang. Three Research Challenges
at the Intersection of Machine Learning, Statistical Induction, and Systems.
In 10th conference on Hot Topics in Operating Systems, volume 10, Santa Fe,
NM, 2005.

[45] GridPP: UK Computing for Particle Physics. http://www.gridpp.ac.uk/,
2008.

[46] I. Guyon and A. Elisseeff. An Introduction to Variable and Feature Selection.
Journal of Machine Learning Research, 3:1157–1182, 2003.

[47] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learn-
ing: Data Mining, Inference, and Prediction. Springer, 2001.

164

[48] R. Huang, H. Casanova, and A. A. Chien. Using Virtual Grids to Simplify
Application Scheduling. In Proceedings of the 20th International Parallel and
Distributed Processing Symposium, Rhodes Island, Greece, 2006. IEEE.

[49] R. Jain. The Art of Computer Systems Performance Analysis. John Wiley and
Sons, Inc, 1991.

[50] G. M. Jenkins and D. G. Watts. Spectral Analysis and Its Applications. Holden-
Day, 1968.

[51] X. Jinfei and Y. Wei-Yong. A Qualitative Feature Extraction Method for Time
Series Analysis. In Yan Wei-Yong, editor, Control Conference, 2006. CCC
2006. Chinese, pages 2220–2225, 2006.

[52] A. Jones and S. Li. Temporal Signatures for Intrusion Detection. In 17th
Annual Computer Security Applications Conference, New Orleans, Louisiana,
2001.

[53] M. V. Joshi. On Evaluating Performance of Classifiers for Rare Classes. In
IEEE International Conference on Data Mining, pages 641–644, 2002.

[54] G. Kandaswamy, A. Mandal, and D. A. Reed. Fault Tolerance and Recovery
of Scientific Workflows on Computational Grids. In Workshop on Resiliency in
High-Performance Computing in conjunction with CCGrid08, 2008.

[55] E. Kandogan. Star Coordinates: A Multi-Dimensional Visualization Technique
with Uniform Treatment of Dimensions. IEEE Symposium on Information
Visualization, 2000.

[56] D. S. Katz, G. B. Berriman, E. Deelman, J. Good, C. Kesselman, A. C. Laity,
T. A. Prince, G. Singh, and M.-H. Su. A Comparison of Two Methods for
Building Astronomical Image Mosaics on a Grid. In 7th Workshop on High
Performance Scientific and Engineering Computing (HPSEC-05), 2005.

[57] Y.-S. Kee, D. Nurmi, G. Singh, A. Mutz, C. Kesselman, and R. Wolski.
VGES: The Next Generation of Virtualized Grid Resource Provisioning. In
1st IEEE/IFIP International Workshop on End-to-end Virtualization and Grid
Management (EVGM 2007), 2007.

[58] A. Khan, T. Adye, C. A. J. Brew, F. Wilson, B. Bense, R. D. Cowles, D. A.
Smith, D. Andreotti, C. Bozzi, E. Luppi, P. Veronesi, R. Barlow, M. P. Kelly,
J. C. Werner, A. Forti, G. Grosdidier, E. Feltresi, A. Petzold, H. Lacker, and
J. E. Sundermann. Grid Applications for High Energy Physics Experiments.
In The 6th IEEE/ACM International Workshop on Grid Computing, page 4,
2005.

165

[59] B. Kuipers. Introduction to Qualitative Reasoning. In Qualitative Reasoning:
Modeling and Simulation with Incomplete Knowledge, pages 1–16. The MIT
Press, Cambridge, 1994.

[60] A. C. Laity, N. Anagnostou, B. G. Berriman, J. C. Good, J. Jacob, D. Katz,
and T. Prince. Montage: An Astronomical Image Mosaic Service for the NVO.
In Astronomical Data Analysis Software and Systems XIV, ASP Conference
Series, volume XXX, 2005.

[61] The Lead Portal: Linked Environments for Atmospheric Discovery. https:

//portal.leadproject.org/gridsphere/gridsphere, 2007.

[62] I. C. Legrand, H. B. Newman, R. Voicu, C. Cirstoiu, C. Grigoras, M. Toarta,
and C. Dobre. Monalisa: An Agent Based, Dynamic Service System to Monitor,
Control and Optimize Grid Based Applications, September 2004.

[63] R. Levich and R. Rizzo. Alternative Tests for Time Series Dependence Based
on Autocorrelation Coefficients. Technical report, Stern School of Business,
New York University, 1998.

