
To the Graduate Council:

I am submitting herewith a dissertation written by Zhiao Shi entitled “Scheduling tasks
with precedence constraints on heterogeneous distributed computing systems.” I have
examined the final electronic copy of this dissertation for form and content and rec-
ommend that it be accepted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy, with a major in Computer Science.

Jack J. Dongarra

Major Professor

We have read this dissertation
and recommend its acceptance:

Michael W. Berry

Donald W. Bouldin

James S. Plank

Accepted for the Council:

Linda Painter

Interim Dean of Graduate Studies

(Original signatures are on file with official student records.)

SCHEDULING TASKS WITH

PRECEDENCE CONSTRAINTS ON

HETEROGENEOUS DISTRIBUTED

COMPUTING SYSTEMS

A Dissertation

Presented for the

Doctor of Philosophy Degree

The University of Tennessee, Knoxville

Zhiao Shi

December 2006

UMI Number: 3251161

3251161
2007

Copyright 2006 by
Shi, Zhiao

UMI Microform
Copyright

All rights reserved. This microform edition is protected against
 unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
 Ann Arbor, MI 48106-1346

All rights reserved.

 by ProQuest Information and Learning Company.

Copyright c© 2006 by Zhiao Shi

All rights reserved.

ii

Dedication

To my parents, with love and gratitude.

iii

Acknowledgments

There are many people who contributed to the development of this thesis with either

their personal or technical support, for which I want to express my appreciation here.

First I would like to express my deepest gratitude to my thesis advisor, Dr. Jack Don-

garra, whose expertise, understanding, and patience added considerably to my graduate

experience. I thank him for his patience and encouragement that carried me through

the course of this research and for his insights and suggestions that helped to shape my

research skills.

I would also like to thank other members of my committee, Dr. Michael Berry, Dr.

Don Bouldin and Dr. James Plank for providing valuable comments and constructive

suggestions towards improving the quality of this research.

I would like to thank all my friends and research staff at Innovative Computing

Laboratory (ICL) for providing a vibrant working environment. I especially thank

Sudesh Agrawal, Zizhong Chen, Eric Meek, Kiran Sagi, Keith Seymour, Fengguang

Song, Asim YarKhan, Haihang You, Sathish Vadhiyar, Scott Wells for their valuable

help and precious friendship.

I would like to give particular thanks to Dr. Emmanuel Jeannot for his valuable

advice and discussion about the details of the research. I am also grateful to Dr. Bing

Zhang for his suggestion of using a bioinformatics application to test one of the proposed

scheduling algorithms.

Last but not least, my sincerest thanks go to my parents for their unconditional love

iv

and support during every stage of my life. Without them this thesis would never have

come into existence.

The author acknowledges the support of the research by the National Science Foun-

dation under Contract CCR-0331645 and CNS-0437508.

v

Abstract

Efficient scheduling is essential to exploit the tremendous potential of high per-

formance computing systems. Scheduling tasks with precedence constraints is a well

studied problem and a number of heuristics have been proposed.

In this thesis, we first consider the problem of scheduling task graphs in hetero-

geneous distributed computing systems (HDCS) where the processors have different

capabilities. A novel, list scheduling-based algorithm to deal with this particular situa-

tion is proposed. The algorithm takes into account the resource scarcity when assigning

the task node weights. It incorporates the average communication cost between the

scheduling node and its node when computing the Earliest Finish Time (EFT). Com-

parison studies show that our algorithm performs better than related work overall.

We next address the problem of scheduling task graphs to both minimize the makespan

and maximize the robustness in HDCS. These two objectives are conflicting and an ǫ-

constraint method is employed to solve the bi-objective optimization problem. We give

two definitions of robustness based on tardiness and miss rate. We also prove that slack

is an effective metric to be used to adjust the robustness. The overall performance of

a schedule must consider both the makespan and robustness. Experiments are carried

out to validate the performance of the proposed algorithm.

The uncertainty nature of the task execution times and data transfer rates is usually

neglected by traditional scheduling heuristics. We model those performance characteris-

tics of the system as random variables. A stochastic scheduling problem is formulated to

vi

minimize the expected makespan and maximize the robustness. We propose a genetic

algorithm based approach to tackle this problem. Experiment results show that our

heuristic generates schedules with smaller makespan and higher robustness compared

with other deterministic approaches.

vii

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Contributions . 4

1.3 Outline of the dissertation . 5

2 Review of Literature 7

2.1 Introduction . 7

2.1.1 The application model . 9

2.1.2 The HDCS model . 10

2.2 Static DAG scheduling in deterministic HDCS 12

2.2.1 List scheduling . 13

2.2.2 Clustering based heuristics . 19

2.2.3 Task duplication based heuristics 25

2.2.4 Guided random search algorithms 32

2.3 Static DAG scheduling in non-deterministic HDCS 42

viii

2.3.1 Classifications of current research on scheduling with uncertainties 43

2.3.2 Review of different scheduling techniques 46

3 Task Scheduling Considering Different Processor Capabilities 63

3.1 Introduction . 63

3.2 Problem description . 66

3.2.1 Task graph . 67

3.2.2 Resource graph . 67

3.2.3 Performance criteria . 68

3.3 The SDC algorithm . 70

3.3.1 Setting task node weight . 70

3.3.2 Prioritizing the tasks . 73

3.3.3 Selecting processors . 73

3.3.4 Procedure of the algorithm . 75

3.3.5 Time-complexity analysis . 76

3.4 Experimental results and discussion . 77

3.4.1 Comparison metrics . 77

3.4.2 Randomly generated application graphs 79

3.4.3 Performance analysis on application graph of a genomic sequence

annotation workflow . 88

3.5 Conclusions . 91

ix

4 Robust Task Scheduling in Non-deterministic HDCS 92

4.1 Introduction . 92

4.2 Robust task scheduling problem . 94

4.2.1 Basic Models . 94

4.2.2 Slack . 97

4.2.3 Robustness . 103

4.3 A Bi-objective Task Scheduling Problem 104

4.3.1 ǫ-constraint Method . 105

4.3.2 A Bi-objective Genetic Algorithm 105

4.4 Experimental results and discussions . 112

4.4.1 Effectiveness of slack . 114

4.4.2 Results of solving the bi-objective optimization problem 117

4.5 Conclusions . 122

5 Stochastic Task Scheduling in HDCS 124

5.1 Introduction . 124

5.2 Stochastic DAG scheduling problem . 126

5.3 Calculation of the makespan distribution of a task graph 129

5.3.1 Estimating the makespan distribution 129

5.3.2 Numerical calculation of maximum and addition of two random

variables . 134

5.4 Simulation . 138

x

5.5 Results and discussion . 141

5.5.1 Accuracy of the estimation . 141

5.5.2 SDS vs. DDS . 149

5.5.3 Bi-objective optimization . 153

5.6 Summary . 155

6 Conclusions and Future Work 157

6.1 Conclusions . 157

6.2 Future work . 159

Bibliography 161

Vita 179

xi

List of Tables

4.1 Values of the parameters used in the GA 113

5.1 Parameters used in the simulations . 140

xii

List of Figures

2.1 A task precedence graph . 11

2.2 Target system taxonomy of scheduling algorithms 12

2.3 Taxonomy of static task scheduling algorithms for deterministic environ-

ment . 13

2.4 (a) linear clustering (b) nonlinear clustering of Fig. 2.1 20

2.5 The cycle of genetic algorithms . 33

2.6 An outline of genetic algorithms . 36

3.1 (a)an example DAG (b)the computation cost for each node on three ma-

chines (c) the communication cost table 71

3.2 (a)schedule for the DAG in Fig.3.1 with priority list A,C,B,D (b)schedule

for the DAG in Fig.3.1 with priority list A,B,C,D 71

3.3 The SDC algorithm . 75

3.4 (a)an example DAG (b)the computation cost for each node on three ma-

chines (c) the communication cost table 76

xiii

3.5 (a)HEFT algorithm (b)DLS algorithm (c)SDC algorithm 77

3.6 The effect of the weight assignment method on average NSL 82

3.7 The effect of the weight assignment method on average percentage degra-

dation . 82

3.8 Average NSL of the algorithms . 85

3.9 Average percentage degradation of the algorithms 87

3.10 Efficiency comparison with respect to the number of processors 88

3.11 A genomic sequence annotation workflow 89

3.12 Comparison of three algorithms on a genomic sequencing annotation

workflow . 90

4.1 (a) An example task graph (b) A multiprocessor system (c) A schedule

(d) A disjunctive graph of (a) with schedule (c) 96

4.2 Evolution of a GA when minimizing the makespan is the objective function115

4.3 Evolution of a GA when maximizing the slack is the objective function . 116

4.4 Performance improvement over HEFT (ǫ = 1.0) 118

4.5 R1 improvement over ǫ = 1.0 . 119

4.6 R2 improvement over ǫ = 1.0 . 119

4.7 The best ǫ value for overall performance based on R1 and makespan . . 121

4.8 The best ǫ value for overall performance based on R2 and makespan . . 121

5.1 A task graph and an assignment on two processors 130

xiv

5.2 Relative deviation of expected makespan from Monte-Carlo simulation

for graphs of different sizes . 143

5.3 Relative deviation of σ of makespan from Monte-Carlo simulation for

graphs of different sizes . 143

5.4 Relative deviation of expected makespan from Monte-Carlo simulation

using different bin numbers . 144

5.5 Relative deviation of σ of makespan from Monte-Carlo simulation using

different bin numbers . 144

5.6 Relative deviation of expected makespan from Monte-Carlo simulation

for graphs with different θ . 145

5.7 Relative deviation of σ of makespan from Monte-Carlo simulation for

graphs with different θ . 145

5.8 Relative deviation of expected makespan from Monte-Carlo simulation

for graphs with different d . 146

5.9 Relative deviation of σ of makespan from Monte-Carlo simulation for

graphs with different d . 146

5.10 Relative makespan of schedules obtained with SDS, DDS, HEFT for

graphs with different sizes . 150

5.11 Relative R1 of schedules obtained with SDS, DDS, HEFT for graphs with

different sizes . 150

xv

5.12 Relative R2 of schedules obtained with SDS, DDS, HEFT for graphs with

different sizes . 151

5.13 Relative makespan of schedules obtained with SDS, DDS, HEFT for

graphs with different θ . 151

5.14 Relative R1 of schedules obtained with SDS, DDS, HEFT for graphs with

different θ . 152

5.15 Relative R2 of schedules obtained with SDS, DDS, HEFT for graphs with

different θ . 152

5.16 Relative makespan of schedules obtained with SDS for graphs with dif-

ferent sizes when w is a control parameter 154

5.17 Relative R1 of schedules obtained with SDS for graphs with different sizes

when w is a control parameter . 154

5.18 Relative R2 of schedules obtained with SDS for graphs with different sizes

when w is a control parameter . 155

xvi

Chapter 1

Introduction

Heterogeneous Distributed Computing Systems (HDCS), including the recently advo-

cated Grid computing platform, utilize a distributed set of high performance machines,

connected with high speed networks to solve computationally intensive applications co-

ordinately [38, 41, 42]. Applications usually consists of a set of tasks, with or without

dependencies among them.

One of the most important components for achieving high performance with HDCS

is the mapping strategies they adopt. Mapping of an application involves the matching

of tasks to machines and scheduling the order of execution for these tasks [20]. We will

use the terms mapping and scheduling interchangeably without too much confusion. In

general, the scheduling problem is computationally intractable even under simplified

assumptions [44]. Many heuristics thus have been proposed [64, 65]. The complexity

of the problem increases when the application is executed in a HDCS due to the fact

1

that the processors and network connections in the system may not be identical and it

takes different amounts of time to execute the same task or transfer the same amount

of data.

1.1 Motivation

In this thesis, an application is modeled by a task graph. A task graph is a directed

acyclic graph (DAG) in which nodes represent tasks and edges represent the data depen-

dencies among the tasks. Although there are many heuristics proposed for scheduling

DAG-type applications, most of them assume that the processors are equally capable,

i.e. each processor can execute all the tasks. In real world, this assumption usually does

not hold, especially in the case of HDCS. An HDCS such as the Grid system can be

composed of processors with wide varieties of types, processing power and capabilities.

For example, a GridSolve system [9] typically consists of an agent and multiple servers.

Any service provider can connect his server to an existing agent. Since typically the

servers in a GridSolve system are set up by different service providers, they usually have

distinctive processing capabilities (software). Scheduling with traditional heuristics in

this type of system can be inefficient since they do not consider the effect of the pro-

cessors’ different capabilities. Clearly there is a need for a scheduler that acknowledges

this important fact.

Traditional DAG scheduling algorithms assume that the system is time-invariant,

where the exact performance of the system can be known a priori. For example, it is

2

assumed that the execution time of a task can be estimated and does not change during

the course of execution. However, due to the resource sharing among multiple users in

HDCS, the performance of the system can vary during the execution of the application.

Under this condition, there is a need to find schedules that are less vulnerable to the

variance of system performance, i.e. more robust. Minimizing the schedule length

(makespan) based on the estimated system performance is not enough, since short

makespan does not necessary guarantee a small turn-around time in a real computing

environment. A good schedule must also be robust. As we will see, minimizing the

makespan and maximizing the robustness of a schedule is two conflicting factors. There

can be a trade-off between these two objectives.

Due to the non-determinism of system performance, scheduling with stochastic in-

formation of the performance characteristics can be useful. For instance, task execution

times or data transfer rates can be modeled with random variables. Each random vari-

able takes on some values according to its probabilistic distribution. Previously, only

mean values are used for scheduling. Such approaches do not consider the temporal het-

erogeneity of the resources. It has been shown that they can lead to inferior schedules.

We need to come up with an algorithm that utilizes the stochastic information about

the task execution times and data transfer rate to produce a better schedule in terms

of minimizing the makespan and maximizing the robustness.

3

1.2 Contributions

In this dissertation, we developed several scheduling algorithms to address the prob-

lem of producing efficient schedules in HDCS. The contributions of this research are

summarized as follows:

1. A framework for evaluating different scheduling algorithms has been developed for

comparing our algorithms with other existing algorithms. A random task graph

generator is designed to generate task graphs with specific parameters for the

performance study. It can generate many types of graphs in order to perform

unbiased comparisons of different algorithms.

2. We proposed a list scheduling-based algorithm that takes into account the different

capabilities of the available processors. When assigning task node weights, the

algorithm considers the effect of a task’s scarcity of capable processors. A task

with a small percentage of capable processors is given higher weight because it

is more urgent to schedule such task. A new method for calculating the Earliest

Finish Time (EFT) is proposed to incorporate the average communication cost

between the current scheduling task and its children.

3. The robustness of a schedule measures the degree to which the schedule is insen-

sitive to the disturbances in task execution times. It should reflect how stable the

actual makespan will be with respect to the expected value. We proposed two

definitions of robustness for a schedule based on the relative tardiness and miss

4

rate.

4. We designed a genetic algorithm based scheduling heuristic to address the prob-

lem of robust task scheduling. Slack is identified as an important metric that

is closely related to the robustness of a schedule. In order to optimize both the

robustness and makespan, we include slack and makespan as the fitness value of

each individual in the population. We show that maximizing the robustness or

slack and minimizing the makespan are two conflicting objectives. A bi-objective

optimization problem is formulated. The proposed algorithm is flexible in finding

the best solution in terms of the overall performance considering both makespan

and robustness.

5. We further developed a genetic algorithm based heuristic for the stochastic schedul-

ing problem. This involves the calculation of makespan distribution where all the

task execution times and data transfer rates are modeled as random variables with

certain probability distributions. A procedure for estimating the makespan distri-

bution of a task graph with great accuracy is presented. Our heuristic generates

schedules with a smaller makespan and higher robustness compared with other

deterministic approaches.

1.3 Outline of the dissertation

The rest of the dissertation is organized as follows. Chapter 2 provides relevant back-

ground information about task scheduling in HDCS. An overview of the DAG scheduling

5

problem is presented first. Then, different existing scheduling algorithms are catego-

rized and briefly reviewed. In Chapter 3, we propose an algorithm for scheduling task

graphs in computing systems where processors have different capabilities. We describe

the robust task scheduling algorithm in Chapter 4. In Chapter 5 we address the problem

of scheduling task graphs with stochastic information about the system performance.

Chapter 6 discusses future work and concludes the dissertation.

6

Chapter 2

Review of Literature

2.1 Introduction

A distributed system is a computing platform where hardware or software components

located at networked computers communicate and coordinate their actions only by

passing messages [26]. It enables users to access services and execute applications over

a heterogeneous collection of computers and networks. Heterogeneity applies to net-

works, computer hardware, operating systems etc. In this research, we will refer to

such a system as heterogeneous distributed computing system (HDCS). The term, dis-

tributed computing, usually refers to any system where many resources are used to solve

a problem collaboratively. In recent years, HDCS has emerged as a popular platform

to execute computationally intensive applications with diverse computing needs.

The problem of mapping (including matching and scheduling) tasks and communi-

cations is a very important issue since an appropriate mapping can truly exploit the

7

parallelism of the system thus achieving large speedup and high efficiency [19]. It deals

with assigning (matching) each task to a machine and ordering (scheduling) the execu-

tion of the tasks on each machine in order to minimize some cost function. The most

common cost function is the total schedule length, or makespan. In this review, we

will use mapping and scheduling interchangeably. Unfortunately, the scheduling prob-

lem is extremely difficult to solve and is proved to be NP-complete in general. Even

problems constructed from the original mapping problem by making simplified assump-

tions still fall in the class of NP-hard problems. Consequently, many heuristics have

been proposed to produce adequate yet sub-optimal solutions. In general, the objec-

tive of task scheduling is to minimize the completion time of a parallel application by

properly mapping the tasks to the processors. There are typically two categories of

scheduling models: static and dynamic scheduling. In the static scheduling case, all the

information regarding the application and computing resources such as execution time,

communication cost, data dependency, and synchronization requirement is assumed to

be available a priori [53, 65] . Scheduling is performed before the actual execution of

the application. Static scheduling offers a global view of the application thus usually

generates high quality schedules. On the other hand, in the dynamic mapping a more

realistic assumption is used. Very little a priori knowledge is available about the appli-

cation and computing resources. Scheduling is done at run-time. In order to support

load balancing and fault tolerance, tasks can be reallocated during the execution. In

this research, we focus on static scheduling.

8

2.1.1 The application model

Certain computational problems can be decomposed into a large number of tasks that

can be executed in any order, such as parameter sweep applications. These tasks are

mutually independent, i.e. there is no precedence constraint among them. Given a

set of independent tasks and a set of available resources, independent task scheduling

attempts to minimize the total execution time of the task set by finding an optimal

mapping of tasks to machines.

Another popular parallel application model is the task precedence graph model [65].

In this model, an application can be represented by a Directed Acyclic Graph (DAG).

In a DAG, nodes represent the tasks and the directed edges represent the execution

dependencies as well as the amount of communication between the nodes.

Specifically, a parallel application is modeled by a DAG G = (V,E), where V =

{v1, v2, ..., vn} represents the set of n tasks to be executed, and the set of e weighted,

directed edges E represents communication requirement between tasks. A node in the

DAG represents an atomic task that is a set of instructions that must be executed

sequentially without preemption on the same processor. The weight of the node reflects

the amount of work associated with the task. Usually, in a HDCS, the execution time

of a task is different for each processor in the system. A typical way of setting the

weight of the task node is to use the average execution time among all the processors

in the HDCS. The edges in the DAG correspond to the data transfer and precedence

constraints among the nodes. The weight of an edge is the data size between the two

9

tasks connected by the edge. Thus, ei,j = (vi, vj) ∈ E indicates communication from

task vi to vj, and |ei,j | represents the volume of data sent from vi to vj . The source

node of an edge is called the parent node while the sink node is called the child node.

A node without a parent is called an entry node, and a node without a child is called

an exit node. Fig. 2.1 shows an example of the task precedence graph. In the example,

v2 is the parent of v4 and v5, v6 is the child of v3, v4 and v5, v1 is an entry node

and v6 is an exit node. The number next to each edge denotes the data volume to be

transferred from the source node to the sink node. In this research, we focus on the

applications which can be modeled as DAGs. Furthermore, we assume the following:

(1) Tasks are non-preemptive: in a preemptive resource environment, a running task

can be preempted from execution. Preemption is commonly used in priority-based or

real-time systems. For example, when a pending task A’s deadline is approaching, it

is necessary to preempt one running job B, whose deadline is not as imminent as A’s

and assign the resource to task A. As a result of preemption, the scheduling is very

complicated. In a non-preemptive computational resource, preemption is not allowed,

i.e., once a task is started on such a resource, it cannot be stopped until its completion.

(2) Only process level parallelism is considered. The application consists of a set of

tasks (processes). Each task can only be assigned to one processor.

2.1.2 The HDCS model

As mentioned previously, the target resource environment for the DAG scheduling is

a HDCS. It consists of a network of m processing elements. Each processing element

10

Figure 2.1: A task precedence graph

includes a CPU and local memory. Communication between processors is through a

message passing mechanism. The processors are heterogeneous which means they have

different processing speed. In addition, processors are unrelated, i.e. if a machine pi has

a lower execution time than a machine pj for a task v, then the same is not necessary

true for any task v′. This happens when the HDCS is composed of many machines with

diverse architectures and there is a variety of different computational needs among the

tasks. Therefore, the way in which a task’s needs correspond to a machine’s power may

differ for each possible combination of tasks and machines. Furthermore, it is possible

that not every task can be executed on each machine in the HDCS. This indicates that

each machine can have different capabilities. The processing elements are connected

by a network of certain topology. One of the important characteristic of the HDCS

is whether the performance of the environment is deterministic. For example, if it is

expected that computing task vi on processor pj takes t time units, what is the real

11

Figure 2.2: Target system taxonomy of scheduling algorithms

value for t? Usually it is important for scheduling algorithms to take into account this

uncertainty, especially in a highly shared environment. Thus, on the highest level, we

divide the scheduling algorithms into two categories according to the certainty of target

computing system’s performance prediction. (See Fig. 2.2)

2.2 Static DAG scheduling in deterministic HDCS

Kwok and Ahmad give a survey of various static DAG scheduling algorithms in [65].

The authors classify the considered algorithms into different categories based on the

assumptions used in the algorithms such as the task graph structure (arbitrary DAG

or restricted structure such as trees), computation costs (arbitrary costs or unit costs),

communication (communication cost considered or not), duplication (task duplication

allowed or not), number of processors (limited or unlimited) and connection type among

the processors (fully connected or arbitrary connected). However, the 27 algorithms

surveyed are mainly designed for a homogeneous environment. For algorithms designed

for heterogeneous systems, there are basically four types, namely list scheduling based

algorithms, clustering heuristics, task duplication heuristics and random search based

12

Figure 2.3: Taxonomy of static task scheduling algorithms for deterministic environment

algorithms [98] (see Fig. 2.3).

2.2.1 List scheduling

List scheduling is a class of scheduling algorithms that assign tasks one by one according

to their priorities [65]. The essence of list scheduling is to make an ordered task list

by assigning tasks some priorities and then repeatedly perform the following two steps

until all the tasks in the list are scheduled:

1. Remove the first task from the list;

2. Allocate the task to a processor that will optimize some predefined cost function

The pseudo-code of list scheduling is presented in Alg. 2.2.1.

13

Algorithm 2.2.1: List Scheduling()

Calculate the priority of each task according to some predefined formula
PriorityList = {v1, v2, ..., vn} is sorted by descending order of task priorities
while PriorityList is not empty

Remove the first task from the PriorityList and assign
it to an appropriate processor in order to optimize a predefined cost function

return (schedule)

There are two important questions in a list scheduling algorithm: (1) How to com-

pute a task node’s priority? (2) How to define the cost function? The first question is

related to the way the algorithm views the node’s urgency of being scheduled. In the

earlier list scheduling algorithms, the target computing systems are generally homoge-

neous. Some algorithms do not take into account the communication costs. Level-based

heuristics are proposed for this case. For example, in the HLEFT algorithm [1], the

level of a node denotes the sum of computation costs of all the nodes along the longest

path from the node to an exit node. For task scheduling in HDCS the communica-

tion cost usually cannot be ignored. In addition, the execution time of the same task

will differ on different resources as well as the communication cost via different net-

work links. The priority of a node depends on where it will be allocated. However,

the priority must be set before any allocation decision can be made. In order to avoid

this dilemma, approximations of task node weight (computation cost) and edge weight

(communication cost) are used. The approximation can be based on the average value

among the processors (resp. links), the best value, or the worst value, etc. There is no

decisive conclusion on which one should be used [109]. Two important attributes used

to calculate the priority of a task node are the t-level (top level) and b-level (bottom

14

level) [64, 65]. The t-level of a node is defined as the length of a longest path from an

entry node to the node (excluding the node itself). The length of a path is the sum of

all the node and edge weights along the path. As pointed out previously, the weights

are approximations based on one of the criteria. The t-level is related to the earliest

start time of the node. The b-level of a node is the length of a longest path from the

node to an exit node. The critical path of a DAG is a longest path in the DAG. Clearly,

the upper bound of a node’s b-level is the critical path of the DAG. B-level and t-level

can be computed with time complexity O(e + n), where e is the number of edges and

n is the number of nodes in the DAG. The second question deals with the selection of

“best” processor for a task. In homogeneous systems, a commonly used cost function

is called earliest start time [51]. For example, the Earliest Time First (ETF) algorithm

computes, at each step, the earliest start times for all ready nodes and then selects the

one with the smallest earliest start time. When two nodes have the same value of their

earliest start times, the ETF algorithm breaks the tie by scheduling the one with the

higher static level. While scheduling in HDCS, many other cost functions are proposed.

In the following, we describe a few related list scheduling algorithms.

Modified Critical Path (MCP)

The MCP algorithm [106] assigns the priority of a task node according to its As Late

As Possible (ALAP) value. The ALAP time of a node is defined as ALAP (ni) =

Tcritical − b level(ni), where Tcritical is the length of the critical path. The ALAP of a

task node is a measure of how far the node’s start time can be delayed without increasing

15

the schedule length. The MCP algorithm first computes the ALAPs of all the nodes,

then sorts the nodes by ascending order of ALAP times into a list. Ties are broken by

using the smallest ALAP time of the successor nodes, the successors of the successor

nodes, and so on. Then it schedules the first node in the list to the processor that

allows the earliest start time, considering idle time slots. After the node is scheduled, it

is removed from the list. This step is repeated until the list becomes empty. The time

complexity of MCP is O(n2 log n).

Dynamical Level Scheduling (DLS)

The Dynamic Level Scheduling algorithm [94] is one of the earliest list scheduling al-

gorithms designed for heterogeneous computing systems. However, in contrast to tra-

ditional list scheduling, DLS does not maintain a scheduling list during the scheduling

process. It determines node priorities dynamically by assigning an attribute called the

dynamic level (DL) to all unscheduled nodes at each scheduling step. The DL of task

node ni on processor pj, denoted as DL(ni, pj), reflects how well ni and pj are matched.

The DL is determined by two terms. The first term is the static level (SL) of the node,

which is defined as the maximum sum of computation costs along a path from ni to

an exit node. This is also called static b-level. Notice that the static b-level does not

include the communication cost along the path. The second term is start time (ST)

of ni on pj . The DL is defined as SL(ni) − ST (ni, pj). At each scheduling step, the

DLS algorithm computes the DL for each ready node on every processor. Then, the

node-processor pair that constitutes the largest DL among all other pairs is selected so

16

that the node is scheduled to the processor. This process is repeated until all the nodes

are scheduled.

The algorithm is adapted for scheduling in a heterogeneous environment by modify-

ing the definition of DL. A term ∆(ni, pj) = E∗(ni)−E(ni, pj) is added to the expression

of DL to account for the varying processing speed, where E∗(ni) is the median of ex-

ecution times of ni over all processors. In order to consider how the descendants of

ni matches pj, another term called descendant consideration (DC) is added to the DL

expression. The DC term is the difference between the median execution time of the

most significant descendant D(ni) to which ni passes the most data and a lower bound

on the time required to finish execution of D(ni) after ni finishes execution on pj . This

reveals how well the most “expensive” descendant of ni match pj if ni is scheduled on pj .

In addition to the descendant consideration effect, the algorithm takes into account the

situation where certain processors are not capable of executing some task nodes. The

algorithm defines the cost of not scheduling node ni on its preferred processor where

the DL is maximized as the difference between the highest DL and the second highest

DL for ni over all processors. This term is added to DL. The time complexity of DLS

algorithm is O(n3mf(m)), where f(m) is the function used to route a path between

two given processors on the targeted system.

Dynamical Critical Path (DCP)

In [63], Kwok et al. proposed a list scheduling heuristic that includes the following

features: (1) Instead of maintaining a static scheduling list, the algorithm selects the

17

next task node to be scheduled dynamically. It assigns dynamic priorities to the nodes

at each step based on the dynamic critical path (DCP) so that the schedule length can

be reduced monotonically. As defined previously, the critical path of a task graph is a

set of nodes and edges, forming a path from an entry node to an exit node, of which

the sum of computation costs and communication costs is maximized. The critical path

changes during the scheduling process. The critical path at an intermediate scheduling

step is called dynamic critical path. In order to reduce the length of the DCP at each

scheduling step, the node selected for scheduling is the one that has no unscheduled

parent node on the DCP. (2) During the processor selection step, the algorithm employs

a start time look-ahead strategy. Suppose ni is considered for scheduling. Let nc be

the child node of ni, which gives the smallest difference between its upper bound and

lower bound start time. Then ni should be scheduled to the processor that minimizes

the sum of lower bounds of ni and nc’s start time. It considers both the current node

and its critical child node when scheduling aiming to avoid scheduling the node onto

an inappropriate processor. In addition, the algorithm does not exhaustively examine

all processors for a node. Instead, it only considers the processors that hold the nodes

that communicate with this node. The algorithm has a time complexity of O(n3).

Heterogeneous Earliest Finish Time (HEFT)

In [98], Topcuoglu et al. presented a heuristic called Heterogeneous Earliest Finish

Time (HEFT) algorithm. The HEFT algorithm sets the weight of a task node as the

average execution cost of the node among all available processors. Similarly, the weight

18

of an edge is the average communication cost among all links connecting all possible

processor pair combinations. The priority of a task node is the b-level of that node,

which is based on mean computation and mean communication costs. The task list is

created by sorting the tasks in decreasing order of b-level. Ties are broken randomly.

The selected task is then assigned to the processor which minimizes its earliest finish

time with an insertion-based approach that considers the possible insertion of a task

in an earliest idle time slot between two already-scheduled tasks on the same resource.

The time complexity of HEFT is O(e×m), where e is the number of edges and m is the

number of processors. The HEFT algorithm is considered one of the best algorithms

for scheduling tasks onto heterogeneous processors.

Some other list scheduling based algorithms include Mapping Heuristic (MH) [35],

Fast Critical Path (FCP) [82], and Insertion Scheduling Heuristic (ISH) [61].

2.2.2 Clustering based heuristics

Another class of DAG scheduling algorithms is based on a technique called clustering [46,

59, 107]. The basic idea of clustering based algorithm is to group heavily communicated

tasks into the same cluster. Tasks grouped into the same cluster are assigned to the

same processor in an effort to avoid communication costs. There are basically two

types of clusters; linear and nonlinear. Two tasks are called independent if there are

no dependence paths between them. A cluster is called nonlinear if there are two

independent tasks in the same cluster, otherwise it is called linear. Fig. 2.4 shows

examples of linear and nonlinear clustering. In Fig. 2.4(a), three clusters are created.

19

Figure 2.4: (a) linear clustering (b) nonlinear clustering of Fig. 2.1

The task node(s) in each cluster is dependent on each other. In contrast, in cluster

{v1, v2, v3} of Fig. 2.4(b), task v2 and v3 are independent. Similarly, task v4 and v5 are

independent in the other cluster.

There are essentially two steps in a clustering based heuristic; grouping the nodes

into clusters and mapping the clusters to processors. Initially, each task is assumed to

be in a separate cluster. Then a series of refinements are performed by merging some

existing clusters. A final clustering will be derived after certain steps. In order to avoid

high time complexity, once the clusters have been merged they cannot be unmerged

in the subsequent steps. During the mapping phase, a sequence of optimizations are

carried out: (1) cluster merging: It is possible that the number of clusters is greater than

20

the number of processors. Then it is necessary to further merge the clusters; (2) task

ordering: if the tasks in a cluster are related by precedence constraints, the execution

order of the tasks is arranged based on such constraints. Next, we briefly introduce

some clustering heuristics.

Linear Clustering Method (LC)

In [59], Kim and Browne proposed a linear clustering algorithm. The clustering phase of

the algorithm is done in the following fashion. Initially all edges are marked unexamined.

The following steps are performed: (1) Determine the longest path CP composed of only

unexamined edges, by using a cost function. The authors used a weighted combination

of communication costs and computation costs along the path as the cost function. For

simplicity, the cost function can be the length of a critical path that is the sum of

all communication costs and computation costs along the path as defined previously.

Nodes in this path are grouped into a cluster and their edge costs are zeroed. (2) Mark

all edges incident to the nodes in CP as examined. (3) Recursively apply steps 1 and 2

until all edges are examined. In this way, a set of linear clusters are derived. After the

clustering phase, the algorithm attempts to merge two or more linear clusters into one

in order to balance the workload of processors and reduce both the number of resources

to be used and interprocessor communication cost.

Once the clustering phase is complete, a task graph is transformed into a virtual

architecture graph (VAG). The VAG represents an optimal multiprocessor architecture

for the task graph. A Dominant Request Tree (DRT), which is a maximal spanning

21

tree of a VAG, is then constructed. In the case of mapping onto heterogeneous systems,

it is important to utilize resources with high computing power as much as possible.

In order to get the information about resources, a prescanning of architecture graphs

prior to physical mapping is necessary. This is done by creating a Dominant Service

Tree (DST) with a maximal spanning tree algorithm. The basic idea of mapping the

clusters onto the processors is to find a subgraph isomorphism from DRT to DST that

can minimize the total makespan. The problem of tree-to-tree mapping is solved by

exploiting sequential mapping the order of nodes determined during construction of a

DRT and node information to avoid exhaustive matching between two trees.

The complexity of LC algorithm is O(n(n+e)). For a dense graph where e = O(n2),

the complexity becomes O(n3).

Edge Zeroing algorithm (EZ)

The Edge Zeroing algorithm (EZ) [88] uses edge weights as the criteria to merge clusters.

Two clusters can be merged only if the merging does not increase the makespan. The

algorithm can be described as the follows:

(1) Sort the edges of the task graph in order of descending weight.

(2) Zero the highest edge weight if the makespan does not increase. Two clusters are

merged so that all edges incident on these two clusters are also zeroed out. The

ordering of nodes in the cluster is based on their static b-levels.

(3) Repeat step (2) until all edges are scanned.

22

The complexity of EZ algorithm is O(e(n + e)).

Mobility Directed algorithm (MD)

The MD algorithm [106] defines a new attribute called relative mobility for a task node.

It is computed as follows:

CP length − (b-level(ni) + t-level(ni))

w(ni)
(2.1)

where w(ni) is the weight of task node ni.

The algorithm works as follows: First, the relative mobility of each node is calcu-

lated. Let L be the set of all unexamined nodes. Initially, all task nodes are in L. Next,

Let L′ be the group of nodes in L that have minimal relative mobility. Let ni ∈ L′ be

a node without any predecessors. If ni can be scheduled onto the first processor, then

schedule it onto the first processor. Otherwise keep trying the next processor until a

processor that can accommodate ni is found. The criteria for a processor being able

to accommodate ni is whether the moving interval of ni, defined as the time interval

from the as-soon-as-possible (ASAP) start time and as-late-as-possible (ALAP) start

time [65] interferes with those of the nodes already scheduled on that processor. If it

does not interfere, then the processor can accommodate ni. Suppose ni is scheduled

on processor j, then the weights of edges connecting ni and all other nodes already

scheduled on processor j are changed to zero. If ni is scheduled before nk on processor

j, add an edge with weight zero from ni to nk. Similarly, if ni is scheduled after nj

23

on the processor, then add an edge with weight zero from nj to ni. This step ensures

that no loop is formed. If so, schedule ni to the next available space. Then, recalculate

the relative mobilities of the new graph. Remove ni from L and repeat the above steps

until L becomes empty. The complexity of this algorithm is O(n3).

Dominant Sequence Clustering (DSC)

Yang and Gerasoulis [107] proposed a clustering algorithm called Dominant Sequence

Clustering (DSC). The dominant sequence (DS) of a clustered DAG is the longest path

of the scheduled DAG. In contrast, the critical path (CP) is the longest path of a

clustered but not scheduled DAG. The main idea behind a dominant sequence heuristic

is to identify the DS at each step and then zero edges in that DS. We briefly describe

the algorithm as follows:

(1) Initially, all task nodes are unexamined and put into set UNS. A free node list L con-

taining all nodes whose predecessors have been scheduled is constructed. Compute

b-level for all the nodes and t-level for each free node.

(2) Let the first node of L be ni. Two cases are considered.

• ni is a node on the DS. If zeroing the edge between ni and one of its parents

leads to a minimal t-level of ni, then zero that edge. If no such zeroing is

accepted, the node will remain in a single node cluster.

• ni is not a node on the DS. If zeroing the edge between ni and one of its

parents can minimize the t-level of ni under the following constraint, then zero

24

that edge. The constraint mandates that zeroing incoming edges of a free node

should not affect the future reduction of t-level of nj, where nj is a not-yet

free node with a higher priority, if the t-level of nj is reducible by zeroing an

incoming DS edge of nj. If some of ni’s parents are entry nodes with no child

other than ni, merge part of those parents so that the t-level of ni is minimized.

If no zeroing is accepted, ni remains in a single node cluster.

(3) Recompute the t-level and b-level of the successors of ni and remove ni from UNS.

(4) Repeat steps (2)-(3) until UNS becomes empty.

The complexity of DSC algorithm is O((e + n) log n).

2.2.3 Task duplication based heuristics

The basic idea behind task duplication based (TDB) scheduling algorithms is to use the

idle time slots on certain processors to execute duplicated predecessor tasks that are

also being run on some other processors, such that communication delay and network

overhead can be minimized [2, 3, 28, 61, 62, 78, 83, 84]. In this way, some of the more

critical tasks of a parallel program are duplicated on more than one processor. This can

potentially reduce the start times of waiting tasks and eventually improve the overall

completion time of the entire program. Duplication based scheduling can be useful for

systems having high communication latencies and low bandwidths.

There are basically two types of TDB existing in the literature: Scheduling with

Partial Duplication (SPD) and Scheduling with Full Duplication (SFD) [78]. In an SPD

25

algorithm, the parent of a join node is not duplicated unless it is critical. A join node

is defined as a node with in-degree greater than one (i.e., a node with more than one

immediate predecessors). Algorithms in this category need to find the critical immediate

predecessor (CIP) of the node ni to be scheduled. The CIP of a node ni is defined as

the immediate predecessor (nj) that provides the largest message arriving time from

nj to ni. The message arriving time is the time the message from nj arrives at ni.

Then the join node is scheduled on the processor where the CIP has been scheduled.

Due to the limited task duplication, algorithms in this category have a low complexity

but may not be useful for systems with high communication overhead. On the other

hand, SFD algorithms attempt to duplicate all the parents of a join node and apply the

task duplication algorithm to all the processors that have any of the parents of the join

node. Thus, algorithms in this category have a higher complexity but typically show

better performance than SPD algorithms. In the following, we will describe some TDB

scheduling algorithms.

Duplication Scheduling Heuristic (DSH)

The Duplication Scheduling Heuristic (DSH) algorithm [61] uses the idea of list schedul-

ing combined with duplication to reduce the makespan. Task nodes are given priorities

to indicate the urgency of being scheduled. The algorithm uses the static b-level as the

node’s priority. In selecting a processor for a node, the algorithm first calculates the

start time of the node on the processor without duplication of any predecessor. Next,

it duplicates the predecessors of the node into the idle time slot of the processor until

26

either such slot is unavailable or the start time of the node does not improve. The

algorithm works as follows:

(1) Compute the static b-level for each node and set it as its priority. Sort the nodes

into a list L in the order of decreasing priority.

(2) Pick the first task node n in L.

(3) For each processor P , perform the following steps:

(i) Compute the start time of n on P, ST . Set the candidate as n.

(ii) Consider the set of immediate predecessors of the candidate n. Let n′ be the

immediate predecessor that is not scheduled on P and whose message for a

candidate has the latest arrival time. Duplicate n′ into the earliest idle time

that can accommodate it on P .

(iii) If such a time slot is unavailable, then ST is recorded and go to step (3).

Otherwise, the candidate’s start time is replaced by the new start time if the

new start time is smaller. Set the candidate as n′. Go to step (3ii).

(4) Schedule n to the processor that gives the smallest ST and perform all necessary

duplications on that processor.

(5) Repeat steps (2)-(4) until all the nodes are scheduled.

The time complexity of the DSH algorithm is O(n4).

27

Critical Path Fast Duplication (CPFD)

Ahamd and Kwok [2, 3] proposed a duplication based algorithm called Critical Path

Fast Duplication (CPFD). The authors believe that selecting the “important” nodes

for duplication is key to obtaining a short makespan. They classified the task nodes

in a DAG into 3 categories in the order of decreasing importance: Critical Path Nodes

(CPN), In-Branch Nodes (IBN) and Out-Branch Nodes (OBN). CPNs are on a critical

path. These are most important because their finish times effectively determine the

final makespan. An IBN node is a node that is not a CPN and from which there is a

path reaching a CPN. The IBNs are also important because timely scheduling of these

nodes can help reduce the start times of the CPNs. An OBN is a node that is neither a

CPN nor an IBN. The OBNs are relatively less important because they usually do not

affect the makespan.

The algorithm has the following steps:

(1) Determine a Critical Path. Ties are broken by selecting the one with a larger sum

of computation costs. Based on the importance of a node, a priority list called CP-

Dominant Sequence is constructed in a way that CPNs can be scheduled as soon as

possible. In addition, precedence constraints are also preserved.

(2) Select the first unscheduled CPN in the CPN-Dominant Sequence as the candidate

nc.

(3) Let P SET be a set of processors, including all the processors holding the candi-

28

date’s parent nodes and an empty processor.

(4) For each processor P in P SET , find the Earliest Start Time (EST) of the candidate

on P and record it.

(5) Schedule the candidate to the processor P that gives the smallest value of EST. All

necessary duplications are performed.

(6) Repeat the process from step (2) to step (5) for each OBN with P SET containing

all the processors in use together with an empty processor. The OBNs are considered

one by one in topological order.

(7) Repeat step (2)-(6) until all CPNs are scheduled.

The process of determining the candidate nc’s EST on processor P works as follows:

Let the start time of nc on P be ST . Consider the set of candidate’s immediate pre-

decessors. Let n be the immediate predecessor that is not scheduled on P and whose

message for nc has the latest arrival time. Try to duplicate n on the earliest idle time

slot that can accommodate it on P . If the duplication is successful and the new start

time of nc is smaller than ST , then let ST be the new start time. Now set the candidate

to n and repeat from the beginning until the duplication is unsuccessful. At this point,

the value of ST is the EST of nc on P . The time complexity of the CPFD algorithm

is O(n4).

29

Duplication First and Reduction Next (DFRN)

The two algorithms introduced previously are both SFD algorithms. In [78], the au-

thors noted that due to its high time complexity, SFD algorithms may not be suitable

for task graphs with large number of nodes. They proposed an algorithm called Du-

plication First and Reduction Next (DFRN). An SFD algorithm recursively estimates

the effect of a possible duplication and decides whether to duplicate each node one by

one. Consequently, for a DAG with n nodes, each node may be considered n times

for duplication in the worst case. In contrast, the DFRN algorithm first duplicates all

parent nodes in a bottom-up fashion to the parent that has been scheduled on the same

processor, without estimating the effect of their duplications. Then each duplicated

task is removed if the task does not meet certain conditions. DFRN applies the dupli-

cation only for the critical processor with the hope that the critical processor is the best

candidate for the join node (node with multiple immediate predecessor). The critical

immediate parent (CIP) of a join node n is the immediate parent whose message for the

join node has the latest arrival time. The processor on which the CIP of n is scheduled

is called the critical processor (CP) of n.

The algorithm is briefly described as follows:

(1) Set the priority of each node and sort them into a list L by descending priority.

Any list scheduling algorithm is suitable for setting the priority.

(2) Consider the first node ni in the list L. If ni is not a join node, identify its immediate

parent (IP) (nIP). If nIP , which is assigned on pIP , is the last node (LN) (the most

30

recent assigned node on nIP), schedule ni on nIP , otherwise copy the schedule

up to nIP onto an unused processor pu and schedule ni onto pu. If ni is a join

node, identify its CIP nCIP and critical processor pc. If nCIP is LN on pc, then

apply DFRN(ni, pc), otherwise copy the schedule up to nCIP onto pu and apply

DFRN(ni, pu).

(3) The procedure DFRN(n, p) first tries duplication with try duplication(n, p) and

then seeks to delete unnecessary duplication performed with try deletion(n, p). In

try duplication(n, p), it duplicates the immediate parent that gives the largest mes-

sage arriving time (MAT) to n. Then the procedure recursively searches its imme-

diate parent from n in a bottom-up fashion until it finds the parent that has already

been scheduled on p. When it finds the parent on p, it stops the search and dupli-

cates the parents traversed so far on p. Next, in try deletion(n, p), the procedure

decides whether to delete any of the duplicated tasks based on the two conditions.

The first condition considers the case where the output of a duplicated task is avail-

able earlier by a message from the task on another processor than the duplicated

task itself. In this case, the duplication is unnecessary thus it is deleted. The second

condition deals with a situation where the duplication does not decrease the earliest

start time EST (n, p).

(4) Remove ni from L.

(5) Repeat steps (2)-(4) until L becomes empty.

31

The time complexity of the DFRN algorithm is O(n3).

2.2.4 Guided random search algorithms

The task scheduling problem is a search problem where the search space consists of an

exponential number of possible schedules with respect to the problem size. Guided ran-

dom search algorithms are a class of search algorithms based on enumerative techniques

with additional information used to guide the search. They have been used extensively

to solve very complex problems. A common characteristic of these algorithms is that

they are stochastic processes with the use of random probability. Evolution computa-

tion and stochastic relaxation are the two major categories of guided random search

algorithms. Simulated annealing [99] is one of the most important stochastic relaxation

algorithms [45]. During the search process, it makes decisions about accepting or reject-

ing a random generated move based on a random probability related to an annealing

temperature. It is able to explore the whole solution space that is independent from the

initial starting point. Evolution computation is based on the natural selection princi-

ples. A Genetic algorithm (GA) [31, 47, 49] is one type of evolution computations that

is commonly used. Its search sampling consists of a pool of potential solutions called

population that is substantially different from other random search algorithms. It works

with an encoding of the solutions, not directly with the solutions. In addition, it uses

probabilistic transition rules to evolve from one generation of population to another.

Fig. 2.5 shows a cycle of a genetic algorithm. There are basically four stages. In each

cycle, a new generation of candidate solutions for the problem considered is produced.

32

Figure 2.5: The cycle of genetic algorithms

At the first stage, an initial population is generated as the starting point of the search

process. Each element of the population (chromosome) is encoded into a string. In

the evaluation stage, each individual of the population is evaluated using an objective

function to measure its fitness. Based on the fitness of each chromosome, a selection

mechanism chooses mates for genetic operations. The selection policy ensures that

the fittest chromosome has a greater probability to be chosen for mating. The applied

genetic operators include crossover and mutation. These operators modify the structure

of the involved chromosome to produce a new generation of population.

The basic operating structure of GA is the string. A typical string is composed of

a sequence of characters of finite length λ over a problem specific vocabulary V . For

33

example, a string can be represented by:

S = a1a2...aλ where a1, a2, ..., aλ ∈ V (2.2)

Strings of current population are transformed by three genetic operators, namely

selection, crossover and mutation.

• Selection

Often called reproduction, it is a process that probabilistically selects an individual

i to remain in the population and reproduce with probability pi = fi/
∑NPOP

j=1 fj,

where NPOP is the number of individuals in a population. The fitness of each

individual is set in the evaluation stage. The effect of selection is that individ-

uals having above-average performance reproduce while those poorly performed

individuals are culled from the population.

• Crossover

Crossover is a process where a substring of a chromosome is exchanged with the

corresponding substring of its mating partner. New structures are generated in

this process with the hope for better average fitness. The length of the string to be

swapped is selected randomly. Crossover results in a randomized yet structured

information exchange. Each new individual generated combines the characteristic

of both parents.

• Mutation

34

In order to avoid the search process being stuck in local optima, it is necessary to

introduce some “noise” to the system. Mutation is employed for such a purpose. It

randomly flips a bit in a chromosome’s string representation. The resulting effect

prevents the search from premature convergence. The probability of mutation

should not be too large, otherwise good gene structures will be lost, which in turn

will delay the search process.

Fig. 2.6 illustrates a flowchart of a GA.

GAs have been used widely for the task scheduling problem [6, 25, 50, 95, 101, 105,

110]. In the following, we briefly discuss some related work.

Hou et al.’s algorithm

Hou et al. [50] introduced a genetic algorithm (we will call it HAR algorithm hereafter)

for DAG scheduling. It is one of the earliest attempts to use GA to solve this type

of scheduling problem. In this algorithm, each individual s is composed of m strings

{s1, s2, ..., sm}. Each string contains the tasks scheduled to a processor represented

by the string. These tasks appear in the order of their execution in the schedule s.

It is possible that some strings may represent schedules not satisfying the precedence

constraints (infeasible). The authors proposed a method to guarantee that all strings

in the initial population and consequently generated population are feasible solutions

to the problem.

Let PRED(Ti) denote the immediate predecessors of task Ti and SUCC(Ti) the

35

Figure 2.6: An outline of genetic algorithms

36

immediate successors of Ti. The height of a task T , height(T), is defined as the max-

imum length between T and an exit node. Each task Ti is assigned a random height

between max{height(Tj)} + 1 and min{height(Tk)} − 1, over all Tj ∈ PRED(Ti) and

Tk ∈ SUCC(Ti). Tasks in each string are ordered according to their heights in order to

guarantee the feasibility of a given schedule coded in the above fashion.

The initial population is randomly generated. First the height of every task is

computed. For each height h, choose r tasks at random to be assigned to p1. Repeat

this step for all processors except the last one. Finally assign all remaining tasks to the

last processor.

Selection is based on the “roulette wheel” principle where each string in the popu-

lation occupies a slot size proportional to its fitness value. Then random numbers are

generated and used as indices into the wheel to select strings to be passed for crossover

and mutation. The better the fitness of an individual, the greater the chance of it being

selected.

During the crossover, each string of the two parents is cut into two halves - left and

right. This is done as follows: first a random height h is chosen. Tasks whose height are

larger than h become the right half and those with height smaller than h form the left

half. Only the right halves of the strings are exchanged. To guarantee the feasibility

of generated strings, the crossover site must meet two conditions: (1) the height of the

tasks next to the crossover sites are different, (2) the height of all the tasks immediately

in front of the crossover sites are the same. Mutation is implemented by randomly

37

exchanging two tasks with the same height.

Corrêa et al. [25] pointed out that there are a few shortfalls existing in the above al-

gorithm. First, in the initial population, the tasks are not uniformly distributed over all

the processors due to the initial population generation scheme. Secondly, the crossover

operator cannot generate some feasible solutions. Finally, there is no knowledge about

the problem being integrated into the algorithm. Based on these observations, they

proposed a new algorithm.

Corrêa et al.’s algorithms

Corrêa et al. [25] designed two improved algorithms based on HAR algorithm. The Full

Search Genetic Algorithm (FSG) uses the same encoding mechanism as HAR. However,

it creates the initial population differently. Specifically, each individual is generated

through a random list heuristics. Ready tasks are selected randomly and assigned on

random processors. This scheme ensures that tasks are uniformly distributed over the

processors. Selection is implemented using a biased roulette wheel as in HAR.