[64] J. Lin, E. Keogh, P. Patel, and S. Lonardi. Finding Motifs in Time Series. In
2nd Workshop on Temporal Data Mining, Edmonton, Alberta, Canada, 2002.

[65] S. Lohr. Google and I.B.M. Join in Cloud Computing Research. http://www.
nytimes.com/2007/10/08/technology/08cloud.html, 8th October 2007.

[66] C.-d. Lu and D. A. Reed. Compact Application Signatures for Parallel and
Distributed Scientific Codes. In Proceedings of Supercomputing, 2002.

[67] S. Lu, Z. Li, F. Qin, L. Tan, P. Zhou, and Y. Zhou. Bugbench: Benchmarks
for Evaluating Bug Detection Tools. In PLDI Workshop on the Evaluation of
Software Defect Detection Tools, 2005.

[68] J. Markoff. Software Via the Internet: Microsoft in ’Cloud’ Computing. http:
//www.nytimes.com/2007/09/03/technology/03cloud.html, 3rd September
2007.

[69] M. L. Massie, B. Chun, and D. Culler. The Ganglia Distributed Monitoring
System: Design, Implementation, and Experience. Parallel Computing, 30(7),
2004.

[70] Matlab: Statistics Toolbox. http://www.mathworks.com/products/

statistics/demos.html?file=/products/demos/shipping/stats/

mvplotdemo.html, 2007.

[71] H. Meuer, E. Strohmaier, J. Dongara, and H. Simon. Top 500 Supercomputer
Sites. http://www.top500.org/stats/list/30/archtype, 2007.

166

[72] J. Michalakes. Development of a Next-Generation Regional Weather Research
and Forecast Model. In Proceedings of the 9th ECMWF Workshop on the Use
of Parallel Processors in Meteorology, 2000.

[73] J. Michalakes, J. Dudhia, D. Gill, T. Henderson, J. Klemp, W. Skamarock, and
W. Wang. The Weather Research and Forecast Model: Software Architecture
and Performance. http://wrf-model.org/wrfadmin/docs/ecmwf_2004.pdf,
2004.

[74] I. Mierswa. Automatic Feature Extraction from Large Time Series. http:

//citeseer.ist.psu.edu/736218.html, 2004.

[75] I. Mierswa and K. Morik. Automatic Feature Extraction for Classifying Audio
Data. Machine Learning, 58(2):127–149, 2005.

[76] E. L. Miller and R. H. Katz. Input/Output Behavior of Supercomputing Ap-
plications. In Proceedings of the ACM/IEEE Conference on Supercomputing,
pages 567–576, Albuquerque, New Mexico, 1991.

[77] A. Mirgorodskiy, N. Maruyama, and B. P. Miller. Problem Diagnosis in Large-
Scale Computing Environments. In Proceedings of the 2006 ACM/IEEE con-
ference on Supercomputing, Tampa, FL, USA, 2006.

[78] High Energy Particle Physics Experiments Description. http://www.griphyn.
org/projinfo/physics/highenergy.php, 2006.

[79] IBM Grid Computing. http://www-1.ibm.com/grid/about_grid/index.

shtml, 2006.

[80] Integrated Data Radar Services. https://www.radarservices.org/

technical.php#Network, 2006.

[81] The Montage Project: An Astronomical Image Mosaic Engine. http://

montage.ipac.caltech.edu/, 2007.

[82] J. Moore. Gamut: Generic Application EMULaTOR. http://issg.cs.duke.
edu/cod/, 2004.

[83] A. Natrajan, M. Crowley, N. Wilkins-Diehr, M. A. Humphrey, A. D. Fox,
A. S. Grimshaw, and C. L. I. Brooks. Studying Protein Folding on the Grid:
Experiences Using CHaRMM on NPaCI Resources under LEgion. In 10th IEEE
International Symposium on High Performance Distributed Computing, pages
14–21, 2001.

[84] F. Nerieri, R. Prodan, T. Fahringer, and H.-L. Truong. Overhead Analysis of
Grid Workflow Applications. In 7th IEEE/ACM International Conference on
Grid Computing, pages 17–24, 2006.

167

[85] O. Nickolayev, P. C. Roth, and D. Reed. Real-Time Statistical Clustering for
Event Trace Reduction. In Proceedings of the Third Workshop on Environments
and Tools for Parallel Scientific Computing, Lyon, France, 1997.

[86] P. Nurmi and P. Floreen. Online Feature Selection for Contextual Time Series
Data (Extended Abstract). In Subspace, Latent Structure and Feature Selection
techniques: Statistical and Optimisation perspectives Workshop, 2005.