In order to avoid omitting some feasible solutions during the crossover, a new

crossover scheme is designed. Given a schedule s, the disjunctive graph of G is de-

fined as D(s) = (V,E(s)), where E(s) = E ∪ {(ni, nj)|ni and nj are assigned to the

same processor in that order}. The task set V is a closed task set if all the predecessors

of any task from V also belong to V . The first step of crossover is to divide each of

the two individuals s1 and s2 into two parts. In order to guarantee consistency, the left

part of a partition (V1 and V2) must be a closed task set. Let G′ = (V,E(s1) ∪ E(s2))

38

and V ′ = V . The partition is carried out as follows:

(1) Randomly select a task ni from V . Follow the two rules to insert related task nodes

to left (V1) or right (V2) part.

• ni and all of its predecessors that remain in V ′ are inserted in V1

• ni and all of its successors that remain in V ′ are inserted in V2

(2) Remove all tasks inserted from V ′.

(3) Repeat steps from (1)-(2) until V ′ becomes empty.

The two offspring s′1 and s′2 are generated as in HAR. For the mutation of individual

s, first the disjunctive graph D(s) = (V,E(s)) is constructed. The new individual is

generated using the method for generating each individual of the initial population.

A combined genetic-list algorithm (CGL) is also proposed. The salient feature of this

algorithm is the combination of list scheduling algorithm with crossover and mutation

operators. In the crossover operator, instead of just exchanging the right parts of the

involved strings, additional knowledge is introduced. The tasks in the right part of

the strings are scheduled according to a list algorithm over D(s2). Any list algorithm

should work here. The authors chose to use earliest data/most immediate successor

first (ED/MISF) algorithm. Similarly, during the mutation of s, the new individual is

formed by a list heuristic.

39

Wang et al.’s algorithm

Wang et al. [101] designed a GA based scheduling method, which has the following char-

acteristics. The encoding scheme uses two strings to represent an individual schedule:

the matching string and the scheduling string. The matching strings contain informa-

tion about where each task is assigned. The scheduling string is a topological sort of

the DAG and is used by the evaluation step. In generating the initial population, along

with the randomly generated schedules, an individual that represents the solution from

a non-evolutionary heuristic is also included. This may reduce the time needed for con-

vergence. Two roulette wheel selection schemes are employed in the selection step. The

rank-based scheme assigns the angle of the sector allocated for an individual based on

its rank. In the value-based scheme, the angle is proportional to favg/fi, where fi is the

fitness of individual i and favg is the average fitness. In addition, the best individual is

guaranteed to be passed onto the next generation. This is called elitism.

The crossover operator deals with the two strings of an individual separately. For

the scheduling strings, it randomly generates a crossover point on each string of the

mating pair. It divides the strings into two parts - top and bottom. The top parts

remain the same, and the tasks in the bottom parts are reordered. The new ordering of

the tasks in one bottom part is the relative positions of these tasks in the other original

scheduling string of the mating pair. For the matching strings, the crossover operator

randomly chooses a point and exchanges the bottom parts of each string.

The mutation operator handles the two strings differently. For the scheduling string,

40

the operator selects a task at random. It randomly move the task to another position

in valid range. The valid range of a task is the set of positions in the scheduling string

where the task can be scheduled without violating the precedence constraints. For

the matching string, the operator randomly selects a task/machine pair. The machine

assigned to the task is changed randomly to another machine.

Wu et al.’s algorithm

An incremental GA for DAG scheduling has been proposed recently [105]. This algo-

rithm has two distinct features. First, each individual in a GA population is composed

of a certain number of cells. A cell is actually a task and processor pair - (t, p), which

states that task t is a assigned on processor p. The order in which the cells appear on

an encoding dictates the order in which the tasks will be executed on each processor.

One significant difference from the previous GAs is that task duplication is allowed.

The same task may be assigned to different processors. The second and most important

feature of this GA is the design of the fitness function. The fitness of an individual is

a weighted sum of two partial fitness values. The first part, task fitness, measures how

close the individual is to be a valid schedule. By incorporating this factor, the need

to ensure a valid schedule is not necessary any more, and partial solutions can be used

to direct the search. The second part, processor fitness, evaluates the quality of the

schedule in terms of the makespan. The overall fitness of an individual is calculated by:

fitness = (1 − b) × task fitness + b × processor fitness (2.3)

41

where b ∈ [0.0, 1.0] is a user controlled parameter. By adjusting the value of b, the

algorithm can encourage either the formation of valid solutions or the formation of

optimal solutions. Simulation shows that both components of the fitness value are

necessary for the evolution of optimal solutions.

2.3 Static DAG scheduling in non-deterministic HDCS

In the previous section, we surveyed some representative algorithms for offline scheduling

DAG type applications in a deterministic environment, where it is assumed that the

prediction of task execution time and network bandwidth/latency is accurate. However,

in a real world computing environment, the probability of a precomputed schedule being

executed exactly as expected is low. Due to resource sharing among multiple users, the

performance of resources is inherently variant.

The dynamic characteristic of a real world computing environment could severely

penalize the performance of schedules obtained based on the predicted resource char-

acteristics. An optimal schedule based on inaccurate expectations about the real envi-

ronment will considerably deviate from optimal when executed. Kidd et al. [58] noted

that the optimization criteria commonly used to minimize the makespan, based on the

expected run-times of each job on each machine, is incorrect because it gives an average

schedule completion time that is always underestimated. Schedules generated using such

incorrect criteria will result in poor performance if carried out in a real environment.

The authors pointed out that using both the expected execution times and their dis-

42

tribution information will lead to better schedules. Consequently, in an uncertain, real

world computing environment, it is not desirable to devote significant effort to finding

an “optimal” schedule because the real optimal schedule can not be obtained without

its execution in a real environment. On the other hand, a schedule that might not be

very close to optimal before execution, but contains built-in mechanisms for handling

the uncertainty of real environment, may turn out to be a well-performed schedule upon

execution.

2.3.1 Classifications of current research on scheduling with uncertain-

ties

Davenport et al. [30] classified the approaches to dealing with uncertainty in a schedul-

ing environment into two categories; proactive and reactive scheduling. The goal of

proactive scheduling is to build schedules that contains some flexibility to hedge against

uncertainty. In other words, by considering the uncertainty information when producing

a schedule, it aims to generate a schedule that is more robust. The authors define a

robust schedule as one that is likely to remain valid under different disturbances and

one where violation of the assumptions upon which it is built are of no or little conse-

quence. It must also have the ability to satisfy performance requirements predictably in

an uncertain environment. Although defined in the context of Job Shop Scheduling and

Resource Constrained Project Scheduling, this definition is applicable to the scheduling

problems we consider. In reactive scheduling, a schedule is not computed before the

actual execution begins. The scheduler decides when and where to execute a task based

43

on the current information about the status of the system and perhaps an existing pre-

liminary schedule. Therefore, a schedule is revised or modified as necessary when the

status of the system changes. Based on the degree of which the schedule modifies a pre-

dictive schedule, several approaches can be followed. In one scenario, a schedule decision

is made dynamically in order to take into account the variance of environment charac-

teristics. As a result, task dispatching is done at run time. In this case, no predictive

schedule is necessary. At the other end of the spectrum, a completely new schedule is

generated every time a schedule is not executed as planned. This requires large amounts

of computation time to produce new schedules. In between the two extremes, a sched-

uler might repair the existing predictive schedule to account for the current state of the

system. This balances the scheduling complexity and the incorporation of up-to-date

system state. The authors also noted that a practical scheduling algorithm is very likely

to employ both proactive and reactive techniques. The combination of the two types of

techniques can results in a schedule with quick response time and good quality under

the uncertain environments.

Polices [79] categorized the different approaches for scheduling with uncertainty into

the following 4 groups:

(1) Robust scheduling: algorithms in this group use the information about possible

uncertainty of the system to produce schedules capable of “absorbing” some amount

of uncertainty.

(2) Partially defined schedule: algorithms in the category define a partial order of

44

scheduling tasks and use such flexibility to protect the schedule from uncertainty.

No information about uncertainty is used.

(3) Rescheduling: A schedule is modified dynamically if the uncertainty causes a certain

degree of deviation from the expected performance. One possibility is to repair as

local as possible to maintain the stability of the schedules. Another approach is a

global repair to produce better quality schedules.

(4) Dynamic scheduling: there is no baseline schedule required. The next task to be

executed is selected and scheduled based on the current status of the system.

The first two groups fall into the category of proactive scheduling and the last two

belong to reactive scheduling as defined by Davenport et al. [30].

In the context of task scheduling in HDCS such as the grid, Bölöni et al. [16] sug-

gested several possible approaches for scheduling with non-deterministic task execution

times:

(1) Overestimate the execution time of each task to minimize the probability of ex-

ceeding the allocated time slot on each processor. This will certainty reduce the

utilization of the resource.

(2) Compute the schedule at run time dynamically. Once the task node is ready to be

executed, information about the current state of the system is gathered to produce

a new schedule for the remaining tasks of the tasks graph.

45

(3) Precompute a set of schedules for various scenarios of the system. At run time,

choose the schedule upon which the condition best fits the current condition is

built.

(4) Find schedules less vulnerable to uncertainty, i.e. more robust, statically.

Based on the classification criteria of Davenport et al. [30], approaches (1), (3) and (4)

are proactive scheduling algorithms; approach (2) is reactive scheduling algorithm.

In the following, we describe different approaches to scheduling with uncertainty.

We use the classification of Davenport et al. [30] in our description.

2.3.2 Review of different scheduling techniques

Proactive scheduling

Robust task scheduling One of the most important approaches in the category of

proactive scheduling is robust task scheduling. A robust schedule should be able to

tolerate some degree of uncertainty in the execution environment. Although robustness

is an important metric of the quality of a schedule, little work has been done on how to

generate robust schedule, especially in the area of DAG scheduling.

In [27], the authors studied the problem of scheduling n independent jobs on a single

machine. The processing times of individual jobs are uncertain and can be described

through a set of processing time scenarios Λ. Two versions of robust scheduling problems

are proposed. The Absolute Deviation Robust Scheduling Problem (ADRSP) aims to

find the schedule that minimizes the worst-case absolute deviation from optimality for

46

the total flow time. It is formulated as:

min
X

{max
λ∈Λ

[ϕ(X,P λ) − Gλ]} (2.4)

where λ ∈ Λ represents a set of processing times of the tasks that can be realized with

some probability. The vector P λ = {pλ
i : i = 1, 2, ..., n} denotes the processing time of

each job corresponding to scenario λ. Let σ∗
λ be the optimal sequence given processing

time scenario λ and Gλ is total flow time of sequence σ∗
λ using some heuristic such as

the shortest processing time (SPT) schedule. In the formulation, ϕ(X,P λ) is the total

flow time of scheduling X given processing time scenario λ. Another similar version is

called the Relative Deviation Robust Scheduling Problem (RDRSP), which determines

the schedule that minimizes the worst-case percentage deviation from optimal for the

total flow time. It can be formulated as:

min
X

{max
λ∈Λ

[ϕ(X,P λ)/Gλ]} (2.5)

After proving the NP-hardness of the problems, the authors gave a branch-and-bound

algorithm for the problem and two heuristic approaches for the two-job absolute and

relative robust scheduling problems.

Another example of considering robust job shop scheduling is found in [66]. The un-

certainty in the job shop scheduling problem is typically caused by machine breakdown

and subsequent disruption to the schedule. Let s be a schedule that specifies the order

47

in which tasks are executed on machines, M0(s) the makespan of s without disruptions

and M(s) the actual makespan in the presence of disruptions. Thus, the schedule delay

is δ(s) = M(s) − M0(s). Let r be a real value in the interval [0, 1]. The robustness of

schedule s, R(s), is defined as:

R(s) = r × E[M(s)] + (1 − r) × E[δ(s)] (2.6)

where E[·] represents the expectation operator. When there is only one disruption, R(s)

can be computed analytically. If more than one disruption is considered, the problem

becomes intractable. The authors developed several surrogate robustness measures that

are strongly related to the expected delay and makespan to solve the problem. Among

those measures, RM3(s) is shown to be the most effective. It is defined as:

RD3(s) =

∑

i∈Nf

slacki

|Nf |
(2.7)

and the associated expected makespan is

RM3(s) = M0(s) −

∑

i∈Nf

slacki

|Nf |
(2.8)

where slacki = lsti − esti is the difference between task i’s latest start time (lst) and

earliest start time (est). Nf is the set of tasks to be processed on fallible machines.

A genetic algorithm is designed to generate schedules based on the robustness measure

48

defined. In the GA, the fitness of a schedule s, fitness(s), is computed from RD3(s)

and RM3(s) as follows:

fitness(s) =
{MAXZ − Z(s)}FS

∑

i∈PS

{MAXZ − Z(i)}FS
(2.9)

where MAXZ is a sufficiently large number and Z(s) is the objective function defined

as:

Z(s) = r × RM3(s) + (1 − r) × RD3(s) (2.10)

PS is the population size and FS is the fitness selection power. Experiment results show

that when r is close to 1, the algorithm is able to find robust schedules that maintain

good performance in the expected makespan and reduce the expected delay. When the

expected delay is the objective (r = 0), the algorithm finds the schedule with the best

expected delay performance but it comes at the expense of the makespan.

Darbha et al. [29] investigated the impact of change in computation and communica-

tion costs on the precomputed schedules. Here, the variations is due to the inaccuracies

of estimating the instruction execution times or the message passing delays. Given a

DAG G(V,E, τ, c), let s denote the schedule generated for the DAG using a heuristic

developed by the authors called STDS. Let L(G(V,E, τ, c), s) represent the makespan

of s under the cost (τ, c). The schedule s may or may not be generated using (τ, c). The

49

robustness of scheduling algorithm A, R(A) is defined as:

R(A) =
L(G(V,E, τ2, c2), s2)

L(G(V,E, τ2, c2), s1)
(2.11)

Here, schedule s1 is obtained with the estimated cost (τ1, c1) and s2 is generated

with real costs (τ2, c2). Therefore, L(G(V,E, τ2, c2), s2) represents the makespan that

would be obtained by applying the real costs (τ2, c2) with schedule s2. Similarly,

L(G(V,E, τ2, c2), s1) is the makespan of s1 with real costs (τ2, c2). The robustness

of the algorithm is the ratio of the two makespans. The desired robustness is a value

very close to 1.0. Based on this definition, the authors identified some conditions for

their heuristic STDS to be robust and showed that STDS is robust through experi-

ments. The authors pointed out that the robustness of the resulting schedule can be an

important objective for scheduling strategies rather than just attempting to minimize

the makespan.

An intuitive notion of robustness of a schedule is that the execution of the schedule

should be able to maintain performance despite various uncertainties in the resource

environment. Although intuitive, it is difficult to measure it quantitively. There is no

consensus on which definition should be used. Different researchers propose their own

definition of robustness. For example, in [7] the authors presented a metric for the

robustness of a resource allocation. Several steps need to be followed in their proce-

dure. First, all the robustness requirement that make the system robust are selected

quantitively. Next, perturbation parameters whose values may impact the quality of

50

performance features selected in the previous step are identified. Then, the perturba-

tion parameters’ impact on the system performance are evaluated by mathematically

describing the relationship. Finally, the robustness of the system is the smallest varia-

tion in the perturbation parameters that cause the degradation of the system to violate

the performance bounds.

Along this line, England et al. [37] proposed another new metric to measure the ro-

bustness. It essentially uses the probability hypothesis theory to measure how close two

probability distribution are. One of the distributions F (x) = P (X < x) is the cumu-

lative distribution function (CDF) of performance under normal operating conditions.

The other one, F ∗(x) = P (X < x) represents the CDF of performance with the presence

of perturbation. A robust system should have very similar F (x) and F ∗(x). To mea-

sure the closeness of these two CDFs, a Kolmogorov-Smirnov (K-S) test is performed.

It calculates the δ as defined by:

δ = sup
−∞<x<∞

F (x) − F ∗(x) (2.12)

where δ can be used to measure the amount of performance degradation.

Bölöni et al. [16] investigated the problem of robust scheduling of a DAG modeled

task graph. A surrogate measurement of robustness of a schedule is proposed based on

the concepts of spare time and slack. Consider the task graph G = (V,E). An augment

graph G′ is first constructed by adding host dependencies to the original graph. If two

tasks are scheduled sequentially on the same host, a new host dependency link is added

51

between them. If a data dependency link between the two tasks is already in place, no

new link will be added. Consider an edge eij in G′, the spare time of eij is defined as:

tspare = tsj
− tfi

(2.13)

where tsj
is the start time of task j on its allocated processor and tfi

is the finish time

of the task i. The slack of task i, σi, is the minimum spare time on any path from i to

an exit task. A critical task has zero slack. A safe task has slack larger than the upper

bound delay of the task. The authors provide an empirical formula for computing the

robustness of schedule s:

R(s) =
∑

i

min(σi, t
upper
i − ti)

tγi
(2.14)

where ti is the estimated execution time of task i, and tupper
i is the upper bound of that

execution time. γ ∈ (0, 1] is a value determined experimentally. Experimental results

show that robustness analysis can increase the number of safe tasks and improve the

robustness of the resulting schedule.

Stochastic scheduling Stochastic scheduling approaches assume that the resource

characteristics can be modeled with random variables with certain probabilistic distribu-

tions. The information about uncertainty is known a priori. The idea of using stochastic

information during the schedule has been addressed in several studies [34, 43, 54, 58].

In [54], the impact of predictive inaccuracies on job selection and resource allocation

52

is investigated. The authors claimed that if a resource allocation policy is based on

the expected execution time of the job on different resources, then it might cause the

schedule to make a bad scheduling decision.

The same observation is made in [58]. The authors pointed out that scheduling

algorithms that generate schedules based on the expected run-times of each job on each

machine will result in an inferior schedule if the assumption that actual run-times are

exactly the same as the expected ones is violated. Consider the problem of scheduling J

independent tasks onto M machines. ejm is the random variable modeling the execution

time of task j on machine m. The expected value of ejm is E(ejm). Let tm denote the

time when machine m finishes all the tasks assigned on it. That is,

tm =
∑

j∈Um

ejm (2.15)

where Um is the set of tasks assigned on m. Two versions of optimization criteria can

be used when finding the schedule. The first one is

min ẑ (2.16)

where

ẑ = max
m=1..M

t̂m (2.17)

53

and tm is defined above. Here, ejm is the random variable. The other criteria is:

min ẑ (2.18)

where

ẑ = max
m=1..M

t̂m (2.19)

and

tm =
∑

j∈Um

E(ejm) (2.20)

It is proved that makespan calculated based on the expected run-times is less than

or equal to the actual schedule completion time. Another observation is that by using

the second optimization criteria, even the “optimal” schedule obtained via an exhaus-

tive search can be a poorly performed one in the real resource environment where the

actual execution times of the tasks are different than the expectations. Based on these

observations, the authors concluded that scheduling algorithms that use not only the

expected execution times but also their distributions can obtain better schedules.

Fujita et al. [43] also investigated the problem of scheduling independent tasks with

inaccurate estimation of execution cost. The Robust Multiprocessor Scheduling Problem

(RMSP) is such that, given m identical processors and n independent tasks with esti-

mated execution costs and inaccuracy distributions, generate a schedule such that the

expected makespan of the overall schedule will be minimized. A heuristic for tolerating

the inaccuracy estimation is proposed. Basically it is to solve the set partition problem

54

in a greedy fashion.

Dogan et al. [34] used genetic algorithm to solve the same problem. The goal is to

produce better schedules in terms of minimizing the makespan under the real resource

environment where the actual task execution times are not the same as the expected

ones. Task execution times are modeled as random variables. Two similar observations

as those in [58] are made: (1) Makespan of a schedule is calculated based on the expected

execution times will underestimate the expectation of the makespans obtained with

the real execution times. (2) Even an optimal scheduling obtained by only using the

expected execution times could be far from the actual optimal solution. Most heuristics

consider the following problem:

min
X∈π

{T̂F (X)} (2.21)

where

T̂F (X) = max
mj∈M

{
∑

vi∈V

xi,j τ̄i,j} (2.22)

Let X be a schedule, then the makespan under X is

TF (X) = max
mj∈M

{
∑

vi∈V

xi,jτi,j} (2.23)

where M is the set of processors and V is the set of tasks to be scheduled. xi,j is

the assignment scheme: if xi,j = 1 if and only if task vi is assigned to processor mj .

Otherwise, xi,j = 0. Let T̄F (X) = E[TF (X)], so the other version of the problem can

55

be formulated as:

min
X∈π

T̄F (X) (2.24)

where π is the set of all valid task assignments. To solve this problem, the authors

first computed T̄F (X) based on probability theory. Then three methods are used to

generate schedules, a popular heuristic called RC that ignores the variances of execution

times, a genetic algorithm with objective function TF (X) ,and a genetic algorithm with

objective function T̂F (X). Experiments show that GA using TF (X) as its objective

function accounts for the stochastic nature of the task execution times and thus is able to

find schedule with better makespan when executed in the real resource environment. In

addition, this algorithm is able to decrease the standard deviation of the makespan. The

limitation of this genetic algorithm is that it is not always possible to calculate T̄F (X)

analytically where each execution time can assume a different probability distribution.

Even though each execution time has the same probability distribution, only certain

types of distribution can lead to a mathematically tractable solution.

Stochastic information about the execution times is also used in [56] to more accu-

rately estimate the EST of a task node. Two new versions of ETF and DLS algorithms

are developed where the new method of calculating EST based on the mean and variance

of each task’s execution time is employed. Results show that the stochastic versions of

the two algorithms can find schedules that have smaller average makespans than those

found by their static counterparts. Furthermore, the stochastic EFT and DLS are able

to predict the actual makespan of a generated schedule more accurately. However, the

56

approach taken to calculate the EST limits itself to the case where the execution time

of each task is uniformly-distributed.

Stochastic scheduling addresses the problem of incorporating stochastic information

about the resource environment and the tasks while making scheduling decisions in

order to generate a better schedule. Random features such as task execution times and

network transfer rate are modeled by specifying their probability distributions, which

are assumed to be known by the scheduler. Although there are a few studies on this

subject, it seems that there is no consensus on how to efficiently use the stochastic

information and how to evaluate the generated schedule.

Reactive scheduling

Reactive scheduling algorithms make scheduling decisions based on the current state of

the system at run-time. Sometimes they are also referred to as online scheduling or

dynamic scheduling. It is common that a reactive scheduling algorithm also uses a pre-

computed schedule that is generated based on the estimations of resource performance,

i.e., it is a combination of offline and online scheduling techniques. In the following, we

briefly describe some reactive scheduling algorithms reported in the literature.

In [70], a dynamic scheduling algorithm called hybrid remapper was developed. As

the name suggested, it is a hybrid of a static and dynamic scheduling algorithm. The

algorithm is composed of two phases. During the first phase, an initial schedule based

on the estimations of task execution times is generated. In the second phase, while

the application is executing, the remapper uses run-time values for the task completion

57

and machine available times whenever possible to modify the initial schedule in order

to reduce the final makespan. Three variants of the hybrid remapper algorithm are

described. Each variant has a common first step, where tasks are partitioned into

blocks and assigned ranks. The rank is an indication of the priority for the task to

be mapped. These variants differ in the minimization criteria they use and in the way

they order the tasks examined by the partial mapping problem during the second step.

One of the variants seeks to minimize the expected partial completion time at each

remapping step, and the others attempt to minimize the overall expected completion

time. Two variants of the hybrid remapper order the subtasks at each remapping step

using ranks computed at compile time, and the other uses a parameter computed at

run time. Although differing in certain aspects, the remapper aims to improve the

initial schedule by using both the run-time information that becomes available during

application execution and the information that was obtained prior to the execution of

the application.

Alhusaini et al. [4] took a similar approach for scheduling independent task on the

Grid [41]. The objective is to minimize the overall makespan of all tasks while satis-

fying all resource sharing constraints among them. A two-phase scheduling algorithm

is proposed. The first phase is an offline planning phase where a preliminary schedule

is generated at compile-time. The second phase is a run-time adaptation phase where

run-time information, such as the variation in computation and communication costs

and the early release of resources, are taken into account in order to improve the perfor-

58

mance of the preliminary schedule. By comparing the algorithm to a baseline algorithm

with no adaptation at run-time, the authors showed that the new algorithm can signif-

icantly improve the makespan. It also outperforms a dynamic algorithm that does not

use a preliminary schedule.

In [74, 75], the problem of scheduling a DAG-modeled task graph onto a system

with online communication disturbance is studied. In this model, an estimation of the

communication cost is known at compile time. However, due to network contention, link

failure etc., the actual cost is disturbed at run-time. The authors claim that because of

the lack of exact communication cost, building a full-fledged schedule at compile time is

inappropriate. On the other hand, building the schedule completely at run-time is also

unsatisfactory. Therefore, a trade-off between these two approaches is proposed. This

approach has three steps:

(1) Compute an offline schedule based on the estimated communication cost.

(2) Compute a partial order that includes both the original task dependence ≺ and the

new machine dependence where if i and j are assigned to the same processor in that

order, then i ≺p j.

(3) At execution time, use the ETF policy to get a complete schedule including assign-

ment of step (1) and partial order from step (2).

Simulation results show that this algorithm performs better than the one with schedule

fully generated at run-time.

59

Boyer et al. [17] investigated the problem of dynamically scheduling a task graph with

inaccurate task execution time estimation. Two algorithms are proposed. The first one,

called Dynamic Adaptive Random Scheduler, is a hybrid approach. It searches a near

optimal schedule based on the current estimated task execution time, then executes the

schedule. Later, task migration is allowed based on the actual execution time. The Load

Balancing (LB) algorithm initially distributes tasks via a heuristic that uses estimated

task execution times and accounts for heterogeneity and dependencies. While the tasks

are executing, they are migrated to rebalance the load whenever a processor becomes

idle in a way that the number of migration is minimized. In addition, task dependence

constraints are not violated. Three rules must be followed during a migration. (1)

The tasks selected from migration are always taken from the tail of the queue of the

overloaded processor. (2) When multiple tasks are chosen to migrate, their relative

execution order on the new processor is kept the same as the one in the old processor.

(3) When a task is migrated to a new processor, it is merged into the queue of the target

machine in a way that the queue remains topologically sorted.

Recently, scheduling with uncertainty has been studied in the context of the Grid [14,

73, 86, 87, 108]. In [108], the authors classified dynamic scheduling in the uncertain Grid

environment into two categories; prediction-based and just in-time scheduling.

The prediction-based, dynamic scheduling uses dynamic information as well as some

initial schedule based on prediction. The scheduler is required to predict the perfor-

mance of task execution on resources and to produce a near optimal schedule for the

60

task at compile time. During the execution of the initial schedule, the schedule is

changed dynamically based on the current information about the Grid. For example, in

the GrADS framework [14], the scheduler first generates an initial schedule by using the

prediction on the task execution time with application performance models and network

transfer rate with MDS [40] and NWS [104]. In the mean time, an initial contract that

specifies the expected performance of tasks on the assigned resources is created. Due to

the uncertainty of the Grid environment, this contract will be probably violated. The

task will be migrated to other resources if this happens. Another cause of migration

is that a better resource for the task becomes available. This is called opportunistic

migration. In [86], a low-cost rescheduling policy for the mapping of workflows on Grids

was developed. An initial schedule is first built based on estimates. The rescheduling

policy then evaluates, at run-time before each task starts execution, the starting time

of each node against its estimated starting time in the static schedule and the slack, in

order to make a decision for rescheduling. The slack of each task is an indication of the

maximal value that can be added to the execution time of this task without affecting the

overall makespan of the schedule. The algorithm will proceed to a rescheduling action

if any delay between the real and the expected start time of the task is greater than

the slack. The purpose of such a policy is to optimize the makespan of the schedule

while minimizing the frequency of rescheduling attempts. Prediction-based scheduling

is also used in [87]. An initial contract between the client and service provider is created

with the estimates of job completion time. This contract is monitored throughout the

61

course of execution. Once it is violated, dynamic repair and rescheduling operations

are triggered. A metric called surety is proposed. The surety is the probability that a

task will finish its execution within a deadline window predicted by the service provider.

During the monitoring phase, surety is updated whenever progress is made or when a

certain period of time has passed. If the surety drops below the minimum threshold

determined by the contract, the scheduler will contact all service providers to get new

bids. Then a bid that can finish the task at the earliest time is accepted.

Just in-time scheduling only makes scheduling decisions at the time of task execution.

Due to the inherently uncertain and dynamic resource performance and availability

of the Grid environment, scheduling before run-time could result in a poor schedule.

Another factor that makes static scheduling unreliable is that accurately predicting the

execution time of all task on a shared Grid resource is extremely difficult. In [33], a just

in-time planning scheme of workflow application is described. The original workflow

is first partitioned according to a specified partitioning algorithm. This creates a new

workflow where the nodes are partial workflows. Then, the Pegasus system maps and

submits the partial workflows to the Grid. Dependency between two partial workflows

are preserved by enforcing that the mapping of a dependent workflow is not started until

the preceding workflow has finished executing. DAGMan [97] is used to control the in-

time planning process by making sure that Pegasus does not refine a partial workflow

until the previous partial workflow successfully finished execution.

62

Chapter 3

Task Scheduling Considering

Different Processor Capabilities

3.1 Introduction

As described in Chapter 2, the scheduling of task graphs is highly critical to the per-

formance of heterogeneous distributed computing system. It deals with the allocation

of individual tasks to suitable processors and proper order assignment proper order of

task execution on each resource where the common objective is to minimize the over-

all completion time or makespan [15, 36, 64, 65]. As the DAG scheduling problem is

NP-complete in general, a number of heuristics have been proposed. List scheduling

based heuristics usually generate good quality schedules at a reasonable cost. Various

methods to specify the priorities of nodes and select the best processor have been pro-

63

posed [65, 94, 98]. List scheduling heuristics are originally designed for homogeneous

systems where processor speed and capability, network bandwidth between any pair of

processors are the same. It has been extended in two directions. Firstly, several dy-

namic list scheduling algorithms have been introduced [63, 94, 107]. These algorithms

update the priorities of each node and the scheduling list dynamically at each step.

Similar to traditional list scheduling algorithms, at each step the node with highest pri-

ority is selected for scheduling. Dynamic list scheduling can potentially generate better

schedules. However, these approaches can significantly increase the time complexity of

the algorithms. Secondly, a number of new list scheduling algorithms for heterogeneous

environment have been proposed [82, 94, 98]. A comparison of those algorithms reveals

that during the processor selection phase: (1) insertion-based policy, which allows the

possible insertion of a task in an earliest idle time slot between two already-scheduled

tasks on a processor, is better than non-insertion based counterparts. (2) processor

selection criteria that consider the different processor speed (e.g., Earliest Finish Time)

outperform those do not include this factor (e.g., Earliest Start Time).

Although the DAG scheduling in general is a well studied problem, most of the

algorithms assume that the processors are equally capable, i.e. each processor can

execute all the tasks with possibly different speeds. While some of the algorithms do

not make the assumption explicitly, they also do not consider the potential effect of

different capabilities either [69, 85, 98]. Thus, these algorithms suffer in performance

when scheduling under this situation. Other algorithms simply become inapplicable

64

without modification. For example, the Critical-Path-on-a-Processor (CPOP) algorithm

introduced in [98] allocates all critical tasks onto a single processor in an attempt to

minimize the total execution time of the critical tasks. This algorithm fails if none of

the processors can process all the critical tasks. Another category of algorithms which

becomes unsuitable is the clustering algorithms [59, 68, 106, 107]. An algorithm of this

type allocates tasks into different clusters. Each cluster can contain more than two

tasks. When two tasks are assigned to the same cluster, they are executed in the same

processor. Under the condition of processors with different capabilities, chances are

none of processors can carry out all the potentially large number of tasks in the same

cluster. Therefore, unless effectively modified, clustering algorithms can not be directly

used under these circumstances.

In this chapter, we propose a new static list Scheduling algorithm for heterogeneous

processors with Different Capabilities (SDC). As found in [109], the methods used to

assign weights to the nodes significantly affect the performance of scheduling algorithms.

We suggest a new approach of setting a task node’s weight. It considers the percentage

of capable processors as well as the task’s average execution cost among those capable

processors. The SDC algorithm selects the task with the highest b-level [65] at each

step. The selected task is then assigned to a processor that minimizes its Adjusted Ear-

liest Finish Time (AEFT) (defined in Section 3.3) with an insertion-based policy. The

AEFT adapts the EFT by including a new term that indicates how large the communi-

cation between the current node and its children will be on the average, provided that

65

it is scheduled on the current processor. Due to resource scarcity, processors that mini-

mize EFT for the current scheduling node are not necessarily the best choice because of

potentially overwhelming inter-processor communication between the node and its chil-

dren as shown by the example in Section 3.3. The algorithm has been tested on a large

number of randomly generated problems of different sizes and types. The parametric

graph generator is similar to the one designed in [98] but with a different set of param-

eters. We compare SDC with two other list scheduling algorithms, the Heterogeneous

Earliest Finish Time (HEFT) [98] and Dynamic Level Scheduling (DLS)[94]. Normal-

ized Schedule Length(NSL) and Average Percentage Degradation(APD) [64] are used

as the comparison metrics. The comparison study shows that our algorithm performs

considerably better in most cases, especially when the Communication-to-Computation

Ratio (CCR) and Percentage of Incapable Processor (PIP) are large.

In the next section, the scheduling problem and some related terminology are defined.

Our algorithm (SDC) is introduced in Section 3.3. Section 3.4 presents experimental re-

sults based on randomly generated task graphs and a real world bioinformatics workflow

application graph. Section 3.5 contains the concluding remarks.

3.2 Problem description

A scheduling system usually consists of three parts; application, computing environment,

and scheduling goal. The application and computing environment can be represented

by a task graph and resource graph respectively.

66

3.2.1 Task graph

The DAG is a generic model of a workflow application consisting of a set of tasks (nodes)

among which precedence constraints exist. It is represented by G = (V,E), where V is

the set of v tasks that can be executed on a subset of the available processors. E is the

set of e directed arcs or edges between the tasks that maintain a partial order among

them. The partial order introduces precedence constraints, i.e. if edge ei,j ∈ E, then

task vj cannot start its execution before vi completes. Matrix D of size v × v denotes

the communication data size, where di,j is the amount of data to be transferred from vi

to vj. A task graph is a weighted graph. The weight wi of a node vi usually represents

its computation cost. The weight of an edge stands for the communication requirement

between the connected tasks (the amount of data that must be communicated between

them). We introduce a new approach to assign node weight in Section 3.3.

In a given task graph, a root node is called an entry task and a leaf node is called an

exit task. We assume that the task graph is a single-entry and single-exit one. If there

is more than one exit or entry task, we can always connect them to a zero-cost pseudo

exit or entry task with zero-cost edges. This will not affect the schedule.

3.2.2 Resource graph

A resource graph is an undirected weighted graph (both nodes and edges are weighted).

A node of a resource graph represents a processor and an edge denotes the link between

a pair of connected processors. The resource graph is a complete graph with p fully

67

connected nodes. The weight of a node represents the processor computation capacity

(the amount of computation that can be performed in a unit time). Similarly, the

weight of an edge stands for its communication capacity (the amount of data that

can go through the link in a unit time). We further assume that all inter-processor

communications are performed without contention. This assumption holds since our

computing environment consists of processors connected with wide area network links

as pointed out in [22].

3.2.3 Performance criteria

Before presenting the performance criteria, it is necessary to define a few attributes used

in the algorithm. The computation cost of task vi on processor pj is wi,j. If vi cannot

be processed on pj , then wi,j = ∞. The data transfer rates between processors are kept

in a matrix dtr of size p × p. The startup cost of communication for each processor is

stored in a vector sc of size p. The communication cost ci|m,j|n from task vi to vj when

task vi is scheduled on processor pm and task vj is scheduled on processor pn is given

by

ci|m,j|n = scm +
di,j

dtrm,n
(3.1)

We assume that intra-processor communication cost is negligible, i.e. ci|m,j|m = 0. The

task graph’s edge weight is defined as the average communication cost:

ci,j = s̄c +
di,j

d̄tr
(3.2)

68

EST (vi, pj) and EFT (vi, pj) are the earliest execution start time and the earliest ex-

ecution finish time of task vi on processor pj respectively. The entry task can start

execution at time 0. Other tasks’ EST can be computed by

EST (vi, pj) = max{avail(vi, pj), max
vk∈pred(vi)

(FT (vk, psk
) + ck|sk,i|j)} (3.3)

where avail(vi, pj) is the earliest time at which processor pj is ready for task vi’s ex-

ecution; pred(vi) is the set of immediate predecessor tasks of task vi. The inner max

block in Eq. 3.3 is the time that all the data needed to execute task vi on processor pj

is available, i.e. the ready time. This is obtained by considering all immediate prede-

cessors of task vi, the time they finish (FT) and the time needed to transfer data from

the machine where they actually run on to the machine in consideration pj. The EFT

is defined by

EFT (vi, pj) = wi,j + EST (vi, pj) (3.4)

The schedule length L of the DAG is the actual finish time of the exit task vexit.

L = FT (nexit) (3.5)

Although several performance criteria such as the tardiness or the total flow time

are suggested in the literature [21], our goal of scheduling in this research is to minimize

the scheduling length L (makespan).

69

3.3 The SDC algorithm

3.3.1 Setting task node weight

There are various ways to set the weights of task nodes in a heterogeneous setting [109].

For instance, one can take the average value, the best value, etc. In our algorithm,

we consider the effect of scarcity of resources as well as the average computation cost.

We set relatively higher weight to the node with less capable resources. The rationale

behind this is that tasks with scarce capable resources should be given higher priority in

order to avoid situations that give rise to undesirable effects. This can be best illustrated

with an example. In Fig. 3.1(a-c), an example task graph and its resource information

are given. Task B and C have the same average computation cost. In addition, B can

only be processed on processor 1. Fig. 3.2(a) shows the schedule when C is scheduled

before B. In this case, task C has a smaller earliest finish time when it is assigned on

processor 1. Task B has no choice but to be scheduled on processor 1. Assigning task C

on processor 1 will delay the starting time of task B and therefore postpone the whole

schedule. To avoid this problem, we can intentionally assign larger weights to tasks

with few capable processors. As illustrated by Fig. 3.2(b), task B is considered before

task C. B is still assigned on processor 1. This time C is scheduled on processor 2. The

schedule length is reduced from 7 to 6 due to the change of scheduling order between

tasks B and C.

70

13C

11D

2B

11A

P2P1Task

1P2

1P1

P2P1

AA

BB CC

DD

1 3

1 1

(a) (b) (c)

Figure 3.1: (a)an example DAG (b)the computation cost for each node on three ma-
chines (c) the communication cost table

(a)

(b)

A

0 2 4 6 8

C B DP1

P2

P1

P2

SL = 7

A B

0 2 4 6 8

C D SL = 6

Figure 3.2: (a)schedule for the DAG in Fig.3.1 with priority list A,C,B,D (b)schedule
for the DAG in Fig.3.1 with priority list A,B,C,D

71

The set of capable processors for node vi is denoted as

CP (vi) = {pk|wi,k 6= ∞} (3.6)

We define the Percentage of Capable Processors (PCP) of node vi as

PCP (vi) =
||CP (vi)||

p
(3.7)

where p is number of all processors. Thus the Percentage of Incapable Processors (PIP)

is

PIP (vi) = 1 − PCP (vi) (3.8)

The weight of node vi is specified as

wi =

∑

pj∈CP (vi)

wi,j/||CP (vi)||

PCP (vi)
(3.9)

By applying this specification we give relatively higher weights and thus higher priorities

to those task nodes with fewer capable resources. Experimental results in Section 3.4

show that this method gives better schedules than the one using average computation

costs.

72

3.3.2 Prioritizing the tasks

This step is essential for list scheduling algorithms. A task processing list is generated by

sorting the task by decreasing order of some predefined rank function. In this research,

we use b-level [65] as the rank function. The b-level of node vi is the length of the

longest path from vi to the exit node. It can be obtained by recursively traversing the

task graph from the exit node with time complexity O(e + v).

BLEV (vi) = wi + max
vj∈succ(vi)

{ci,j + BLEV (vj)} (3.10)

where ci,j is the average communication cost of ei,j , wi is the weight of node vi, and

succ(vi) is the set of immediate successors of vi. Ties are broken randomly in order not

to introduce high computing cost. The sorted list preserves the precedence constraints

among tasks.

3.3.3 Selecting processors

Various criteria have been proposed to select suitable processor for a task. When

scheduling in a homogeneous environment, EST is a popular choice [1, 51, 106]. While

in heterogeneous settings, using EFT as selection criteria gives better schedules [98].

Sih and Lee [94] suggested selecting (node, processor) pairs that maximize the so-called

Dynamic Level at each step. They extended the definition of Dynamic Level by includ-

ing the effects of descendant and resource scarcity when scheduling in heterogeneous

systems. Furthermore, an insertion based policy is better than non-insertion based one

73

as observed in [64]. An insertion based policy considers scheduling idle time slot be-

tween two already scheduled nodes as long as the slot is long enough and inserting the

task to the slot does not break any precedence constraint.

The EFT method apparently fails to consider how well the descendants of current

scheduling node vi matches the selected pj that minimizes the EFT (ni, pj). This is of

particular importance in our computing environment where processors have different

capabilities as identified in [94]. We propose a new target function called Adjusted

Earliest Finish Time (AEFT). The SDC algorithm assigns task to the processor that

minimizes the AEFT with an insertion-based policy. The AEFT is defined as

AEFT (vi, pj) = EFT (vi, pj) +
1

||succ(vi)||
∑

vt∈succ(vi)

st

√

∏

wt,k 6=∞
ci|j,t|k (3.11)

where st = ||CP (vt)|| is the number of capable processors for task vt. For each child vt

of vi, we calculate the geometric average of its communication cost with vi (assuming

it is scheduled on pj) when vt is scheduled on each capable processor pk ∈ CP (vt).

The second term in Eq. 3.11 considers how the current node’s allocation will affect the

communication with its descendant, on average. Without the second term, undesirable

results can be produced. For example, in the case where EFT (vi, pj) is minimized, due

to the scarcity of capable processors to execute vi, it has to be placed on some processor,

say pk, where communication cost between pj and pk can be very expensive. This will

undermine the overall quality of the resulting schedule.

74

(1)Set the weights of task nodes with Eq.(3.9)
(2)Set the weights of edges with Eq.(3.2)
(3)Compute the b-levels for all tasks by traversing graph

upward from the exit node.
(4)Sort the task into a list by non-increasing order of b-level
(5)while the scheduling list is not empty do

(6) Remove the first task vi from the list for scheduling
(7) for each processor capable pj of vi do

(8) Compute AEFT (ni, pj) value with Eq.(3.11)
using insertion-based policy

(9) endfor

(10) Assign task vi to the processor that minimize AEFT of vi

(11)endwhile

Figure 3.3: The SDC algorithm

3.3.4 Procedure of the algorithm

The pseudo-code of the SDC algorithm is shown in Fig. 3.3. As with other list scheduling

algorithms, the SDC algorithm has two major stages; a task prioritizing stage and a

processor selection stage. The first stage computes the priorities of all the tasks while

the second one selects the tasks in the order of their priorities and assigns each selected

task on its most desirable processor, which minimizes the task’s adjusted finish time.

As an illustration, Fig. 3.4(a) presents a sample DAG. The number next to each edge

of the graph corresponds to the amount of data that needs to be transferred from a task

to its immediate successor. The cost to execute each of the four tasks in the graph on

each of three different machines is given in Fig. 3.4(b). Fig. 3.4(c) shows the cost to

transfer a data unit for any pair of machines. For the simplicity of illustration, we use

unit data transfer rate.

75

42C

35D

12B

21A

P3P2P1Task

11P3

11P2

11P1

P3P2P1AA

BB CC

DD

2 10

2 5

(a) (b) (c)

Figure 3.4: (a)an example DAG (b)the computation cost for each node on three ma-
chines (c) the communication cost table

Fig. 3.5 shows the schedules obtained by HEFT, DLS and our SDC algorithm. The

schedule length of SDC is shorter than those of the other two algorithms. The scheduling

list of HEFT and SDC happen to be the same, which is {A,C,B,D}. DLS algorithm

does not maintain a static scheduling list. It selects a pair of (node, processor) that

maximize the Dynamic Level at each step.

3.3.5 Time-complexity analysis

We will refer to Fig. 3.3 when analyzing the time complexity of the algorithm. Line (1)

and (2) take O(vp) time. Line (3) can be done in O(e + v) [65]. Sorting tasks in Line

(4) takes at most O(v log v). Line 5 - 11 will cost O(ep2) time. Thus the total time

complexity is O(ep2). For a dense graph, where e is proportional to O(v2), the time

complexity becomes O(v2p2).

76

SDC (A,C,B,D)

1 2 3

DLS

1 2 3

HEFT(A,C,B,D)

A

C

B

D

SL = 16

A

C

B

D

SL = 15

0

4

8

12

16

A

C

B

D

1 2 3

SL = 14

Figure 3.5: (a)HEFT algorithm (b)DLS algorithm (c)SDC algorithm

3.4 Experimental results and discussion

We have evaluated our algorithm with a wide range of graphs. In this section, we

present the comparative results of the SDC algorithm and some related work given in

Chapter 2, namely HEFT and DLS. Randomly generated DAGs and a genomic sequence

annotation workflow are considered for assessing the algorithms.

3.4.1 Comparison metrics

The comparisons of the three algorithms are made using the following two measures:

• Normalized schedule length(NSL). The principal performance metric of an algo-

rithm is the length of its output schedule. The NSL of an algorithm is defined

77

as:

NSL =
L

∑

vi∈cpmin

min
pj∈P

{wi,j}
(3.12)

where L is the schedule length. cpmin is the critical path of the DAG when the task

node weights are evaluated as the minimum computation cost among all capable

processors. The denominator represents a lower bound on the schedule length.

Such a lower bound may not always be possible to reach and NSL ≥ 1 for any

algorithm. We use averaged NSL over set of DAGs as a comparison metric.

• Average Percentage Degradation (APD). The APD of an algorithm is the average

(over all DAGs) of the percentage of degradation of the schedule lengths L pro-

duced by the algorithm from the best schedules. Let G denote a set of DAGs,

where G = {g1, g2, ...}. ALG = {alg1, alg2, ...} is the set of algorithms we are

comparing. sl(algi, gj) represents the schedule length of gj using algorithm algi.

The APD of algorithm algi over graph set G is defined as:

APD(algi, G) =

∑

gj∈G

(

sl(algi, gj) − sl

(

argmin
alg∈ALG

(sl(alg, gj)) , gj

))

||G|| (3.13)

• Efficiency. The speedup of a task graph is defined as the time required for sequen-

tial execution of the graph in a single processor, divided by the time it takes to

complete it with N processors. We assume that there is at least one processor

that can execute all the tasks when comparing efficiencies of various algorithms.

78

The sequential execution time is obtained by assigning all tasks to a single pro-

cessor that minimizes the cumulative computation costs. Efficiency is the ratio of

speedup to the number of processors used. We use efficiency as the metric to test

the scalability of our algorithm. The results are presented in Section 3.4.2.

3.4.2 Randomly generated application graphs

Random task graph generation

In the first part of evaluation, task graphs are generated randomly with the following

input parameters:

• Task size in the graph (v). The value of v is assigned from the set {20, 40, 60, 80, 100}.

• Shape parameter of the graph (α). The height of a DAG is h =
√

v
α

. α gets its

value from set {0.5, 1.0, 2.0}.

• Average computation cost(comp). The average computation cost of a task node

is the average time required to complete the task on all of its capable processors.

The average computation cost of task node vi (compi) is generated randomly

from normal distribution N(comp, 0.5comp). Then the computation cost of vi on

processor pj (wi,j) is from normal distribution N(compi, 0.5compi). The values of

comp is from set {10, 20, 30, 40, 50}.

• Communication-to-Computation Ratio(CCR). The graph’s CCR is the ratio of av-

erage communication cost to the average computation cost. CCR = {0.01, 0.1, 1.0, 10, 100}.

79

• Average communication cost(comm).

comm = CCR ∗ comp (3.14)

• Percentage of Incapable Processors(PIP). This is defined in Eq. 3.8. There are

two schemes used when setting PIP. In the first set of experiments, we investigated

the effect of a new weight assignment function on schedule length. The PIP of

each task node is randomly generated from uniform distribution (0,0.9). We want

to evaluate how the SDC algorithm performs with respect to PIP in the second

set of experiments. The PIP of task node vi,PIP (vi) is from normal distribution

N(PIP , 0.5PIP), where PIP = 0, 0.1, 0.2, ..., 0.9.

Three sets of experiments are conducted in this part of the evaluation. Experiment set I

are designed to examine the effectiveness of the weight assignment function described in

Section 3.3.1. Experiment set II assesses the validity of the processor selection criteria

outlined in Section 3.3.2. When generating the graphs, each parameter set is repeated

25 times for the first set of experiments and 10 times for the second. This gives 9,375

graphs for Experiment set I and 37,500 graphs for Experiment set II. Experiment set

III evaluates the efficiency of the algorithm. The processor number varies from 4 to 64.

Other parameters are the same as those of experiment set I.

80

Generation of resource graph

The resource graph as described in 3.2.2 is a complete graph. The parameters we need

to set are:

• Number of processors (p).

• Average data transfer rate (dtr). This the average data transfer rate over all

combinations of processors. We fix this value as 1. The data transfer rate between

pm and pn (dtrm,n) is from normal distribution N(1, 0.5). We only use numbers

that are positive.

• Average data transfer size (d). Since the average data transfer rate is 1, the

average data transfer size is the same as the average communication cost. The

data size to be transferred from task vi to vj is di,j ∼ N(dtr, 0.5dtr).

• Startup cost. In this study, we omit the startup cost.

Performance comparison

The algorithm presented in Sec. 3.3 has two distinctive features; a new weight assign-

ment method and a modified processor selection criteria. The effects of both features

are presented next.

Effect of weight assignment function Experiment set I investigates how the weight

assignment method will impact the average NSL and APD. The results are shown in

Figs. 3.6 and 3.7 respectively. Two algorithms, namely HEFT and DLS, and their

81

20 40 60 80 100

1.25

1.3

1.35

1.4

1.45

Size

A
ve

ra
ge

 N
S

L

CCR =0.1

20 40 60 80 100
2.8

3

3.2

3.4

3.6

3.8

Size

CCR =1

20 40 60 80 100
18

20

22

24

26

28

30

32

Size

CCR =10

DLS ADLS HEFT AHEFT

Figure 3.6: The effect of the weight assignment method on average NSL

20 40 60 80 100
0

2

4

6

8

10

Size

A
P

D

CCR =0.1

20 40 60 80 100
0

5

10

15

20

Size

CCR =1

20 40 60 80 100
0

10

20

30

40

Size

CCR =10

DLS ADLS HEFT AHEFT

Figure 3.7: The effect of the weight assignment method on average percentage degra-
dation

82

modified counterparts AHEFT and ADLS are compared. The AHEFT (respectively

ADLS) is adapted from HEFT (DLS) where our weight assignment method described

in Section 3.3.1 is adopted. We show the cases where CCR =0.1, 1 and 10. From Fig.

3.6 we first observe that for all cases the average NSLs show an increasing trend with

respect to the increase of task graph size. This is due to the fact that the proportion

of task nodes, other than those on the critical path, increases with the task graph size

making it more difficult to achieve the lower bound.

We also notice that the adjusted algorithm performs better than its correspond-

ing original version and the degree of improvement varies with respect to CCR. When

CCR=0.1, the improvement of modified DLS over DLS is 5.0% when task size is 100.

The average NSL is reduced by 2.2% in the case of AHEFT (the adjusted HEFT algo-

rithm) versus HEFT. When CCR increases to 10, there is no noticeable effect. Remem-

ber that we use b-level (defined in Eq. 3.10) as the priority of a task node. When CCR

is large, average communication cost dominates BLEV in Eq. 3.10. Adjustment of the

task node weight does not really impact the priority, thus does not affect the scheduling

list order. On the other hand, when CCR is small, assigning a higher weight to those

task nodes with large PIP can give higher priority to the tasks and therefore change the

scheduling list order. As a result the schedule length is improved.