[87] R. T. Olszewski. Generalized Feature Extraction for Structural Pattern Recog-
nition in Time-Series Data. PhD thesis, Carnegie Mellon Univeristy, 2001.

[88] Particle Physics Data Grid. http://www.ppdg.net/, 2008.

[89] B. K. Pasquale and G. C. Polyzos. A Static Analysis of I/O Characteristics of
Scientific Applications in a Production Workload. In Proceedings of the 1993
ACM/IEEE conference on Supercomputing, pages 388–397, Portland, Oregon,
United States, 1993.

[90] J. Pearl. Causality: Models, Reasoning, and Inference . Cambridge University
Press, 2000.

[91] R. A. Pielke and R. Carbone. Weather Impacts, Forecasts, and Policy. Bulletin
of the American Meteorological Society, 83:393–403, 2002.

[92] R. Plante and J. Annis. Relationship of Galaxy Morphology to the Intra-
Cluster Medium: An NVO Demonsration. Technical report, US National Vir-
tual Observatory, 2002.

[93] R. Prodan and T. Fahringer. Dynamic Scheduling of Scientific Workflow Appli-
cations on the Grid: A Case Study. In 20th Symposium of Applied Computing,
pages 687–694, Santa Fe, New Mexico, USA, 2005. ACM Press.

[94] R. Prodan and T. Fahringer. Overhead Analysis of Scientific Workflows in
Grid Environments. IEEE Transactions on Parallel and Distributed Systems,
19(3):378–393, 2008.

[95] C. A. Ratanamahatana, E. Keogh, A. Bagnall, and S. Lonardi. A Novel Bit
Level Time Series Representation with Implications for Similarity Search and
Clustering. Data Mining and Knowledge Discovery, 2005.

[96] D. Reed and C. Mendes. Intelligent Monitoring for Adaptation in Grid Appli-
cations. Proceedings of the IEEE, 93(2), 2005.

[97] M. Reed and C. Quammen. Health Application Programming Interface (HaPI).
http://www.renci.org/software/hapi/, 2005.

168

[98] P. C. Roth and B. P. Miller. On-Line Automated Performance Diagnosis on
Thousands of Processes. In Proceedings of 2006 ACM SIGPLAN Symposium
on Principles and Practices of Parallel Programming, New York, 2006.

[99] J. D. Salas, J. W. Delleur, V. Yevjevich, and W. L. Lane. Applied Modeling of
Hydrologic Time Series. Water Resources Publications, 1980.

[100] M. Schneider. Improved Storm Forecast Capability Demonstrated. http://

www.teragrid.org/news/news05/0705.html, July 2005.

[101] P. Shivam, S. Babu, and J. Chase. Active and Accelerated Learning of Cost
Models for Optimizing Scientific Applications. In Conference on Very Large
Data Bases (VLDB), 2006.

[102] M. Siddiqui and T. Fahringer. GridaRM: Askalons Grid Resource Management
System. In Advances in Grid Computing - Egc 2005, volume Volume 3470/2005
of Lecture Notes in Computer Science. Springer Berlin / Heidelberg, 2005.

[103] V. Taylor, W. Xingfu, and R. Stevens. Prophesy: An Infrastructure for Perfor-
mance Analysis and Modeling of Parallel and Grid Applications. Performance
Evaluation Review, 30(4):13, 2003.

[104] Terashake: Simulating a Big Shake in Southern California Basins. http://

www.teragrid.org/news/news05/terashake.html, 2005.

[105] N. Tran and D. A. Reed. Automatic Arima Time Series Modeling for Adap-
tive I/O Prefetching. IEEE Transactions on Parallel and Distributed Systems,
15(4):362, 2004.

[106] H.-L. Truong, P. Brunner, T. Fahringer, F. Nerieri, R. Samborski, B. Balis,
M. Bubak, and K. Rozkwitalski. K-Wfgrid Distributed Monitoring and Per-
formance Analysis Services for Workflows in the Grid. In e-Science and Grid
Computing (e-Science ’06), Amsterdam, The Netherlands, 2006.

[107] H.-L. Truong, P. Brunner, V. Nae, and T. Fahringer. Dipas: A Distributed Per-
formance Analysis Service for Grid-Based Workflows. Technical report, Vienna
University of Technology, June 2007.

[108] H. L. Truong and T. Fahringer. Scalea-G: A Unified Monitoring and Perfor-
mance Analysis System for the Grid. In Second European AcrossGrids Confer-
ence, AxGrids 2004, volume 3165 of Grid Computing. Second European Across-
Grids Conference, AxGrids 2004. Revised Papers (Lecture Notes in Computer
Science), pages 202–211, Nicosia, Cyprus, 2004. Springer-Verlag.