Fig. 3.7 depicts the degradation from the best solutions of the algorithms. When

CCR=0.1, the APD of AHEFT is less than 2.1% for all task graph sizes. On average,

the APD of DLS is improved by 4.8% when CCR=0.1. From the first graph of Fig.3.7,

83

we notice that the decrease of APD is more perceivable for DLS than that for HEFT.

In the HEFT algorithm, the priority of each task node is set at the beginning and

the scheduling list remains unchanged during the whole procedure. However, the DLS

algorithm reevaluates the dynamic level at each scheduling step and selects the (ready

node, processor) pair that maximizes it. The task weight constantly affects the dynamic

level values during the scheduling process.

Effect of processor selection criteria Experiment set II validates the processor

selection policy. We investigate how the algorithms will be impacted under graphs with

various characteristics.

Fig. 3.8 gives the average NSL values of the algorithms at different CCR, task size

and PIP. The DLS, HEFT and NSDC are the algorithms without a weight assignment

adjustment. When comparing three figures on each row, we notice that the average

NSLs tend to increase with the increasing of task graph size. This is consistent with

previous observations in the first set of experiments.

When CCR is small, the NSDC algorithm performs almost the same as HEFT. This

is because the second term of the definition for AEFT (Eq. 3.11) is relatively small

compared to EFT . However, due to the significant impact of the weight assignment

function in the cases of small CCR, SDC generates better schedules overall. This is

more obvious when PIP > 0.4. The average NSL of SDC algorithm is better than the

DLS algorithm by 4.7%, the HEFT algorithm by 1.6% when CCR = 0.01.

When CCR is large, the communication cost becomes dominant. Scheduling the

84

0 0.2 0.4 0.6 0.8 1
1.05

1.1

1.15

1.2

1.25

A
ve

ra
ge

 N
S

L

CCR =0.01 Size =20

0 0.2 0.4 0.6 0.8 1
1.1

1.2

1.3

1.4

1.5
CCR =0.01 Size =60

0 0.2 0.4 0.6 0.8 1
1.1

1.2

1.3

1.4

1.5
CCR =0.01 Size =100

0 0.2 0.4 0.6 0.8 1
2.5

3

3.5

4

A
ve

ra
ge

 N
S

L

CCR =1 Size =20

0 0.2 0.4 0.6 0.8 1
3

4

5

6
CCR =1 Size =60

0 0.2 0.4 0.6 0.8 1
3

4

5

6

7
CCR =1 Size =100

0 0.2 0.4 0.6 0.8 1
0

200

400

600

PIP

A
ve

ra
ge

 N
S

L

CCR =100 Size =20

0 0.2 0.4 0.6 0.8 1
0

200

400

600

800

PIP

CCR =100 Size =60

0 0.2 0.4 0.6 0.8 1
0

500

1000

1500

PIP

CCR =100 Size =100

DLS HEFT NSDC SDC

Figure 3.8: Average NSL of the algorithms

85

task without considering communication cost will suffer a huge performance penalty

if the children of the node can only be processed on a subset of available resources.

The average NSL of SDC is smaller than the DLS algorithm by 16.4%, the HEFT by

28.3% when CCR = 100. It is also noticed that when CCR is large, the average NSL is

large in that the lower bound of schedule length does not include any communication

cost. Our algorithm works better overall, especially when the heterogeneity of processor

capabilities is considerable.

The Average Percentage Degradation (APD) of the algorithms at different parame-

ters is given in Fig. 3.9. It can be seen that in almost all cases the APD of our algorithm

remains the lowest. The APDs of the other two algorithms fluctuate with respect to

both PIP and CCR. This indicates that our algorithm is less sensitive to PIP and CCR

compared to the other two.

Efficiency comparison We compared the efficiency of three algorithms, namely,

SDC, HEFT and DLS. The number of processors used varies from 4 to 64, incre-

menting by a power of 2. The rest of parameters are the same as those used previously.

Fig. 3.10 shows the comparison with graph size 100 and CCR 0.1. SDC has consistently

better efficiency than the other two algorithms. HEFT and DLS have comparable ef-

ficiency when the processor number is small. As the number of processors increases,

HEFT surpasses DLS with respect to efficiency.

86

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

A
P

D

CCR =0.01 Size =20

0 0.2 0.4 0.6 0.8 1
0

5

10

15
CCR =0.01 Size =60

0 0.2 0.4 0.6 0.8 1
0

5

10

15
CCR =0.01 Size =100

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

A
P

D

CCR =1 Size =20

0 0.2 0.4 0.6 0.8 1
0

20

40

60
CCR =1 Size =60

0 0.2 0.4 0.6 0.8 1
0

20

40

60
CCR =1 Size =100

0 0.2 0.4 0.6 0.8 1
0

100

200

300

PIP

A
P

D

CCR =100 Size =20

0 0.2 0.4 0.6 0.8 1
0

50

100

150

PIP

CCR =100 Size =60

0 0.2 0.4 0.6 0.8 1
0

50

100

150

PIP

CCR =100 Size =100

DLS HEFT NSDC SDC

Figure 3.9: Average percentage degradation of the algorithms

87

4 8 16 32 64
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Processors

E
ffi

ci
en

cy

SDC
HEFT
DLS

Figure 3.10: Efficiency comparison with respect to the number of processors

3.4.3 Performance analysis on application graph of a genomic sequence

annotation workflow

We further tested our algorithm with a genomic sequence annotation workflow [91] . Fig.

3.11 shows the task graph. In the figure, the DAG branches after the input sequence File

node into a sub-DAG of analysis that work on the original input and a sub-DAG that an-

alyzes the input sequence that is masked for repeats with RepeatMasker. The unmasked

sequence is analyzed further using three software packages, namely tRNAscanSE, Gen-

scan and HmmGene. The masked sequence is searched against two databases using

Blastall. The results from the latter search are further processed by an application

(bt2fasta). This generates a new database of formatted gene sequences. The unmasked

input sequence is then used as input to Sim4, which in turn aligns the input sequence to

88

111

222

555

666

File

333 444

10101010

777

888

999

Repeatmasker

Blastall

Blastall

Bt2fasta

Sim4

Gamexml

HMMGene Genscan tRNAscanSE

Figure 3.11: A genomic sequence annotation workflow

the entries in the newly created database. Results for all analyses are then integrated

into an XML file for further interpretation using some annotation tool. In this workflow

application, several domain specific softwares are involved. Because of these softwares’

special requirements, some of them can only be installed on designated machines while

others are available on all processors. This is a good example where processors offer

different capabilities in terms of software availability.

There are 10 tasks and 16 edges in the graph. We set the relative computation units

according to the tasks’ demands. The transferred data size is also specified approximat-

ing the corresponding file size. Processor number varies between 2 and 10. The PIP of

each processor is set randomly. Fig. 3.12(a) shows the performance of the algorithms

89

0.01 0.05 0.1
1

1.1

1.2

1.3

1.4

1.5

1.6

CCR
(a)

A
ve

ra
ge

 N
S

L

2 4 6 8 10
1

1.1

1.2

1.3

1.4

1.5

Number of procssors
(b)

A
ve

ra
ge

 N
S

L

DLS
HEFT
SDC

DLS
HEFT
SDC

Figure 3.12: Comparison of three algorithms on a genomic sequencing annotation work-
flow

with respect to three different CCR values. The highest CCR is set to 0.1 because

the workflow is computation-intensive in reality. On the average, SDC performs best

among the three algorithms. The performance gain is more notable for larger CCRs.

Compared to DLS, HEFT produces a better schedule when CCR is small. When CCR

increases to 0.1, the trend is reversed. In [98], where all the processors can handle every

task, the conclusion is different. The authors observed that HEFT always obtains a

smaller average NSL when testing with a modified molecular dynamic task graph. The

comparison of three algorithms with regard to different processor numbers is given in

Fig 3.12(b). It is noticed from the figure that since there are at most four tasks in any

level in the task graph, increasing the processor number does not significantly reduce

SLR if p > 4. The SDC algorithm outperforms the other two algorithms in all cases.

90

3.5 Conclusions

In this chapter, we presented a new algorithm for scheduling DAG based workflow

applications in heterogeneous systems where processors have different capabilities. The

algorithm has two distinctive features. First, we consider the effect of tasks’ scarcity

of capable processors when assigning the task node weights. For two task nodes with

the same average computation cost, our weight assignment policy tends to give higher

weight to the task with large PIP. Secondly, during the processor selection phase,

we adjust the effective EFT strategy by incorporating the average communication cost

between the current scheduling node and its children. We evaluate the algorithm using

a large set of randomly generated task graphs with different characteristics and a real

world bioinformatics workflow application. Results show that each feature of the SDC

algorithm improves the schedule length. It is noted that the new weight assignment

policy perceivably impacts the schedule when CCR is small while the processor selection

strategy affects the schedule length more substantially at a larger CCR. By combining

the two strategies, the SDC algorithm outperforms the other two algorithms overall.

Efficiency comparisons among three algorithms reveals that SDC scales well for various

processor numbers.

91

Chapter 4

Robust Task Scheduling in

Non-deterministic HDCS

4.1 Introduction

Although differing in the ways of modeling target computing systems (e.g., heteroge-

neous vs. homogeneous processors, with vs. without communication cost ,etc.), most

traditional scheduling methods are based on a deterministic model. In this model, all

information about the tasks (durations) and relationships among them (dependencies

in the DAG) are supposed to be known by the scheduling algorithm a priori. It is

assumed that the task execution time can be estimated and does not change during the

course of execution. However, this assumption does not usually hold in a real computing

environment, where the actual execution time of a task is different from the expected

92

one. The problem can be dealt with in several ways. For example, dynamic scheduling

algorithm assigns each ready task according to the current status of the resource envi-

ronment, aiming to avoid the inaccuracy of execution time estimation. Another possible

approach is to judiciously overestimate the execution time of each task according to its

variability, hoping that the real execution time will not exceed the estimated one. Thus,

the schedule will perform as well as expected. However, this approach could result in

low resource utilization. In this chapter, we take on the challenge by using a static

algorithm to find schedules less vulnerable to the non-deterministic nature of the task

execution time, i.e., more robust. As with other deterministic scheduling algorithms,

our scheduler is fed with the expected task execution times. We then define a metric

called slack for a schedule based on the slack of the individual task. The slack of a

task represents a time window within which it can be delayed without extending the

makespan and it is intuitively related to the robustness of the schedule. Larger slack

tends to absorb the task execution time variance with little delay. Next, we develop

a genetic algorithm based heuristic to generate schedules that are more robust com-

pared with schedules obtained by another popular heuristic called HEFT [98]. Genetic

based task scheduling algorithms [25, 50, 100, 105] normally use the makespan as their

objective function. However, in order to take into account both the robustness and

makespan, it is necessary to include the slack in the objective function. Unfortunately,

slack and makespan are two conflicting metrics as shown in section 4.4.1. Optimizing

only the makespan will result in schedules with small slack thus less robust to task

93

execution time variability. Conversely, optimizing slack alone tends to give a robust

schedule but with large makespan. To handle this multi-objective optimization problem

(MOOP) [32], we employed the ǫ-constraint method. In this method, an upper bound

of expected makespan is given by ǫ · MakespanHEFT . The scheduling algorithm tries

to find the schedules with maximal slack without exceeding the specified upper-bound.

Although the robustness of a schedule is a desirable property and conceptually easy to

perceive, it is difficult to measure quantitively. There are several attempts to define

it according to different perspectives of the problem [5, 7, 37, 66]. We give two new

measures of robustness based on tardiness and miss rate in this work. Results show

that the proposed algorithm can effectively trade off makespan for robustness.

The rest of this chapter is organized as follows. In Section 4.2 the robust task

scheduling problem is described. Section 4.3 presents a genetic algorithm based ap-

proach to solve the bi-objective optimization problem. We show some experimental

results in Section 4.4. The chapter concludes in Section 4.5.

4.2 Robust task scheduling problem

In this section, we present a formulation of robust scheduling a task graph.

4.2.1 Basic Models

As in Chapter 3, a task graph is defined by G = (V, E), where V = {v1, v2, ..., vn} is the

set of n tasks. E is the set of directed arcs or edges between the tasks that maintain

94

a partial order among them. The partial order introduces precedence constraints, i.e.,

if edge ei,j ∈ E , then task vj cannot start its execution before vi completes. vi is an

immediate predecessor of vj , and vj is an immediate successor of vi. A node with no

predecessor is called an entry node, and a node with no successor is called an exit node.

Matrix D of size n×n denotes the communication data size, where di,j is the amount of

data to be transferred from vi to vj . A heterogeneous multiprocessor computing system

is composed of a set P = {p1, p2, ..., pm} of m fully connected processors. We assume that

all inter-processor communications are performed without contention and computation

can be overlapped with computation. To each task vi, there is an associated vector

representing its minimal duration on each processor, i.e., the best case execution time

(BCET). B is an n ×m matrix where bi,j gives the best case execution time of task vi

on processor pj. Furthermore, we assume that random variables ci,j are independent of

each other. The data transfer rates between processors are represented by matrix T R

of size m×m. Intra-processor communication cost is assumed to be zero. In this work,

we do not consider the variation in data transfer rates.

A schedule represents the assignment of tasks onto processors. It is denoted as a vec-

tor s = {s1, s2, ..., sm}, where si = {(vj1 , vj2), ..., (vjki−1
, vjki

)} denotes the task execu-

tion order on processor i. ki is the number of task nodes assigned to processor i. Fig. 4.1

illustrates an example of a task graph, a multiprocessor system and a schedule. The

schedule shown in Fig. 4.1(c) can be denoted as {{(v1, v2), (v2, v4)}, {(v3, v5), (v5, v8)}, {(v6, v7)}, φ}.

Definition 4.2.1. Given a task graph G = (V, E) and a schedule s = {s1, s2, ..., sm},

95

111

222 333

555 666

777

444

888

(a)

P
11
P
1
P
1 P

22
P
2
P
2

P
33
P
3
P
3 P

44
P
4
P
4

(b)

P
1

P
2

1 2

0 2 4 6 8

3 5

(c)

P
3

6

4

P
4

7

8

111

222 333

555 666

777

444

888

(d)

Figure 4.1: (a) An example task graph (b) A multiprocessor system (c) A schedule (d)
A disjunctive graph of (a) with schedule (c)

we denote by Gs the disjunctive graph of G under schedule s as: Gs = (Vs, Es), where

Vs = V, Es = E ⋃ E ′. E ′ is the set of disjunctive edges. E ′ = {ei,j |ei,j /∈ E ,∃k ∈

{1, ...,m}, s.t.(vi , vj) ∈ sk}. The data size matrix associated with Gs, Ds is:

ds,ij =























0 ∃k ∈ {1, ...,m}, s.t.(vi, vj) ∈ sk

dij otherwise

(4.1)

Fig. 4.1(d) represents the disjunctive graph of (a) with the schedule shown in (c). Here,

E ′ is illustrated with dashed line.

In traditional list scheduling algorithms such as those proposed in [35, 94, 98, 106],

96

a task is assigned to a “best” processor one at a time according to a pre-computed

order. After the last task is scheduled, its finish time becomes the makespan of the

whole schedule. There is only one makespan value for each schedule. This is not the

case in robust task scheduling where task execution time variation is considered (in

our experiments, the actual execution times will be modeled by random variables). We

call it a realization of a schedule when the task graph is executed in the real resource

environment according to the schedule. Clearly, each realization of a schedule can

result in different makespans. The following claim states how we can obtain the actual

makespan of a schedule.

Claim 4.2.2. Given task graph G = (V, E) and a schedule s = {s1, s2, ..., sm}, if each

task starts to execute as soon as it becomes ready, then the makespan corresponding to

the schedule s is the length of the critical path of disjunctive graph Gs.

4.2.2 Slack

Using the concept of slack to manage uncertainty in scheduling originates from the

field of operations research. In [66], the authors used several surrogate measures based

on average slack time to generate schedules that are robust to machine breakdown

and processing time variations. Recently, Bölöni et al. [16] used slack to identify safe

components in DAG scheduling. A safe component will not cause an increase in the

total makespan.

We first introduce the following notations:

97

• Pi→j the set of the paths that go from node i to node j in G′,

• tsi
the start time of task i,

• tfi
the finish time of task i,

• Ti the duration of task i. Ti = tfi
− tsi

,

• Node m is the exit node. Node 1 is the entry node,

• M = tfm
the makespan,

• Ci,j is the communication cost between task node i and j,

• Bl(i) = maxPi→m





m−1
∑

j=i

(Tj + Cj,j+1)



+ Tm, the bottom level of node i,

• Tl(i) = maxP1→i





i−1
∑

j=1

(Tj + Cj,j+1)



, the top level of node i,

• Si→j = tsj
− tfi

− Ci,j the spare time between i and j (when the edge (i, j) does

not exist in G′ we have Si→j = 0).

We assume that the schedules are eager, which means that once allocated a processor,

each task starts execution as soon as possible. We propose to use the following as the

definition of slack for a task node:

Definition 4.2.3. Consider a task graph G, and a schedule s for the task graph. The

makespan of G under schedule s is M . For a task node ni, let T l(i) denote its top level,

which is the length of a longest path from an entry node to ni (excluding ni). The length

of a path is the sum of all the expected costs of nodes and edges along the path, once the

98

schedule is computed. Let Bl(i) stand for its bottom level. The bottom level of a node

ni is the length of a longest path from ni to an exit node [65]. Then the slack of ni is

defined as:

σi = M − Bl(i) − T l(i) (4.2)

The average slack of task graph G is:

σ =
n−1
∑

i=0

σi/n (4.3)

where n is the size of task graph.

We first show that definition (4.2) is equivalent to the one proposed in [16]. In [16]

the slack of task i was defined as:

σ′
i = min

Pi→m





m−1
∑

j=i

Sj→j+1





Theorem 4.2.4. σi = σ′
i.

Before proving the above theorem, we need the following lemma:

Lemma 4.2.5. For all tasks i we have Tl(i) = tsi
.

Proof of lemma 4.2.5 We shall prove this lemma by induction from the top of the

graph. Since the schedule is eager, we have: ts1 = Tl(1) = 0. Suppose that it is true for

all the parents i of a task j. Let i∗ be a parent of j where the longest path from 1 to j

99

goes through. we have:

Tl(j) = Tl(i∗) + Ci∗,j = tsi∗
+ Ci∗,j

We have tsj
≥ Tl(j) because we need to respect the dependencies between i∗ and j.

Suppose that tsj
> Tl(j). This means that ∃i′ such that tsi′

+ Ti′ + Ci′,j > Tl(j). Then

by induction hypothesis Tl(i′) + Ti′ + Ci′,j > Tl(j), which is not possible because Tl(j)

is the longest path from node 1 to j. Hence, tsj
= Tl(j).

Proof of theorem 4.2.4 We shall prove the theorem by induction from the bottom

of the graph. For the last task we have σm = σ′
m = 0. Suppose that it is true for all the

successors of task i, then we prove that it is also true for task i. Let j∗ be a successor

of task i such that:

σ′
i = Si→j∗ + σ′

j

= Si→j∗ + σj∗ (By hypothesis of induction)

= Si→j∗ + M − Bl(j∗) − Tl(j∗) (4.4)

We call P = {i, j, j + 1, . . . ,m} a path that goes from i to m but does not include

the edge (i, j∗) and P∗ is the path such that
∑

i∈P∗ Si→i+1 is minimum. We have

P∗ = {i, j∗, j∗ + 1, . . . ,m} and

100

∀P
∑

j∈P∗

Sj→j+1 ≤
∑

j∈P
Sj→j+1 (4.5)

Let L be the length of the P.

L =
∑

j∈P
(Tj + Cj,j+1) + Tm

= tfi
− tsi

+ Ci,j + tfj
− tsj

+ Cj,j+1 + . . . + tfm−1 − tsm−1 + Cm−1,m + tfm
− tsm

= −tsi
− Si→j − Sj→j+1 − . . . − Sm−1→m + tfm

(by definition of spare time)

= tfm
− tsi

−
∑

j∈P
Sj→j+1

≤ tfm
− tsi

−
∑

j∈P∗

Sj→j+1 (from inequality 4.5)

≤
∑

j∈P∗

(Tj + Cj,j+1) + Tm

Hence the longest path that goes from i to m is the path where the sum of the spare

time is maximum. In particular, it goes through j∗, which means that:

Bl(i) = Ti + Ci,j∗ + Bl(j∗) (4.6)

From Eq. 4.4 and 4.6, we then have:

σ′
i = Si→j∗ + M − Bl(i) + Ti + Ci,j∗ − T l(j∗)

= M − T l(j∗) + tsj∗
− tfi

− Ci,j∗ + tfi
− tsi

+ Ci,j∗

= M − Bl(i) − Tl(j∗) − tsi
+ tsj∗

(4.7)

101

From Lemma 4.2.5, we have: tj∗ = Tl(j∗) and ti = Tl(i), hence Eq. 4.7 becomes:

σ′
i = M − Bl(i) − Tl(i) = σi

In [16] the authors prove the following theorem:

Theorem 4.2.6. Let i be a node with slack σi. If the duration of i exceeds its expected

duration by ∆i ≤ σi, then the makespan is unchanged, provided that all other nodes have

a duration that does not exceed the expected duration.

We can generalize the above theorem as follows:

Theorem 4.2.7. Let i be a node with slack σi. If the duration of i exceeds its expected

duration by ∆i ≤ σi then the makespan is unchanged, provided that all other nodes have

a duration that does not exceed the expected duration. However, for all tasks j that are

independent to task i in the disjunctive graph G′, their own slack is unchanged.

Proof of Theorem 4.2.7 For tasks i we have a new duration T ′
i = Ti +σi. According

to the proof of Theorem 4.2.6 (see [16]), the schedule is shifted this way: ∀k ∈ Pi→m,

we just shift the start time of task k but not its duration such that tk = tk + δk and

tfk
= tfk

+ δk (δk = max
(

0,∆i −
∑k−1

l=i Sl→l+1

)

). Let us show that the new slack σ′
j of

task j is unchanged in the shifted schedule. Indeed, the lengths of the longest paths from

task 1 to j and from j to m stay unchanged as i and j are independent (the durations of

102

the tasks on these two paths have not increased nor have the communications). Hence,

Bl′(j) = Bl(j), Tl′(j) = Tl(j), and (from theorem 4.2.6) M is not increased by shifting

the schedule, thus we have σ′
j = M − Bl′(j) − Tl′(j) = M − Bl(j) − Tl(j) = σj.

This leads to the immediate following corollary:

Corollary 4.2.8. If the expected time of several tasks is increased by a value smaller

than their own slack and these tasks are all independent in the disjunctive graph, then

the makespan is not increased.

4.2.3 Robustness

A robust schedule is defined as a schedule that is insensitive to disturbances in task

processing time. Robustness of a schedule provides a measurement of the degree of the

“insensitiveness”. In [66], the authors defined the robustness of a schedule as the linear

combination of expected makespan and delay. This is one of the few early attempts to

formalize the definition of schedule robustness. Unfortunately, the definition conflates

the notion of robustness with the optimization criteria of makespan minimization, which

limits its applicability. In [16], although the authors devised an empirical formula for

robustness measure as an objective function to be optimized, the formula does not

provide a way to evaluate the robustness of the schedule. We believe that the robustness

of a schedule should reflect how stable the actual makespans will be with respect to the

expected one. The overall performance of a schedule should consider both the expected

makespan and the robustness. We propose two definitions in light of this perspective.

103

Definition 4.2.9. Let M0(s) denote the expected makespan of schedule s obtained with

expected task execution time and Mi(s) the real makespan with ith realization of expected

task execution times. The relative schedule tardiness is:

δi(s) =
max(0,Mi(s) − M0(s))

M0(s)
(4.8)

The first definition of robustness of schedule s is:

R1(s) =
1

E[δi(s)]
(4.9)

where E[·] represents the expectation operator.

Definition 4.2.10. M0(s) and Mi(s) are defined as above. N realizations of the ex-

pected task execution times are performed. Let M = {Mi(s)|Mi(s) > M0(s)}. The

schedule miss rate is: α(s) = ‖M‖
N

. Then, the second definition of robustness of sched-

ule s is:

R2(s) =
1

α(s)
(4.10)

4.3 A Bi-objective Task Scheduling Problem

As noted, there are two objectives in the context of robust task scheduling; minimizing

the makespan and maximizing the robustness. In addition, we use average slack as the

robustness measurement. The task of finding optimum solutions in this case is a bi-

objective optimization problem. As will be shown in Section 4.4.2, these two objectives

104

are conflicting. Different solutions produce trade-offs between the two objectives, which

means there is no single optimum solution. There exists a number of solutions that are

all optimal. These solutions are called non-dominated solutions [32]. In dealing with

such a bi-objective optimization problem, a few commonly used classical methods can

be employed. In the next section, we will briefly describe the ǫ-constraint method [32]

used in this study.

4.3.1 ǫ-constraint Method

ǫ-constraint method was proposed by Chankong and Haimes [23]. It is based on a

scalarization where one of the objective functions is optimized while all other objective

functions are bounded by some additional constraints. In the context of this study, the

ǫ-constraint method can be formulated as follow:























Maximize σ

Subject to M0(s) < ǫ · MHEFT

(4.11)

where σ is the average slack as defined in Eq. 4.3. ǫ is a user defined parameter. MHEFT

is the makespan of the schedule generated by the popular HEFT algorithm [98].

4.3.2 A Bi-objective Genetic Algorithm

We are now in a position to introduce the bi-objective genetic algorithm. The Genetic

Algorithm (GA) is a powerful tool in finding global optimal solutions in large search

105

spaces. It has been used extensively in task scheduling [50, 100, 105]. There are many

approaches to GAs in the literature. In this study, we implement a standard GA. In

a standard GA, the first step is to encode any possible solution to the problem as

a chromosome. Each chromosome represents a solution where a set of chromosomes is

referred to as a population. Then an initial population is generated as the first generation

from which the evolution starts. Each chromosome is associated with a fitness value,

which represents the quality of the solution. The algorithm next evaluates the quality

of each chromosome with a problem-dependent fitness function. Selection, crossover

and mutation are applied subsequently to the population to generate a population with

better expected overall quality than the previous generation. These steps are repeated

until the solution is converged according to predefined criteria. We present the details

of each step of the bi-objective genetic algorithm below.

Chromosome representation

In GA, a chromosome representation, also called encoding, of a solution is a data struc-

ture that holds the information about the individual solution. In our GA based schedul-

ing algorithm, each chromosome ci consists of two parts; the scheduling string and as-

signment strings. The scheduling string is a topological sort of the task graph. This

represents the execution order of the tasks. In a valid solution, the ordering of the

task nodes in the scheduling string must observe the precedence constraints of the task

graph. In the second part, p assignment strings represents the task assignment in each

processor. Each string includes all tasks assigned to the processor that the string rep-

106

resents and the order of execution of the tasks on that processor. Including scheduling

string in the chromosome can avoid illegal solutions where the precedence constraints

are violated. In crossover and mutation steps, the scheduling string is used to enforce

the precedence constraints among tasks.

Each generation of population contains a set of chromosomes. We denote the size of

the population as Np. In the GA, this size is kept constant throughout the evolution.

Initial population generation

Before the GA can evolve, an initial population must be generated. For each chro-

mosome, a new scheduling string is produced by randomly generating a topological

sort list. In forming the assignment strings, the algorithm chooses each task ni from

the newly created scheduling list in order and selects a processor pj randomly. Then

ni is appended to the tail of string sj, which represents the assignment string of pj .

As suggested in [100], it is a common practice in GA to incorporate solutions from

some non-evolutionary heuristics into the initial population aiming to reduce the time

needed for finding a near-optimal solution. In our GA, we include one chromosome that

represents the solution from HEFT [98] in the population along with those generated

randomly.

Newly generated chromosomes are checked for uniqueness. If a new chromosome is

identical to any of the previously generated ones, it is discarded. Identical chromosomes

could lead to a premature convergence where all chromosomes in a population have the

same fitness values.

107

Fitness function

As noted, we use the ǫ-constraint method to solve the multi-objective optimization

problem. In the GA, our goal is to maximize the average slack of the schedule subject

to the constraint such that the makespan will not exceed some predefined threshold

as formalized in Eq. 4.11. We can classify the individual solutions of the population

into two categories; feasible (F) and infeasible (F ′) solutions. Individuals in the first

category satisfy the constraint in Eq. 4.11. Otherwise, they are categorized as infeasible

solutions. The tenet of the ǫ-constraint method in dealing with MOOP is to choose

one objective function as the only objective and the remaining objective functions as

constraints. Therefore, those solutions that violate the constraint should be penalized

in the fitness values. In light of this observation, the fitness of a chromosome ci is set

as follow:

fitness(ci) =























σ if ci ∈ F

min{fitness(ci)|ci ∈ F} · ǫ·MHEF T

M0(ci)
if ci ∈ F ′

(4.12)

where σ, ǫ, MHEFT and M0 are defined the same as those in Eq. 4.11. For feasible

solutions, the larger σ, the fitter. On the other hand, for infeasible solutions, those

that severely violate the constraint are penalized more. Note that the above fitness

function is population-based, where an individual chromosome’s fitness is related to

other chromosomes’ fitness values.

Elitism is employed in the GA where the chromosome with the smallest fitness value

108

in the new population is replaced with the fittest chromosome in the current population.

Elitism is an important mechanism that guarantees that the quality of the best solution

found over generations is monotonically increasing.

Selection

The primary objective of the selection operator is to emphasize good solutions and

eliminate bad ones in a population, while keeping the population size constant. It is

designed to improve the average quality of the population by giving individuals of higher

quality a higher probability to be copied into the next generation. There are several

selection schemes proposed in the literature, such as proportionate selection, ranking se-

lection, and tournament selection [48]. It has been shown that the tournament selection

has better convergence and computational time complexity properties compared to any

other selection operator that exists in the literature, when used in isolation. We imple-

ment the binary tournament in our GA. It works by choosing two individuals randomly

from the population and copying the better one into the intermediate population. Then

another two individuals are picked and the better one is put into the intermediate popu-

lation. This process is repeated 2Np times. Each individual can be made to participate

in exactly two rounds of tournaments if done systematically. The best solution in a

population will win both times, therefore making two copies of it in the new popula-

tion. Similarly, the worst solution will lose in both tournaments and will be removed

from the population. In this way, the average quality of the intermediate population is

improved. The intermediate population is subject to crossover and mutation operators

109

to produce the next generation.

Crossover

In GA, crossover is an operator that combines the information of two individuals to

produce one or two new individuals. The most common form of crossover involves two

parents that produce two offspring. By exchanging parts of parent strings, usually start-

ing from one or two randomly chosen crossover points, the offspring inherits desirable

qualities from both parents. In this study, a single-point crossover is implemented. Two

strings are chosen randomly as the parents to perform the crossover. First, a cutoff

position is randomly selected. This divides the scheduling strings of both parents into

two parts which we refer to as the left and right parts. Then the tasks in each right

parts of the chromosomes are reordered to form the scheduling strings of the offspring.

The left parts of the scheduling strings remain intact. The new ordering of the tasks

in one right part is the relative positions of these tasks in the other parent’s scheduling

string. This guarantees that the newly generated scheduling strings are valid topological

sortings of the task graph. Finally, for the assignment strings of the offspring, we first

convert each parent’s assignment string into a processor string representing each task’s

assigned processor number. Then, we randomly select a cut off point and exchange

the right parts of the converted strings. Now the two new processor strings represent

two new assignments. The offspring’s assignment strings are formed by converting the

processor strings back to their corresponding assignment strings.

In order to preserve some good strings selected during the selection operator, not

110

all strings in the population are used in crossover. If a crossover probability of pc is

used then 100pc% strings in the population are used in the crossover operation and

100(1 − pc)% of the population are simply copied to the new population.

Mutation

Mutation is GA’s another way to explore the solution space. It can introduce traits

not in the original population and keep the GA from converging prematurely before

sampling the entire solution space. The classical mutation operator flips single bits in

a string with a small mutation probability pm. The mutation operator implemented in

this GA works as follows. First, an individual is randomly chosen. Next, the mutation

operator is applied to the selected chromosome with probability pm. Then the mutation

operator selects a task v randomly from the scheduling string and puts it in a new

position such that the resulting new scheduling string does not violate the precedence

constraint of the task graph thus guaranteeing the validity of the solution. This can be

done by first identifying the range in which the select task can be place. The range is

defined as the positions between the last position of the immediate predecessors of v

and the first position of the immediate successors of v in the original scheduling string.

Any position in the range is a valid choice. After task v is put into a new position

in the scheduling string, a new processor p for v is picked at random. v is inserted

into processor p’s assignment string while maintaining the relative order of all the tasks

assigned on that processor according to the scheduling string.

111

4.4 Experimental results and discussions

Our goal in the experiments is to answer the following questions: (1) Is slack an effective

metric to control the robustness of a schedule? (2) How do the schedule’s makespan and

robustness change with respect to the ǫ value in the ǫ-constraint method used for solving

the bi-objective optimization problem? (3) What is the best ǫ value when the overall

performance that considers both the robustness and makespan is to be optimized?

In order to answer the above questions, extensive simulations have been carried out.

Random task graphs are generated using the same method used in [92] with the following

input parameters: task number n, shape parameter α, average computation cost (cc),

communication-to-computation ration (CCR). In the experiments, we set n = 100,

α = 1.0, cc = 20 and CCR = 0.1. The best case execution time (BCET) matrix B is

generated using the method suggested in [8]. It is a coefficient-of-variation(COV) based

generation method. COV is a set of values that act as measures of heterogeneity. There

are two different kinds of heterogeneity considered; task heterogeneity and machine

heterogeneity. Task heterogeneity represents the degree to which the task execution

times vary for a given machine. Similarly, machine heterogeneity is the degree to which

the execution times vary for a given task. Four parameters, µtask, Vtask, µmach, Vmach,

are defined in [8]. Among them, µmach can be obtained from the first two parameters.

Thus, µtask, Vtask,Vmach are three input parameters for the generation method. In fact,

the average computation cost cc has the same definition as µtask. We set Vtask = 0.5

and Vmach = 0.5 to represent medium task and machine heterogeneities respectively.

112

Table 4.1: Values of the parameters used in the GA

Parameter Description Values

Np Number of chromosomes in the population 20
pc Crossover probability 0.9
pm Mutation probability 0.1

One important aspect of the experiments is to study how our algorithm will per-

form under different degrees of uncertainty in the actual resource environment. We use

uncertainty level (UL) as a measurement of such degrees. Let ULi,j be the uncertainty

level of the execution time of task vi on processor pj, then the real execution time ci,j is

a uniformly distributed random variable U(bi,j , (2ULi,j − 1)bi,j), where bi,j is the best

case execution time. So the expected execution time of vi on pj is ULi,jbi,j. The ULi,j

matrix is generated similarly to the way we set the computation cost matrix. To start

off, we have an average UL value for the graph. Then a vector q = {q1, q2, ...qn}, repre-

senting the expected uncertainty levels of each task, is generated according to gamma

distribution G(1/V 2
1 ,UL · V 2

1). Finally, each ULi,j is obtained according to gamma dis-

tribution G(1/V 2
2 , qi · V 2

2). We set V1 = V2 = 0.5 in this study. The parameters of the

GA are listed in Table 4.1.

The stopping criteria is that the number of iterations has reached 1000 or the current

best solution has not improved over the last 100 iterations. Each experiment is repeated

with 100 task graphs and for each task graph we have 1000 realizations of the expected

task execution times.

113

4.4.1 Effectiveness of slack

In this section, we present our simulation results for studying the effectiveness of slack

in increasing the robustness of the schedules. The results are shown in Fig. 4.2 and 4.3.

Fig. 4.2 depicts the evolution process of a GA when the objective is to minimize the

makespan. The solid lines represent makespan changes under different uncertainty lev-

els. An initial observation is that when the uncertainty level is low, the GA can find

schedules that have smaller makespans. For higher uncertainty levels, the GA fails to

generate schedules with smaller makespans. Remember that when scheduling is per-

formed, the GA only has the information about the expected task execution times.

Each point forming the solid lines in Fig. 4.2 represents the makespan of the schedule

generated by the GA when executed in the “real” environment with varying task ex-

ecution time requirements. In fact, the expected makespan, which is the makespan of

schedule when executed with the expected task execution times, is decreasing during the

evolution process. For a high uncertainty level, the GA tends to “overfit” the schedule

based on the expected task execution times, which leads to an increasing makespan in

the real resource environment. Fig. 4.2 also shows that when minimizing the makespan

is the goal of the GA, schedules will have smaller slacks and robustness with the ad-

vance of the stages of evolution process. This is due to the fact that a schedule with a

small makespan tends to leave a small time “window” for each task, thus resulting in

small slack. For a low uncertainty level, the decrease of slack and robustness is more

significant because GA finds schedule with considerably smaller makespan at such case.

114

0 200 400 600 800 1000
−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

Step

L
o
g
 r

a
ti
o
 o

f
th

e
 c

h
a
n
g
e
 r

e
la

ti
v
e
 t

o
 s

te
p
 0

UL=2.0,Makespan

UL=2.0,Slack

UL=2.0,R
1

UL=4.0,Makespan

UL=4.0,Slack

UL=4.0,R
1

UL=6.0, Makespan

UL=6.0,Slack

UL=6.0,R
1

UL=8.0, Makespan

UL=8.0,Slack

UL=8.0,R
1

Figure 4.2: Evolution of a GA when minimizing the makespan is the objective function

115

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Step

L
o
g
 r

a
ti
o
 o

f
th

e
 c

h
a
n
g
e
 r

e
la

ti
v
e
 t

o
 s

te
p
 0

UL=2.0,Makespan

UL=2.0,Slack

UL=2.0,R
1

UL=4.0,Makespan

UL=4.0,Slack

UL=4.0,R
1

UL=6.0, Makespan

UL=6.0,Slack

UL=6.0,R
1

UL=8.0, Makespan

UL=8.0,Slack

UL=8.0,R
1

Figure 4.3: Evolution of a GA when maximizing the slack is the objective function

116

Fig. 4.3 presents the evolvement of makespan, slack and robustness when the GA’s

goal is to maximizing the slack of the schedule. It can be observed that with the

increase of slack, the robustness also improves. At the same time the makespan rises

substantially.

From Fig. 4.2 and 4.3, we conclude that the slack is an effective metric that can

be used to increase the robustness of a schedule. The goals of maximizing the slack

and minimizing the makespan are conflicting. We present the results of the bi-objective

optimization problem in the next sections.

4.4.2 Results of solving the bi-objective optimization problem

In this section, we show the results of solving the bi-objective optimization problem using

the ǫ-constraint method. First, we let ǫ = 1.0, which means that during the evolution,

only those schedules with expected makespan less or equal to the makespan of the

schedule obtained with HEFT are feasible schedules. Infeasible schedules always have

fitness values smaller than any feasible schedule. Fig. 4.4 shows the log-ratio of relative

improvement of several performance metrics over those of schedules generated by the

HEFT algorithm. We observe the following from this figure: (1) the average makespan

of the schedules obtained with the GA algorithm still outperforms that of the schedules

generated by the HEFT algorithm, especially when the uncertainty level is not very high.

Remember that the main purpose of this experiment is to maximize the robustness while

restricting the makespan not to exceed that of schedules obtained by HEFT. (2) the

figure clearly indicates that robustness based on tardiness (R1) improved significantly.

117

2 3 4 5 6 7 8
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

UL

L
o
g
 r

a
ti
o
 o

f
re

la
ti
v
e
 i
m

p
ro

v
e
m

e
n
t
o
v
e
r

H
E

F
T

Makespan

R
1

R
2

Figure 4.4: Performance improvement over HEFT (ǫ = 1.0)

For example, at UL = 2, the robustness is increased by 13%. The improvement is less

significant at high uncertainty levels. This is due to the fact that at high uncertainty

levels, the increased slack, which is not much because we limit the makespan increase,

is not sufficient to absorb the uncertainty, thus limiting the improvement of robustness.

(3) Similar observations can be made for robustness based on miss rate (R2). The

improvement is less considerable compared with that of R1.

Because limiting the ǫ value also limits the chance of robustness improvement, es-

pecially when uncertainty level is high as shown above, we next investigate how the

robustness can be improved by relaxing the ǫ requirement. Fig. 4.5 and 4.6 show the

comparison of the improvement of R1 and R2 at various uncertainty levels to the im-

118

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ε

R
1
 i
m

p
ro

v
e
m

e
n
t
o
v
e
r

ε
=

1
.0

UL=2.0

UL=4.0

UL=6.0

UL=8.0

Figure 4.5: R1 improvement over ǫ = 1.0

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

ε

R
2
 i
m

p
ro

v
e

m
e
n
t
o
v
e
r

ε
=

1
.0

UL=2.0

UL=4.0

UL=6.0

UL=8.0

Figure 4.6: R2 improvement over ǫ = 1.0

119

provement when ǫ = 1.0. The y-axes are log-scaled. As can be seen from the figures,

with the increase of ǫ value, there will be more slack to absorb the uncertainty, thus

improving the robustness of the schedules. Also we observe that for high uncertainty

level, the relative improvement is larger and is leveled at larger ǫ values. This can be

explained by noticing that at high uncertainty levels there is more “room” for improve-

ment, so increasing ǫ can be very effective. For example, at UL = 2.0, there is relatively

no more improvement of R1 after ǫ = 1.6. By contrast, at UL = 8.0, the robustness is

still improving when ǫ = 2.0. We can make another observation by comparing Fig. 4.5

and 4.6: the improvements of R2 at different uncertainty levels is not as disparate as

those of R1. It suggests that R2 is less sensitive to uncertainty level as R1.

Since makespan and robustness are two important metrics in evaluating a schedule

and are conflicting with each other, we propose using the following weighted sum of the

two metrics as a means to represent the overall performance of schedule s.

P (s) = r log
MHEFT

M(S)
+ (1 − r) log

R(s)

RHEFT
(4.13)

where MHEFT , RHEFT is the makespan and robustness of the schedule obtained by

the HEFT algorithm, respectively. r (0 ≤ r ≤ 1) is a weight given by the user. If

the user puts more emphasis on having a small makespan, a large r should be applied.

Otherwise, if the user prefers a schedule with relatively large robustness, then r should

be set to a number close to 0.

Fig. 4.7 and 4.8 show the values of ǫ (1.0 ≤ ǫ ≤ 2.0) when the best overall perfor-

120

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

r

ε

UL=2.0

UL=4.0

UL=6.0

UL=8.0

Figure 4.7: The best ǫ value for overall performance based on R1 and makespan

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

r

ε

UL=2.0

UL=4.0

UL=6.0

UL=8.0

Figure 4.8: The best ǫ value for overall performance based on R2 and makespan

121

mance with different r is achieved. We use R1 (resp. R2) in the definition of overall

performance (Eq. 4.13 in Fig. 4.7 (resp. Fig. 4.8)). With the increase of r, we put more

emphasis on the makespan. The figures clearly indicate that in order to achieve the

best overall performance with large r, a small ǫ value should be used. On the other

hand, if a schedule with large robustness is desired (r is small), then a large ǫ value is

preferable. Furthermore, for higher uncertainty level, a larger ǫ is required in order to

obtain better overall performance.

4.5 Conclusions

In this chapter, we developed an algorithm for matching and scheduling of DAG-

structured applications with the goals of both minimizing the makespan and maximizing

the robustness. Due to the fact that the two goals are conflicting, satisfying both ob-

jectives at the same time is usually impossible. We used the ǫ-constraint method to

solve the bi-objective optimization problem. We proved that slack is an effective metric

to be used to adjust the robustness, and it is confirmed subsequently that slack and

robustness are positively related. Two definitions of robustness based on tardiness and

miss rate were proposed. Experiments showed that considering the slack as an objective

can greatly improve the robustness while we confined the makespan not to exceed that

of HEFT. By relaxing the requirement of makespan, the robustness can be improved

furthermore. The algorithm is found to be flexible to find the ǫ value in a certain user

provided range so that the best overall performance considering both makespan and

122

robustness is achieved.

123

Chapter 5

Stochastic Task Scheduling in

HDCS

5.1 Introduction

In today’s distributed systems, the computing environments are inherently heteroge-

neous both spatially and temporally. The computation and communication resources

in a system are usually shared by multiple users. For example, the emerging Grid

platforms [41] integrate and coordinate resources and users that are located within dif-

ferent control domains. Resource sharing is essential and is one of the most important

features of Grids. Grids are inherently large, heterogeneous and dynamic systems. In

such dynamic systems, environmental characteristics such as available CPU, network

bandwidth, etc., are likely to vary. In [90], the authors used point value to refer to the

124

single value that is given to each characteristics for the performance prediction model.

They argued that it is more useful to represent the characteristics as a distribution of

possible values over a range instead of a point value. Such a value is called the stochas-

tic value. Two representations of stochastic value are used; normal distribution and

interval. Experiments show their effectiveness in predicting the performance of several

parallel applications under different workloads on a shared network of stations. In [89],

the authors showed that performance predictions with stochastic values can be used

effectively by the scheduler to improve the performance of the application in a simi-

lar environment. The stochastic scheduling policy is based on time balancing for data

parallel applications. It is modified to use stochastic information for determining the

data allocation. Experiment results demonstrate that it is possible to achieve faster

application execution times and more predictable application behavior using stochastic

scheduling.

In this chapter, we investigate the problem of scheduling a task graph using stochas-

tic information of the system performance. In section 5.2, we formulate the stochastic

DAG scheduling problem. We present a method for calculating the makespan distribu-

tion of a task graph in section 5.3. Section 5.4 describes experiment settings. We provide

our simulation results and discussions in section 5.5. Finally, section 5.6 concludes this

chapter.

125

5.2 Stochastic DAG scheduling problem

We refer to the problem of DAG scheduling with stochastic environmental characteris-

tics information simply as stochastic scheduling. The stochastic scheduling problem is

formulated in this section. As before, we will consider the problem of scheduling a task

graph G of size n onto a set of m heterogeneous machines P. The execution time of

task i on machine j is represented by random variable τi,j. Similarly, the data transfer

speed between processors i and j is represented by ci,j (unit of data/unit time).

Suppose that a schedule s is given. Let TS(s) denote the makespan in the stochastic

scheduling problem with schedule s. Note that TS(s) is a probabilistic distribution of

the makespan. The stochastic scheduling problem can be formulated as:

min
s∈Π

{E[TS(s)]} (5.1)

where E[·] is the expectation operator and Π represents all valid schedules for the

problem. On the other hand, the deterministic scheduling problem, where all the char-

acteristics are represented by their expected values, can be defined as:

min
s∈Π

{TD(s)} (5.2)

where TD(s) is the makespan under schedule s.

We are now in a position to present a genetic algorithm for the stochastic scheduling

problem. We refer to it as the stochastic DAG scheduling algorithm (SDS). In com-

126

parison, deterministic DAG scheduling algorithm (DDS) deals with the deterministic

scheduling problem. The basic elements of the genetic algorithm include the fitness

function for a chromosome, the selection, crossover and mutation operators. Except for

the fitness function, we adopt the same selection, crossover and mutation operators as

those described in Chapter 4.

The fitness function of a chromosome is used to evaluate the quality of the potential

solution. It is always problem dependent. Even for the same problem, several fitness

functions can be devised to evaluate the quality of the different aspects of the solutions.

One of the goals of the work presented in this chapter is to compare the schedules

obtained with SDS with those obtained using DDS. The only difference between SDS

and DDS is the fitness function employed. In the DDS algorithm, the final makespan of

a schedule is a point value. Therefore, the fitness function for a schedule is the makespan

for that schedule. Given a chromosome c, the fitness of c, which is denoted by f(c), is

determined by:

f(c) = TD(c) (5.3)

However, in the SDS algorithm, given a schedule, the makespan corresponding to that

schedule is a stochastic value that provides more useful information about the makespan

than a point value. There are several possible choices for the fitness function in this

case. The most natural one is to take the expectation of the stochastic makespan value

127

as the fitness function. In this case, the fitness value of c is:

f(c) = E[TS(c)] (5.4)

Such a choice is based on the fact that expectation of a random variable X gives an idea

of “what to expect” from the repeated outcomes of the experiment represented by X.

As demonstrated in Chapter 4, another important aspect of the quality of a schedule is

the robustness. In probability theory, the Coefficient of Variation (COV) of a random

variable X is used to measure the dispersion of the X’s probability distribution. It is

defined as the ratio of the standard deviation to the mean:

COV (X) =
σ

µ
(5.5)

where σ is the standard deviation of X and µ the mean of X. COV is closely related

to the robustness of the schedule. A large COV typically means that the schedule has

a makespan distribution with a small dispersion, thus more robust. It was shown in

Chapter 4 that the robustness and makespan of a schedule are two conflicting objectives.

Therefore, we employ a bi-objective algorithm to take into account both the makespan

and robustness of the schedule. Similar to the setting of fitness function presented

in Chapter 4, the fitness value of a chromosome c is the aggregation of two objective

128

functions. It can be formulated as:

f(c) = (1 − w)
f1(c) − f1

min

f1
max − f1

min

+ w
f2(c) − f2

min

f2
max − f2

min

(5.6)

where f i(c) (i = 1, 2) is the fitness value corresponding to the ith objective. f i
max and

f i
min, (i = 1, 2) are the best and worst fitness values found for the ith objective. In

our algorithm, we identify the first and second objective as E[TS(c)] and COV (TS(c)),

respectively. w is a user defined weight between 0 and 1.

5.3 Calculation of the makespan distribution of a task

graph

5.3.1 Estimating the makespan distribution

While it is easy to calculate the makespan of a task graph with a given schedule when

the environmental characteristics are point values, it is extremely difficult to obtain the

makespan distribution in the case of stochastic values as demonstrated below. The diffi-

culty is due to two basic operations involving random variables; addition and maximum.

From probability theory, if two independent random variables X and Y with probability

density functions (PDFs) given by fX(t) and fY (t) and Z is a random variable that is

the sum of X and Y , then the following holds:

Z = X + Y (5.7)

129

Figure 5.1: A task graph and an assignment on two processors

fZ(t) = fX(t) ⊗ fY (t) =

∫ ∞

−∞
fX(u)fY (t − u)du (5.8)

E[Z] = E[X] + E[Y] (5.9)

where ⊗ is the convolution operator. Let W be the maximum of X and Y . FX(t) and

FY (t) are the cumulative distribution functions (CDFs) of X and Y , respectively.

W = max(X,Y) (5.10)

FW (t) = FX(t) · FY (t) (5.11)

E[W] > max(E[X], E[Y]) (5.12)

Consider the task graph with five nodes shown in Fig. 5.1. The five tasks are assigned

on two processors as illustrated in the right part of Fig. 5.1. It is assumed that there is

130

no communication cost between the two processors for the sake of a clearer presentation.

We use ST (i) to denote the start time of task i and FT (i) the finish time of i. Recall

that τi,j is the execution time of task i on processor j. It is easy to derive step by step

the makespan of the schedule as follows:

FT (1) = τ1,1

ST (2) = FT (1) = τ1,1

ST (3) = FT (1) = τ1,1

FT (2) = ST (2) + τ2,2 = τ1,1 + τ2,2

FT (3) = ST (3) + τ3,1 = τ1,1 + τ3,1

ST (4) = max{FT (2), FT (3)}

= max{τ1,1 + τ2,2, τ1,1 + τ3,1}

FT (4) = ST (4) + τ4,2

max{τ1,1 + τ2,2, τ1,1 + τ3,1} + τ4,2

ST (5) = max{FT (3), FT (4)}

makespan = FT (5) = ST (5) + τ5,1

Due to dependencies, Eqs. 5.8 and 5.11 can not be applied to calculate the addition and

131

maximum of two random variables. For example, FT (2) and FT (3) are not independent,

Eq. 5.11 is not applicable to obtain ST (4). An exact derivation of the final makespan

distribution using probability theory becomes extremely complex and involves multiple

integrals [67].

In order to simplify the scheduling processor, we need to find an easy way to esti-

mate the makespan distribution without a great loss of accuracy. As noted previously,

the complexity of calculating the distribution originates from the fact that random vari-

ables are dependent on each other. Tasks with a common ancestor can have correlated

random variables associated with the start and finish times. As suggested in [67], the

Kleinrock Independence Approximation (KIA) [60] can be used as a basis for assuming

independence among random variables that may be correlated in this case. KIA was

originally proposed in the context of data networks. It provides an approach to analyze

delay in networks carrying multiple packet streams. In a typical data network, there are

multiple interacting transmission queues. A packet stream enters the network at the

source node’s queue then joins one or more other queues before leaving the network at

the destination node’s queue. KIA states that although the packet inter-arrival times

can become dependent after the stream leaves the first queue, the merging of many dif-

ferent packet streams on a transmission line restores the independence of inter-arrival

times and service times. In the case of a task graph, we can view the data dependency

among the tasks as the merging of data streams. Thus according to KIA, the input data

(streams) from many other predecessors has the effect of restoring independence among

132

the start and finish times of tasks that have a common ancestor in the graph. This will

indeed facilitate the calculation of the makespan distribution since we can now use Eqs.

5.8 and 5.11 to compute the start and finish times of each task. In section 5.5.1, we

will investigate the accuracy of the estimation with respect to the characteristics of the

resource environment and the task graph.

The calculation of the makespan distribution with the assumption of KIA can be

carried out with the following steps:

1. Based on the given schedule, create the disjunctive graph, which includes the task

and machine dependencies.

2. For each task vi, compute the start time ST (i). The CDF of ST (i) is obtained

with:

FST (i)(t) =

pred(i)−1
∏

j=0

FFT (j)(t) (5.13)

where pred(i) is the number of immediate predecessors of vi.

3. For each task vi, let s(i) denote the machine where task vi is assgined. The PDF

of the completion time of vi is:

fFT (i)(t) = fST (i)(t) ⊗ fτi,s(i)
(t) (5.14)

4. If we have ne exit nodes in the graph, namely, ve0 ,ve1,...,vene−1 . then the CDF of

133

the makespan distribution is:

F (t) =

ne−1
∏

k=0

FFT (ek)(t) (5.15)

5.3.2 Numerical calculation of maximum and addition of two random

variables

Random variables with certain probability distributions are used to represent the numer-

ical outcomes of a random phenomenon. The problem of determining the distributions

of random variables whose samples are functions of samples of other random variables

is very common and has received much attention. In [96], a survey of theoretical ap-

proaches to the basic algebra operations of random variables was presented. However,

analytical methods only apply to certain classes of distributions, such as normal, expo-

nential, etc. Numerical method tends to be applicable to a much wider class of distribu-

tions. There are basically two broad categories of approaches for the numerical methods.

Monte-Carlo is the traditional method with certain serious drawbacks [39], such as dif-

ficulties in handling random variables that have unknown dependencies or that have

imprecise probabilities, i.e., with distributions that are not fully specified. Non-Monte

Carlo methods involve discretizing of probabilistic distribution followed by computation

on the discretized forms. They can be further divided into two groups. In the earlier

algorithms, it was assumed that the random variables are independent [24, 52, 57, 72].

Later, approaches based on the theory of copulas [76] were studied. These approaches

134

focused on finding the bounds for joint distributions from their given marginal distri-

butions in the presence of unknown dependency relationships among the random vari-

ables [102, 103]. Berleant et al. developed DEnv algorithm based on the discretization

of random variables [10, 11, 12, 13]. It uses linear programming to achieve dependency

bounds for random variables that may be independent, have unknown dependency or

have a dependency with partial information. Upper and lower bounds on the CDF are

calculated by integrating across the left side, top and bottom, and right side of the his-

tograms. Then they are combined to form an upper and lower CDF that is guaranteed

to be valid.

Since we are dealing with operations of independent random variables (recall that

using KIA, we assume that the start and finish times of tasks with a common ancestor

are independent), we will use the histogram method [52] to compute operations on

PDFs, specifically, the addition and maximum. The histogram method first discretizes

PDF operands using intervals. It then uses interval operations to generate intermediate

results followed by constructing the final PDF from the intermediate results. In the

histogram method, PDF operands are discretized using histograms. A histogram is

defined as a bar graph that shows frequency data. Each bar is characterized both by

an interval describing its placement on the real number line and by a probability mass

associated with that interval. Consider the problem of calculating Z = X�Y , where X

and Y are two random variables with PDFs fX(t) and fY (t). � represents an operator

such as ‘+’, ‘-’, ‘max’, etc. We first discretize fX(t) and fY (t) over [xa, xb] and [ya, yb]

135

respectively. Let nX and nY denote the number of bins for X and Y . Then, the

histogram HX and HY for X and Y can be represented by a collection of 2-tuples.

HX : {([xi, xi+1], pi)|0 ≤ i ≤ nX − 1, x0 = xa, xnX−1 = xb} (5.16)

HY : {([yi, yi+1], qi)|0 ≤ i ≤ nY − 1, y0 = ya, ynY −1 = yb} (5.17)

where

pi =

∫ xi+1

xi

fX(t)dt (5.18)

qi =

∫ yi+1

yi

fY (t)dt (5.19)

is the probability mass of the corresponding interval. We define a function Prob:

ProbH(I) = p (5.20)

where I is an interval of histogram H and p is the probability mass for that interval. For

those distributions with infinite support, we discretize it over the range where the total

probability mass is higher than some threshold (e.g. > 0.99). Then a normalization step

is performed so that the resulting probability mass is summed to 1. After the PDFs are

discretized, they are combined as follows:

1. Perform a Cartesian product of the intervals of the histograms describing X and

136

Y :

Φ = {(Is, Jt)|Is ∈ {[xi, xi+1], 0 ≤ i ≤ nX − 1}, Jt ∈ {[yi, yi+1], 0 ≤ i ≤ nY − 1}}

(5.21)

2. For each element in Φ, we produce an intermediate histogram bar in the following

fashion:

(i) The new interval is obtained by performing a corresponding interval op-

eration [71] on Is and Jt to get Kst = �(Is, Jt). For example, if we are

calculating the maximum of X and Y , then Kst = max{Is, Jt} is performed.

(ii) The probability mass of the new interval Kst is

Prob(Kst) = Prob(Is) · Prob(Jt) (5.22)

3. The intermediate histogram is combined to get the final PDF.

(i) First, we discretize the support of Z into nZ bins. The number of bins (

we will use b to represent it hereafter) is related to the accuracy of the final

result. The larger nZ , the more accurate the result will be. We denote all

the bins (intervals) of Z as BZ = {[zi, zi+1]|0 ≤ i ≤ nZ − 1}.

(ii) Calculate the probability mass for each interval of Z defined in the previous

step as follows: If the intermediate interval Kst completely falls within some

element of BZ , then Prob(Kst) is assigned to that element. For example,

137

if ∃i, such that Kst ⊆ [zi, zi+1], then Prob([zi, zi+1])+=Prob(Kst). If Kst

covers more than one element of the BZ , then its probability mass is shared

by those elements proportional to the fraction of the interval it covers. This

is called proportional assignment. Then all the probability mass assigned to

each element of BZ is summed to be the total probability mass for that bin.

5.4 Simulation

Our goals in the simulation experiments include:

1. to study the accuracy of the method laid out in Sec. 5.3 in approximating the

makespan distribution in the case of stochastic scheduling,

2. to investigate whether scheduling with stochastic information can lead to a better

schedule in terms of minimizing the schedule length and maximizing the robustness

of the schedule, and

3. to evaluate the effectiveness of the bi-objective algorithm for schedule length and

robustness trade-off.

The task graphs used in the experiments are generated randomly with the following

parameters:

• The number of tasks in the graph (n).

• The height parameter of the graph (α). The height of a graph (h) is determined

by h =
√

n/α.

138

• Average in-degree of the nodes (d). The in-degree of a node is randomly generated

from a uniform distribution with mean value d.

• Average computation cost (c). The average computation cost of task i on processor

j, ci,j is generated randomly from a uniform distribution with mean value c.

• Communication-to-Computation Ratio (CCR). This is the ratio of average com-

munication cost to the average computation cost.

• Average communication cost (r). This is obtained with

r = CCR · c (5.23)

• The average scale parameter (θ). We use gamma distribution to model the execu-

tion time and data transfer rate. Gamma distributions are used for simulating the

variables due to the fact that with proper settings of their characteristic param-

eters, they can approximate other popular probability distributions, such as the

Erlang-k and Gaussian (without the negative values) distributions. This is helpful

because the simulated random variables can be synthesized closer to some real life

heterogeneous computing systems. Recall that τi,j represents the execution time

of task i on processor j. Then,

τi,j ∼ Gamma(ki,j , θi,j) (5.24)

139

Table 5.1: Parameters used in the simulations

Parameter Description Values

n number of tasks 20, 40, 60, 80, 100
α height parameter of the graph 0.5, 1.0, 2.0
d average in-degree of the nodes 2.0, 3.0, 4.0, 5.0, 6.0
c average computation cost 20, 40, 60

CCR communication-to-computation ratio 0.1, 1.0, 10.0
θ average scale parameter 1.0, 2.0, 3.0, 4.0, 5.0

where ki,j > 0 is the shape parameter and θi,j > 0 is the scale parameter. The

expected computation cost of task i on processor j, ci,j, ki,j and θi,j is governed

by:

ci,j = ki,j · θi,j (5.25)

The scale parameter θi,j is randomly generated from a uniform distribution with

mean value θ. The scale parameter is closely related to the dispersion of the

gamma distribution. Large θ means the distribution is more spread out, i.e., with

large dispersion. The above reasoning also applies to the communication cost

(data transfer rate).

The values of the parameters used in the simulations are summarized in Table 5.1.

The processor number used in the experiments is 16. The parameters for the genetic

algorithms used are the same as those used in Chapter 4. (See Table 4.1).

In the first set of experiments, we investigate how several characteristics of the task

graph and the approximation method affect the accuracy in estimating the makespan

140

distribution. These characteristics include the size of the graph (n) and the bin number

(b) used in the approximation method. The estimations obtained using approximation

method described in Sec. 5.3 and those with the Monte-Carlo method are compared. For

each set of parameters used, 50 different schedules is generated. The average makespan

over these repetitions is then compared. In Monte-Carlo simulation, 1000 repetitions

are performed for each schedule. The second part of the simulations performs the

comparison between SDS and DDS. During the comparison, we first generate the task

graph with different sets of parameters. Then each algorithm is applied to obtain a

schedule. Finally, the schedules are examined with simulated actual execution time and

data transfer rate. The actual makespan and robustness are compared. As noted, the

makespan and robustness of a schedule are two conflicting factors. In the last part of

the experiment, we study the effectiveness of weight w in trading off between the two

factors.

5.5 Results and discussion

5.5.1 Accuracy of the estimation

In this section, the accuracy of the makespan distributions obtained from the approach

described in Sec. 5.3 is evaluated. We compare the distributions with those determined

from the Monte-Carlo simulations due to the fact that derivation of the exact distribu-

tion for the task graphs considered in the experiments is not feasible.

For each instance of the Monte-Carlo simulation, the execution time and data trans-

141

fer rate is determined by generating a random number according to their assumed prob-

ability distribution, i.e., gamma distribution with specified parameters. The overall

makespan of the task graph can be calculated once a schedule is given. For each graph

studied, 1000 simulation instances are performed to produce the sample distribution of

the overall makespan of the task graph.

The experimental results of studying the accuracy of the makespan distribution es-

timation approach are given in Figs. 5.2 – 5.9. Figs. 5.2 and 5.3 shows the relative

deviation of the estimated makespan distribution’s expected value and standard devi-

ation from those of the distribution obtained with Monte-Carlo simulations when the

task graph size n varies (b = 2000, θ = 1.0, d = 3). In general, it can be observed that,

as the task graph size increases, the relative deviation also increases. Large size task

graphs tend to have more complicated data dependency structures provided that the

average in-degree of the nodes is kept the same. During the estimation of the makespan

distribution, the error of random variable operations accumulates along the critical

path. Graph with large number of task nodes usually has longer critical path. In such a

case, the accumulated error of random variable operations is more significant. We also

calculate the makespan based on the expected values of task execution time and data

transfer rate. It is evident that the makespans obtained with expected values is less

accurate than those obtained with estimation using random variables. Fig. 5.2 shows

that with the increase of task graph size, the difference becomes more considerable.

As noted in Sec. 5.3, the bin number b used in the discretization of a probabilistic

142

20 40 60 80 100
1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

nR
el

at
iv

e
de

vi
at

io
n

of
 e

xp
ec

te
d

m
ak

es
pa

n
fr

om
 M

on
te

−
C

ar
lo

 s
im

ul
at

io
n

(%
)

Estimation with random variables
Estimation with expected values

Figure 5.2: Relative deviation of expected makespan from Monte-Carlo simulation for
graphs of different sizes

20 40 60 80 100
5

5.5

6

6.5

7

7.5

nR
el

at
iv

e
de

vi
at

io
n

of
 σ

 o
f m

ak
es

pa
n

fr
om

 M
on

te
−

C
ar

lo
 s

im
ul

at
io

n
(%

)

Estimation with random variables

Figure 5.3: Relative deviation of σ of makespan from Monte-Carlo simulation for graphs
of different sizes

143

500 1000 1500 2000 2500
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

bR
el

at
iv

e
de

vi
at

io
n

of
 e

xp
ec

te
d

m
ak

es
pa

n
fr

om
 M

on
te

−
C

ar
lo

 s
im

ul
at

io
n

(%
)

Estimation with random variables

Figure 5.4: Relative deviation of expected makespan from Monte-Carlo simulation using
different bin numbers

500 1000 1500 2000 2500
3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

b

R
el

at
iv

e
de

vi
at

io
n

of
 σ

 o
f m

ak
es

pa
n

fr
om

 M
on

te
−

C
ar

lo
 s

im
ul

at
io

n
(%

)

Estimation with random variables

Figure 5.5: Relative deviation of σ of makespan from Monte-Carlo simulation using
different bin numbers

144

1.0 2.0 3.0 4.0 5.0
0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

θR
el

at
iv

e
de

vi
at

io
n

of
 e

xp
ec

te
d

m
ak

es
pa

n
fr

om
 M

on
te

−
C

ar
lo

 s
im

ul
at

io
n

(%
)

Estimation with random variables
Estimation with expected values

Figure 5.6: Relative deviation of expected makespan from Monte-Carlo simulation for
graphs with different θ

1.0 2.0 3.0 4.0 5.0
7

7.4

7.8

8.2

8.6

9

θR
el

at
iv

e
de

vi
at

io
n

of
 σ

 o
f m

ak
es

pa
n

fr
om

 M
on

te
−

C
ar

lo
 s

im
ul

at
io

n
(%

)

Estimation with random variables

Figure 5.7: Relative deviation of σ of makespan from Monte-Carlo simulation for graphs
with different θ

145

2.0 3.0 4.0 5.0 6.0
0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

dR
el

at
iv

e
de

vi
at

io
n

of
 e

xp
ec

te
d

m
ak

es
pa

n
fr

om
 M

on
te

−
C

ar
lo

 s
im

ul
at

io
n

(%
)

Estimation with random variables
Estimation with expected values

Figure 5.8: Relative deviation of expected makespan from Monte-Carlo simulation for
graphs with different d

2.0 3.0 4.0 5.0 6.0
7

7.2

7.4

7.6

7.8

8

8.2

dR
el

at
iv

e
de

vi
at

io
n

of
 σ

 o
f m

ak
es

pa
n

fr
om

 M
on

te
−

C
ar

lo
 s

im
ul

at
io

n
(%

)

Estimation with random variables

Figure 5.9: Relative deviation of σ of makespan from Monte-Carlo simulation for graphs
with different d

146

distribution is an important factor in obtaining accurate estimation. Large bin numbers

can better approximate the distribution of random variables. However, it will require

a longer computation time to obtain the estimation. Figs. 5.4 and 5.5 shows relative

deviation of the expectation and standard deviation of the makespan distribution using

five values of bin number (n = 100, θ = 1.0, d = 3). It is clear that using large bin num-

ber value can increase the accuracy of the estimation. However, as can be seen from the

two figures, when the bin number is increased from 2000 to 2500, the relative deviation

for both the expectation and standard deviation does not decrease substantially. This

indicates that the error resulting from the discretization has been reduced significantly

when the bin number is large than 2000.

The average scale parameter of the gamma distributions (θ) used to model the task

execution time and data transfer rate can also affect the accuracy of the estimation.

Figs. 5.6 and 5.7 depict how θ can affect the relative deviations. We observe that a

large θ will increase the difficulty to obtain accurate estimation (n = 100, b = 2000, d =

3). During the discretization step, we fix the bin number to 2000 and the support to

[max(0, µ − 3σ), µ + 3σ]. Large θ implies that an arbitrary distribution will have large

σ. For a fixed number of bins, a histogram can more accurately be approximated when

the support is small, i.e., σ is small. As shown from Fig. 5.6, the relative deviation is

increased from 3.05% to 4.22% when θ is changed from 1.0 to 5.0, which is not significant.

This indicates that our choice of bin number (i.e., 2000) can control the error due to

discretization appropriately. However, when we compute the makespan with only the

147

expected values of all the random variables, the relative deviation increases dramatically

from 7.96% to 16.3%, which signifies the inadquacy of using such a method for estimating

the makespan.

In real task graphs, the KIA is usually violated to a certain degree. In [67], the

authors identified that the existence of isolated fork-join structures can cause the KIA to

be violated. A fork-join structure (FJ) is a common way to achieve parallel processing.

In a task graph, an FJ occurs when a single task node nf forks by sending data to

multiple nodes that execute concurrently. As each branch completes its task, it waits on

all the others to finish. The synchronization point is called a join (nj). Let T represent

the set of tasks in the FJ structure, excluding nf and nj. For a given schedule, an FJ

structure is called an isolated fork-join structure (IFJ) if the following holds:

∀n ∈ T, pred(n) ⊆ T ∪ {nj} (5.26)

where pred(n) denotes the immediate predecessors of n. The IFJ structures violate the

KIA because the data that originated from the fork node nf to the join node nj does not

merge with other data from tasks outside that IFJ. With the increase of average task

node in-degree d, the chances of having multiple IFJs in a task graph are enhanced.

From Figs. 5.8 and 5.9, we can conclude that a large d can unfavorably impact the

accuracy of the estimation with respect to both the expectation and standard deviation

(n = 100, b = 2000, θ = 1.0). The relative deviation of expectation is increased from

2.14% to 3.87% when d rises from 2 to 6. For the standard deviation, the change is

148

from 7.05% to 8.04%. Compared with the makespan computed with expected values,

the estimation still provides a better approximation for the makespan distribution.

5.5.2 SDS vs. DDS

In this section, we show the performance comparison between SDS and DDS. Note that

in SDS, we use E[TS(c)] to assign the fitness of a chromosome c, while in DDS, TD(c)

is used.

The simulation results are shown in Figs. 5.10 through 5.15. Figs. 5.10–5.12 show the

effect of graph size on the makespan and robustness. It can be observed that SDS clearly

outperforms HEFT and DDS with respect to reducing the makespan and increasing the

robustness. It is evident that the improvement is further enhanced with the increase

of the task graph size. For example, when the graph size is 20, the makespan obtained

with SDS is reduced by 3.0% over DDS. At size 100, it is reduced by 11.9%. A similar

effect can be perceived in terms of robustness. The performance improvement is due

to the fact that DDS takes into account the variations in the task execution time and

data transfer rate when making scheduling decisions. With the increase of task graph

size, this variation becomes more important in order to obtain schedules with good

performance.

Figs. 5.13 –5.15 show the effect of average scale parameter θ. Remember that the

larger θ, the higher the variability of the system. It can be seen that with the increase

of the system variability, a better performance gain of SDS over DDS and HEFT is

achieved. Note that HEFT and DDS uses the expected task execution times and data

149

20 40 60 80 100
0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

n

R
el

at
iv

e
m

ak
es

pa
n

SDS
HEFT
DDS

Figure 5.10: Relative makespan of schedules obtained with SDS, DDS, HEFT for graphs
with different sizes

20 40 60 80 100
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

n

R
el

at
iv

e
R

1

SDS
HEFT
DDS

Figure 5.11: Relative R1 of schedules obtained with SDS, DDS, HEFT for graphs with
different sizes

150

20 40 60 80 100
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

n

R
el

at
iv

e
R

2

SDS
HEFT
DDS

Figure 5.12: Relative R2 of schedules obtained with SDS, DDS, HEFT for graphs with
different sizes

1.0 2.0 3.0 4.0 5.0
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

θ

R
el

at
iv

e
m

ak
es

pa
n

SDS
HEFT
DDS

Figure 5.13: Relative makespan of schedules obtained with SDS, DDS, HEFT for graphs
with different θ

151

1.0 2.0 3.0 4.0 5.0
0.5

1

1.5

2

2.5

3

θ

R
el

at
iv

e
R

1

SDS
HEFT
DDS

Figure 5.14: Relative R1 of schedules obtained with SDS, DDS, HEFT for graphs with
different θ

1.0 2.0 3.0 4.0 5.0
0.8

1

1.2

1.4

1.6

1.8

2

θ

R
el

at
iv

e
R

2

SDS
HEFT
DDS

Figure 5.15: Relative R2 of schedules obtained with SDS, DDS, HEFT for graphs with
different θ

152

transfer rates. With the increase of system variability, the expected values becomes

less relevant to the actual values of task execution time and data transfer rate. HEFT

and DDS consequently generate poor schedules. However, SDS inherently use this

variability to make scheduling decisions, thus it performs well even if the system has a

high variability.

5.5.3 Bi-objective optimization

In this section, we investigate the bi-objective optimization problem, where both makespan

and robustness need to be considered. Previously, we use only the E[TS(c)] as the fitness

value of c in SDS. In the bi-objective optimization problem, the fitness value is deter-

mined using Eq. 5.6. Figs. 5.16 through 5.18 show the result of optimizing the makespan

and R1 (R2) with different w. Here the first objective is the makespan and the second

objective is R1 (R2). The Y-axis represents the logarithm value of the makespan(R1,

R2) relative to the value at w = 0, n = 20 (w = 0, n = 100) in Fig. 5.16 (5.17, 5.18).

The figures demonstrate that there is a trade off between reducing the makespan and

increasing the robustness of the schedule. With the increase of w, more emphasis is

placed on increasing the robustness. As can be seen from the figures, the makespan is

smallest when w = 0 and largest when w = 1.0. In addition, when w increases, the

makespan also increases. Moreover, the robustness R1 is lowest when w = 0 and highest

when w = 1.0. A similar trend can be observed from Fig. 5.18 when we use R2 as the

second objective.

153

0 0.2 0.4 0.6 0.8 1.0
0

0.2

0.4

0.6

0.8

1

1.2

1.4

w

R
el

at
iv

e
m

ak
es

pa
n

(lo
g

sc
al

e)

n=20
n=40
n=60
n=80
n=100

Figure 5.16: Relative makespan of schedules obtained with SDS for graphs with different
sizes when w is a control parameter

0 0.2 0.4 0.6 0.8 1.0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

w

R
el

at
iv

e
R

1 (
lo

g
sc

al
e)

n=20
n=40
n=60
n=80
n=100

Figure 5.17: Relative R1 of schedules obtained with SDS for graphs with different sizes
when w is a control parameter

154

0 0.2 0.4 0.6 0.8 1.0
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

w

R
el

at
iv

e
R

2 (
lo

g
sc

al
e)

n=20
n=40
n=60
n=80
n=100

Figure 5.18: Relative R2 of schedules obtained with SDS for graphs with different sizes
when w is a control parameter

5.6 Summary

In this chapter, we investigated the problem of scheduling a DAG based task graph in

HDCS where the performance characteristics of the system, such as the task executing

times and data transfer rate, are stochastic. Traditional scheduling algorithms use the

expected values of those performance characteristics. We proposed a genetic algorithm

based approach (SDS) that utilizes the stochastic information during the setting of an

individual’s fitness value. However, the computation of TS(c) poses a challenge. It

was shown that obtaining the exact makespan distribution is extremely difficult and

impractical. We used an estimation method based on the Kleinrock Independence Ap-

proximation theorem to compute TS(c) numerically. Experiment results illustrated that

155

this approach is effective in obtaining makespan distributions with good accuracy.

We further compared the performance of SDS with DDS and HEFT. Because SDS

takes into account the stochastic nature of task execution times and data transfer rate,

it improves both the makespan and robustness of the obtained schedule significantly.

Due to the accurate estimation of the makespan distribution in SDS, the algorithm

makes better decisions in scheduling the task nodes. In addition, the makespan of the

produced schedule is close to the makespan obtained when the schedule is carried out

in the real dynamic environment. Thus, the robustness is also improved.

Because it is usually not possible to satisfy both goals of minimizing the makespan

and maximizing the robustness of the schedule, we furthermore investigated the effec-

tiveness of adjusting the weight w to control the trade-off between the two objectives.

The bi-objective optimization algorithm facilitates the need for generating schedules

that satisfy both objectives to some degree.

156

Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this dissertation, we developed several heuristics to schedule DAG-type applications

in heterogeneous distributed computing systems. We first considered the case of schedul-

ing DAGs onto HDCS where the processors have different capabilities. A list scheduling

based heuristic is designed to consider the effect of resource scarcity. It has two distinct

features. First, the task node weight assignment scheme takes into account the effect

of Percentage of Capable Processors (PCP). For two task nodes with the same aver-

age computation cost, our weight assignment policy tends to give higher weight to the

task with a smaller PCP. Secondly, during the processor selection phase, the algorithm

adjusts the Earliest Finish Time (EFT) value by including the average communication

cost between the current scheduling node and its children. Simulation results show that

the algorithm has better performance compared with other heuristics.

157

We also investigated the problem of scheduling DAGs to both minimize the makespan

and maximize the robustness. Due to the conflict of the two objectives, it is usually

impossible to achieve both goals at the same time. We gave two definitions of robustness

of a schedule based on tardiness and miss rate. We proved that slack is an effective metric

to be used to adjust the robustness. The ǫ-constraint method was employed to solve

the bi-objective optimization problem where minimizing the makespan and maximizing

the slack are the two objectives. The overall performance of a schedule considering

both makespan and robustness is defined such that users have the flexibility to place

an emphasis on either objective. Experimental results validated the effectiveness of the

proposed algorithm.

Next, we addressed the problem of scheduling a DAG application in non-deterministic

HDCS. Most existing algorithms do not take into account the stochastic nature of task

execution times and data transfer rates. We proposed a genetic algorithm based heuris-

tic that accounts for the uncertainty of task execution times and data transfer rates by

modeling them as random variables. The stochastic scheduling problem has an objec-

tive of both minimizing the expected value of makespan distribution and maximizing

the robustness. We showed that the exact computation of the makespan distribution

given a schedule is both extremely difficult and impractical due to task dependencies.

Kleinrock Independence Approximation (KIA) is used to simplify the estimation. A

numerical procedure was then described to compute the makespan distribution. We ob-

served a performance improvement over deterministic algorithms from the experimental

158

results.

6.2 Future work

This dissertation mainly focused on the static task scheduling problem. In static schedul-

ing, knowledge about the characteristics of the application such as task execution time,

communication cost, and task dependencies are assumed to be available before execu-

tion, and the schedule is generated off-line. Admittedly, these assumptions limit the

generality of such scheduling strategies in real world distributed systems. In a shared

environment, predicting the processing power and communication bandwidth available

to a given application is extremely difficult if at all possible. This also makes designing

efficient static scheduling algorithms rather challenging. Chances are the estimations

assumed by the static scheduler may no longer be kept the same during execution, which

causes the application to perform poorly. One of the directions to extend our work is to

develop dynamic scheduling algorithms to overcome the limitations imposed by static

scheduling. Dynamic schedulers use information available at run-time to make schedul-

ing decisions. However, the decision making process must be fast enough in order not

to impact the application execution. In other words, the scheduling overhead must be

minimized.

Another possible extension to our work is to consider the problem of scheduling

real-time applications. In a real-time application, each task must be guaranteed to

meet its timing constraint (deadline). For static task scheduling, the most common

159

objective is to minimize the overall makespan. However, in real-time task scheduling,

the primary goal has shifted to meeting the deadline, otherwise the consequences could

be catastrophic, especially for hard real-time applications. Recently, extensive research

has focused on this subject [18, 55, 77, 80, 81, 93].

As the number of processors in today’s HDCS continues to grow, the probability of

processor failures also increases. Hence scheduling with fault tolerance is an important

issue. In the future, we would like to explore scheduling DAG applications in such

systems where the pattern of faults cannot be predicted. The goal here is to minimize

the delay incurred by the tasks.

160

Bibliography

161

Bibliography

[1] T. L. Adam, K. M. Chandy, and J. R. Dickson. A comparison of list schedules

for parallel processing systems. Commun. ACM, 17(12):685–690, 1974.

[2] I. Ahmad and Y.-K. Kwok. A new approach to scheduling parallel programs using

task duplication. In Proc. Int’l Conf Parallel Processing, volume 2, pages 47–51,

1994.

[3] I. Ahmad and Y.-K. Kwok. On exploiting task duplication in parallel program

scheduling. IEEE Trans. Parallel Distrib. Syst, 9(9):872–892, 1998.

[4] A. H. Alhusaini, C. S. Raghavendra, and V. K. Prasanna. Run-time adaptation

for grid environments. In Proceedings 15th International Parallel and Distributed

Processing Symposium., pages 864–874, 2001.

[5] S. Ali, A. A. Maciejewski, H. J. Siegel, and J.-K. Kim. Measuring the robustness

of a resource allocation. IEEE Trans. on Parallel and Dist. Syst., 15(7):630–641,

2004.

162

[6] S. Ali, S. M. Sait, and M. S.T. Benten. GSA: Scheduling and allocation using

genetic algorithm. In Proceedings of the 1994 European Design Automation Con-

ference, pages 84–89, Toronto, Canada, September 1994.

[7] S. Ali, H. J. Siegel, and A. A. Maciejewski. The robustness of resource allocation

in parallel and distributed computing systems. In ISPDC/HeteroPar’04, 2004.

[8] S. Ali, H. J. Siegel, M. Maheswaran, and D. A. Hensgen. Task execution time mod-

eling for heterogeneous computing systems. In Heterogeneous Computing Work-

shop, pages 185–199, 2000.

[9] D. Arnold, S. Agrawal, S. Blackford, J. Dongarra, M. Miller, K. Seymour, K. Sagi,

Z. Shi, and S. Vadhiyar. Users’ Guide to NetSolve V1.4.1. Innovative Computing

Dept. Technical Report ICL-UT-02-05, University of Tennessee, Knoxville, TN,

June 2002.

[10] D. Berleant. Automatically verified reasoning with both intervals and probability

density functions. Interval Computations, (2):48–70, 1993.

[11] D. Berleant and H. Cheng. A software tool for automatically verified operations

on intervals and probability distributions. Reliable Computing, 4(1):71–82, 1998.

[12] D. Berleant and C. Goodman-Strauss. Bounding the results of arithmetic op-

erations on random variables of unknown dependency using intervals. Reliable

Computing, 4(2):147–165, 1998.

163

[13] D. Berleant, L. Xie, and J. Zhang. Statool: A tool for distribution envelope deter-

mination (DEnv), an interval-based algorithm for arithmetic on random variables.

Reliable Computing, 9(2):91–108, 2003.

[14] F. Berman, H. Casanova, A. Chien, K. Cooper, H. Dail, A. Dasgupta, W. Deng,

J. Dongarra, L. Johnsson, K. Kennedy, C. Koelbel, B. Liu, X. Liu, A. Mandal,

G. Marin, M. Mazina, J. Mellor-Crummey, C. Mendes, A. Olugbile, M. Patel,

D. Reed, Z. Shi, O. Sievert, H. Xia, and A. YarKhan. New grid scheduling and

rescheduling methods in the GrADS project. International Journal of Parallel

Programming (IJPP), 33(2-3):209–229, 2005.

[15] J. Blythe, S. Jain, E. Deelman, Y. Gil, K. Vahi, A. Mandal, and K. Kennedy.

Task scheduling strategies for workflow-based applications in grids. In CCGRID,

pages 759–767, 2005.

[16] L. Bölöni and D. Marinescu. Robust scheduling of metaprograms. Journal of

Scheduling, 5(5), 2002.

[17] W. F. Boyer and G. S. Hura. Dynamic scheduling in distributed heterogeneous

systems with dependent tasks and imprecise execution time estimates. In Proceed-

ings of 16th IASTED International Conference, Parallel and distributed computing

and systems, Cambridge, MA, 11 2004.

[18] T. Braun, H. Siegel, and A. Maciejewski. Static mapping heuristics for tasks with

dependencies, priorities, deadlines, and multiple versions in heterogeneous envi-

164

ronments. In 16th International Parallel and Distributed Processing Symposium

(IPDPS ’02), pages 78–78. IEEE, April 2002.

[19] T. D. Braun, H. J. Siegel, N. Beck, L. Bölöni, M. Maheswaran, A. I. Reuther,

J. P. Robertson, M. D. Theys, and B. Yao. A taxonomy for describing matching

and scheduling heuristics for mixed-machine heterogeneous computing systems.

In Reliable Distributed Systems, 1998. Proceedings. Seventeenth IEEE Symposium

on, pages 330–335, West Lafayette, IN, 1998.

[20] T. D. Braun, H. J. Siegel, N. Beck, L. L. Boloni, A. I. Reuther, M. D. Theys,

B. Yao, R. F. Freund, M. Maheswaran, J. P. Robertson, and D. Hensgen. A com-

parison study of static mapping heuristics for a class of meta-tasks on heteroge-

neous computing systems. In HCW ’99: Proceedings of the Eighth Heterogeneous

Computing Workshop, page 15, Washington, DC, USA, 1999. IEEE Computer

Society.

[21] P. Brucker. Scheduling Algorithms. SpringerVerlag, 2004.

[22] H. Casanova. Network modeling issues for grid application scheduling. Int. J.

Found. Comput. Sci, 16(2):145–162, 2005.

[23] V. Chankong and Y. Haimes. Multiobjective Decision Making Theory and Method-

ology. Elsevier Science, Newe York, 1983.

[24] A. G. Colombo and R. J. Jaarsma. A powerful numerical method to combine

random variables. IEEE TRansactions on Reliability, 2(R-29):126–129, 1980.

165

[25] R.C. Corrêa, A. Ferreira, and P. Rebreyend. Scheduling multiprocessor tasks

with genetic algorithms. IEEE Transactions on Parallel and Distributed Systems,

10(8):825–837, 1999.

[26] G. Coulouris, J. Dollimore, and T. Kindberg. Distributed systems: concepts and

design. Addison Wesley, Essex, England, 2005.

[27] R. L. Daniels and P. Kouvelis. Robust scheduling to hedge against processing

time uncertainty in single-stage production. Management Science, 41(2):363–376,

1995.

[28] S. Darbha and D. P. Agrawal. A task duplication based scalable scheduling algo-

rithm for distributed memory systems. J. Parallel Distrib. Comput, 46(1):15–27,

1997.

[29] S. Darbha and S. Pande. A robust compile time method for scheduling task

parallelism on distributed memory machines. The Journal of Supercomputing,

12(4):325–347, 1998.

[30] A. J. Davenport and J. C. Beck. A survey of techniques for scheduling with

uncertainty. Preprint, 2000.

[31] L. Davis. Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York,

NY, 1991.

[32] K. Deb. Multi-Objective Optimization using Evolutionary Algorithms. John Wiley

& Sons, Chichester, UK, 2001.

166

[33] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, S. Patil, M.-H. Su,

K. Vahi, and M. Livny. Pegasus: Mapping scientific workflows onto the grid.

In Marios D. Dikaiakos, editor, Grid Computing, Second European Across Grids

Conference, AxGrids 2004, Nicosia, Cyprus, January 28-30, 2004, Revised Pa-

pers, volume 3165 of Lecture Notes in Computer Science, pages 11–20. Springer,

2004.

[34] A. Doğan and F. Özgüner. Genetic algorithm based scheduling of meta-tasks

with stochastic execution times in heterogeneous computing systemst1. Cluster

Computing, 7(2):177–190, 2004.

[35] H. El-Rewini and T. G. Lewis. Scheduling parallel program tasks onto arbitrary

target machines. J. Parallel Distrib. Comput., 9(2):138–153, 1990.

[36] H. El-Rewini, T. G. Lewis, and H. H. Ali. Task Scheduling in Parallel and Dis-

tributed Systems. Prentice Hall, Englewood Cliffs, 1994.

[37] D. England, J. Weissman, and J. Sadagopan. A new metric for robustness with

application to job scheduling. HPDC-14, pages 135–143, 2005.

[38] M. M. Eshaghian, editor. Heterogeneous Computing. Artech House Publishers,

Boston, 1996.

[39] S. Ferson. What monte carlo methods cannot do. Human and Ecological Risk

Assessment, 2(4):990–1007, 1996.

167

[40] S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski, W. Smith, and S. Tuecke.

A directory service for configuring high-performance distributed computations. In

HPDC, pages 365–376, 1997.

[41] I. Foster and C. Kesselman, editors. The Grid: Blueprint for a New Computing

Infrastructure. Morgan Kaufmann, 2003.

[42] R. F. Freund and H. J. Siegel. Introduction: Heterogeneous processing – guest

editors’ introduction. IEEE Computer, 26(6):13–17, June 1993.

[43] S. Fujita and H. Zhou. Multiprocessor scheduling problem with probabilistic

execution costs. In ISPAN: Proceedings of the International Symposium on Par-

allel Architectures, Algorithms, and Networks (I-SPAN). IEEE Computer Society

Press, 2000.

[44] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

[45] S. Geman and D. Geman. Stochastic relaxation, gibbs distributions, and the

bayesian restoration of images. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 6(6):721–741, November 1984.

[46] A. Gerasoulis and T. Yang. A comparison of clustering heuristics for scheduling

directed acyclic graphs on multiprocessors. Journal of Parallel and Distributed

Computing, 16(4):276–291, December 1992.

168

[47] D. E. Goldberg. Genetic algorithms in search, optimization, and machine learning.

Addison-Wesley, Reading, Massachusetts, 1989.

[48] D. E. Goldberg and K. Deb. A comparative analysis of selection schemes used in

genetic algorithms. In G. J. E. Rawlins, editor, Foundations of Genetic Algorithms,

pages 69–93, San Mateo, 1991. Morgan Kaufmann.

[49] J. H. Holland. Adaption in Natural and Artificial Systems. MIT Press, 1992.

[50] E. S. H. Hou, N. Ansari, and H. Ren. A genetic algorithm for multiprocessor

scheduling. IEEE Trans. Parallel Distrib. Syst., 5(2):113–120, 1994.

[51] J.-J. Hwang, Y.-C. Chow, F. D. Anger, and C.-Y. Lee. Scheduling precedence

graphs in systems with interprocessor communication times. SIAM J. Comput.,

18(2):244–257, 1989.

[52] G. E. Ingram, E. L. Welker, and C. R. Herrmann. Designing for reliability based

on probabilistic modeling using remote access computer systems. In Proc. 7th

Reliabiltiy and Maintainability Conference, pages 492–500. American Society of

Mechanical Engineers, 1968.

[53] H. A. James. Scheduling in Metacomputing Systems. PhD thesis, University of

Adelaide, Adelaide,Australia, 1999.

[54] S. A. Jarvis, L. He, D. P. Spooner, and G. R. Nudd. The impact of predictive

inaccuracies on execution scheduling. Performance Evaluation, 60(1-4):127–139,

2005.

169

[55] V. Kalogeraki, P. M. Melliar-Smith, and L. E. Moser. Dynamic scheduling for soft

real-time distributed object systems. In ISORC, pages 114–121. IEEE Computer

Society, 2000.

[56] A. Kamthe and S.-Y. Lee. A stochastic approach to estimating earliest start times

of nodes for scheduling DAGs on heterogeneous distributed computing systems.

In Parallel and Distributed Processing Symposium, 2005. Proceedings. 19th IEEE

International, 2005.

[57] S. Kaplan. On the method of discrete probability distributions in risk and reliabil-

ity calculations, applications to seismic risk assessment. Risk Analysis, 1(3):189–

196, 1981.

[58] T. Kidd and D. Hensgen. Why the mean is inadequate for accurate scheduling de-

cisions. In Parallel Architectures, Algorithms, and Networks, 1999. (I-SPAN ’99)

Proceedings. Fourth InternationalSymposium on, pages 262–267, Perth/Fremantle,

WA, 1999.

[59] S. J. Kim and J. C. Browne. A general approach to mapping of parallel compu-

tation upon multiprocessor architectures. In Proceedings of International Conf.

Parallel Processing, volume 2, pages 1–8, 1988.

[60] L. Kleinrock. Communication Nets: Stochastic Message Flow and Delay. McGraw-

Hill, 1964.

170

[61] B. Kruatrachue and T. Lewis. Grain size determination for parallel processing.

IEEE Softw., 5(1):23–32, 1988.

[62] Y.-K. Kwok and I. Ahmad. Exploiting duplication to minimize the execution

times of parallel programs on message-passing systems. In Proceedings of the 6th

Symposium on Parallel and Distributed Processing, pages 426–433, Los Alamitos,

CA, USA, October 1994. IEEE Computer Society Press.

[63] Y.-K. Kwok and I. Ahmad. Dynamic critical-path scheduling: An effective tech-

nique for allocating task graphs to multiprocessors. IEEE Trans. Parallel Distrib.

Syst., 7(5):506–521, 1996.

[64] Y.-K. Kwok and I. Ahmad. Benchmarking and comparison of the task graph

scheduling algorithms. J. Parallel Distrib. Comput., 59(3):381–422, 1999.

[65] Y.-K. Kwok and I. Ahmad. Static scheduling algorithms for allocating directed

task graphs to multiprocessors. ACM Comput. Surv., 31(4):406–471, 1999.

[66] V. J. Leon, S. D. Wu, and R. H. Storer. Robustness measures and robust schedul-

ing for job shops. IIE Transactions, 26(5):32–43, 1994.

[67] Y. A. Li and J. K. Antonio. Estimating the execution time distribution for a

task graph in a heterogeneous computing system. In Heterogeneous Computing

Workshop, pages 172–184. IEEE Computer Society, 1997.

[68] J. Liou and M. A. Falls. An efficient clustering heuristic for scheduling dags on

multiprocessors. In Proc. Symp. Parallel and Distributed Processing, 1996.

171

[69] G. Q. Liu, K. L. Poh, and M. Xie. Iterative list scheduling for heterogeneous

computing. J. Parallel Distrib. Comput., 65(5):654–665, 2005.

[70] M. Maheswaran and H. J. Siegel. A dynamic matching and scheduling algorithm

for heterogeneous computing systems. In Heterogeneous Computing Workshop,

pages 57–69, 1998.

[71] R. E. Moore. Interval Analysis. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1966.

[72] R. E. Moore. Risk analysis without monte carlo methods. Freiburger Intervall-

Berichte, 84(1):1–48, 1984.

[73] R. Moreno and A. B. Alonso-Conde. Job scheduling and resource management

techniques in economic grid environments. In F. Fernández Rivera, Marian Bubak,

A. Gómez Tato, and Ramon Doallo, editors, European Across Grids Conference,

volume 2970 of Lecture Notes in Computer Science, pages 25–32. Springer, 2003.

[74] A. Moukrim, E. Sanlaville, and F. Guinand. scheduling with communication

delays and on-line disturbances. In Euro-Par’99, LNCS 1685, pages 350–357,

1999.

[75] A. Moukrim, E. Sanlaville, and F. Guinand. parallel machine scheduling uncertain

communication delays. RAIRO Operations Research, 37:1–16, 2003.

[76] R. B. Nelson. An introduction to copulas. In Lecture notes in statistics 139.

Berlin:Springer, 1999.

172

[77] M. A. Palis. On the competitiveness of online real-time scheduling with rate of

progress guarantees. International Journal of Foundations of Computer Science,

14(3):359–370, 2003.

[78] G.-L. Park, B. Shirazi, and J. Marquis. DFRN: A new approach for duplication

based scheduling for distributed memory multiprocessor systems. In IPPS ’97:

Proceedings of the 11th International Symposium on Parallel Processing, pages

157–166, Washington, DC, USA, 1997. IEEE Computer Society.

[79] N. Policella. Scheduling with uncertainty: A proactive approach using Partial

Order Schedules. PhD thesis, University of Rome “La Sapienza”, Rome, March

2005.

[80] X. Qin and H. Jiang. Dynamic, reliability-driven scheduling of parallel real-time

jobs in heterogeneous systems. In 2001 International Conference on Parallel Pro-

cessing (ICPP ’01), pages 113–122. IEEE, September 2001.

[81] X. Qin and H. Jiang. A dynamic and reliability-driven scheduling algorithm for

parallel real-time jobs executing on heterogeneous clusters. J. Parallel Distrib.

Comput, 65(8):885–900, 2005.

[82] A. Radulescu and A. J. C. Van Gemund. Fast and effective task scheduling

in heterogeneous systems. In HCW ’00: Proceedings of the 9th Heterogeneous

Computing Workshop, page 229, Washington, DC, USA, 2000. IEEE Computer

Society.

173

[83] S. Ranaweera and D. Agrawal. A scalable task duplication based scheduling algo-

rithm for heterogeneous systems. In Proceedings of 2000 International Conference

on Parallel Processing (29th ICPP’00), Toronto, Canada, August 2000. Ohio State

Univ.

[84] S. Ranaweera and D. P. Agrawal. A task duplication based scheduling algorithm

for heterogeneous systems. In 14th International Parallel and Distributed Pro-

cessing Symposium (SPDP’2000), pages 445–450, Washington - Brussels - Tokyo,

May 2000. IEEE.

[85] R. Sakellariou and H. Zhao. A hybrid heuristic for dag scheduling on heterogeneous

systems. In Proceedings of 13th heterogeneous computing workshop (HCW2004),

Santa Fe, NM, April 2004.

[86] R. Sakellariou and H. Zhao. A low-cost rescheduling policy for efficient mapping

of workflows on grid systems. Scientific Programming, 12(4):253–262, 2004. U.

Manchester.

[87] N. Sample, P. Keyani, and G. Wiederhold. Scheduling under uncertainty: Plan-

ning for the ubiquitous grid. In Farhad Arbab and Carolyn L. Talcott, editors,

Coordination Models and Languages, 5th International Conference, COORDINA-

TION 2002, YORK, UK, April 8-11, 2002, Proceedings, volume 2315 of Lecture

Notes in Computer Science, pages 300–316. Springer, 2002.

174

[88] V. Sarkar. Partitioning and Scheduling Parallel Programs for Multiprocessors.

MIT Press, Cambridge, Massachusetts, 1989.

[89] J. M. Schopf and F. Berman. Stochastic scheduling. In Proceedings of Super-

computing’99 (CD-ROM), Portland, OR, November 1999. ACM SIGARCH and

IEEE.

[90] J. M. Schopf and F. Berman. Using stochastic information to predict applica-

tion behavior on contended resources. International Journal of Foundations of

Computer Science, 12(3):341–363, 2001.

[91] S. P. Shah, D. YM He, J. N. Sawkins, J. C. Druce, G. Quon, D. Lett, G. XY Zheng,

T. Xu, and BF F. Ouellette. Pegasys : software for executing and integrating

analyses of biological sequences. BMC Bioinformatics, 5(40), 2004.

[92] Zhiao Shi and Jack Dongarra. Scheduling workflow applications on processors

with different capabilities. Future generation computer systems, 22(6):665–675,

2006.

[93] B. Shirazi, H. Y. Youn, and D. M. Lorts. Evaluation of static scheduling heuristics

for real-time multiprocessing. Parallel Processing Letters, 5(4):599–610, December

1995.

[94] G. C. Sih and E. A. Lee. A compile-time scheduling heuristic for interconnection-

constrained heterogeneous processor architectures. IEEE Trans. Parallel Distrib.

Syst., 4(2):175–187, 1993.

175

[95] H. Singh and A. Youssef. Mapping and scheduling heterogeneous task graphs

using genetic algorithms. In Proc. Heterogeneous Computing Workshop, pages

86–97, 1996.

[96] M. D. Springer. The Algebra of Random Variables. Wiley series in Probability

and Mathematical Statistics. John Wiley & Sons, New York, NY, USA, 1979.

[97] Condor team. The direct acyclic graph manager (DAGMan), 2002.

http://www.cs.wisc.edu/condor/dagman/.

[98] H. Topcuoglu, S. Hariri, and M.-Y. Wu. Performance-effective and low-complexity

task scheduling for heterogeneous computing. IEEE Trans. Parallel Distrib. Syst.,

13(3):260–274, 2002.

[99] P. J. M. van Laarhoven and E. H. L. Aarts. Simulated annealing: theory and

applications. Kluwer, Dordrecht, 1992.

[100] L. Wang, H. J. Siegel, and V. P. Roychowdhury. A genetic-algorithm-based ap-

proach for task matching and scheduling in heterogeneous computing environ-

ments. In Proc. Heterogeneous Computing Workshop, 1996.

[101] L. Wang, H. J. Siegel, V. P. Roychowdhury, and A. A. Maciejewski. Task

matching and scheduling in heterogeneous computing environments using a

genetic-algorithm-based approach. Journal of Parallel and Distributed Computing,

47(1):8–22, November 1997.

176

[102] R. C. Williamson. Interval arithmetic and probabilistic arithmetic. In C. Ullrich,

editor, Contrib. Comp. Arith. Self-Val., pages 67–80, 1990.

[103] R. C. Williamson and T. Downs. Probabilistic arithmetic. I. numerical methods

for calculating convolutions and dependency bounds. Int. J. Approx. Reasoning,

4(2):89–158, 1990.

[104] R. Wolski. Dynamically forecasting network performance using the network

weather service. Cluster Computing, 1(1):119–132, 1998.

[105] A. S. Wu, H. Yu, S. Jin, K.-C. Lin, and G. Schiavone. An incremental genetic

algorithm approach to multiprocessor scheduling. IEEE Transactions on Parallel

and Distributed Systems, 15(9):824–834, 2004.

[106] M. Y. Wu and D. D. Gajski. Hypertool: A programming aid for message-passing

systems. IEEE Trans. Parallel Distrib. Syst., 1(3):330–343, 1990.

[107] T. Yang and A. Gerasoulis. DSC: Scheduling parallel tasks on an unbounded

number of processors. IEEE Trans. Parallel Distrib. Syst., 5(9):951–967, 1994.

[108] J. Yu and R. Buyya. A taxonomy of workflow management systems for grid

computing. J. of Grid Computing, (3):171–200, 2006.

[109] H. Zhao and R. Sakellariou. An experimental investigation into the rank function

of the heterogeneous earliest finish time scheduling algorithm. In Proceedings of

9th International Euro-Par Conference. Springer-Verlag, 2003.

177

[110] A. Y. Zomaya, C. Ward, and B. Macey. Genetic scheduling for parallel processor

systems: comparative studies and performance issues. IEEE Transactions on

Parallel and Distributed Systems, 10(8):795–812, 1999.

178

Vita

Zhiao Shi was born in Ningbo, China. He received a Bachelor of Engineering degree

from Beijing University of Chemical Technology in 1996 and a Master of Science degree

from Kansas State University in 2000, both in Chemical Engineering.

He moved to the University of Tennessee to pursue a doctoral degree in January

2001. He worked in the Innovative Computing Laboratory (ICL) as a Graduate Re-

search Assistant under the guidance of Dr. Jack Dongarra. His current research in-

terests include parallel and distributed computing, grid computing, task scheduling in

heterogeneous environments. Zhiao Shi is expected to receive a Doctor of Philosophy

degree in Computer Science in December 2006.

179

	Approval
	Titlepage
	Copyright
	Dedication
	Acknowledgements
	Abstract
	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Outline of the dissertation

	2 Review of Literature
	2.1 Introduction
	2.1.1 The application model
	2.1.2 The HDCS model

	2.2 Static DAG scheduling in deterministic HDCS
	2.2.1 List scheduling
	2.2.2 Clustering based heuristics
	2.2.3 Task duplication based heuristics
	2.2.4 Guided random search algorithms

	2.3 Static DAG scheduling in non-deterministic HDCS
	2.3.1 Classifications of current research on scheduling with uncertainties
	2.3.2 Review of different scheduling techniques

	3 Task