169

[109] F. Vraalsen, R. A. Aydt, C. L. Mendes, and D. A. Reed. Performance Con-
tracts: Predicting and Monitoring Grid Application Behavior. In Grid Com-
puting - GRID 2001: Proceedings of the 2nd International Workshop on Grid
Computing, 2001.

[110] F. Wang, Q. Xin, B. Hong, S. Brandt, E. Miller, D. Long, and T. McLarty. File
System Workload Analysis for Large Scale Scientific Computing Applications.
In In Proceedings of the 21st IEEE / 12th NASA Goddard, College Park, MD,
2004.

[111] W. Wang, D. Barker, C. Bruyre, J. Dudhia, D. Gill, and J. Michalakes. User’s
Guide for Weather Research and Forecast Modeling System Version 2.0. http:
//www.mmm.ucar.edu/wrf/users/docs/user_guide/, 2004.

[112] A. Ward, P. Glynn, and K. Richardson. Internet Service Performance Failure
Detection. ACM SIGMETRICS Performance Evaluation Review, 26(3):38–43,
1998.

[113] When the Earth Shakes. http://www.teragrid.org/news/sci-high07/

shakes.html, 2007.

[114] R. Williams. Grids and the Virtual Observatory. In Fran berman, Geoffrey
Fox, and Tony Hey, editors, Grid Computing: Making the Global Infrastructure
a Reality, Wiley Series in Communications Networking & Distributed Systems,
pages 837–858. John Wiley & Sons, Ltd, 2003.

[115] R. Wolski, N. T. Spring, and J. Hayes. Network Weather Service: A Dis-
tributed Resource Performance Forecasting Service for Metacomputing. Future
Generation Computer Systems, 15(5):757, 1999.

[116] WRF Benchmark Data. http://box.mmm.ucar.edu/wrf/bench/, 2004.

[117] C. Yuan, N. Lao, J.-R. Wen, J. Li, Z. Zhang, Y.-M. Wang, and W.-Y. Ma.
Automated Known Problem Diagnosis with Event Traces. Technical report,
Microsoft Research, June 2005.

170

Biography

Emilia Sorana Buneci was born in Bucharest, Romania on February 14th, 1979.

During 1997-2001, she attended Christian Brothers University in Memphis, TN, USA,

where she graduated as a valedictorian with B. S. degrees in Computer Science and

Mathematics. She was awarded the Alumni Academic Award, and the Dominic

Dunn Award - given to the most outstanding science graduate in 2001. In 2003,

she has earned a M. S. from Duke University, Durham, NC, USA, for which she has

received the Best Master Thesis Award from the Department of Computer Science.

She earned a Ph.D. degree in Computer Science from Duke University, Durham, NC,

USA in May 2008.

Her scientific publications are listed below:

1. Emma Buneci and Daniel Reed. Analysis of Application Heartbeats: Learning

Structural and Temporal Features in Time Series Data for Identification of

Performance Problems Submitted, 2008.

2. Emma Buneci, Kenneth Roberts, Rachael Brady, Allen Song, Xiaobai Sun,

and Marty Woldorff. Component-wise models of the BOLD response in the

human primary visual cortex. In Proceedings of the 10th Annual Meeting of the

Organization for Human Brain Mapping, Budapest, Hungary, June 2003.

3. Emma Buneci. Zope - Making Dynamic Web Applications with an Open-Source

Framework, chapter Using DTML Tags. Software & Support Verlag GmhH,

June 2001.

Academic honors received since obtaining her bachelor’s degrees are listed below:

• Doctoral Showcase Presentation at the Supercomputing ’07 Conference in Reno,

Nevada, USA. November, 2007.

171

• Best Poster Award at the Teragrid ’07 Conference, Student Research Compe-

tition, Madison, Wisconsin, USA. June, 2007.

• Best Master Thesis Award, Department of Computer Science, Duke University,

Durham, NC, USA. October, 2004.

• Graduate Teaching Assistant Award, Department of Computer Science, Duke

University, Durham, NC, USA. October, 2002.

• Graduate School Fellowship, Department of Computer Science, Duke Univer-

sity, Durham, NC, USA. 2001-2002.

She has been a member of professional organizations such as ACM, IEEE and

USENIX, and a member of the Women in Science and Engineering, and of the Grad-

uate and Professional Student Council at Duke University.

172

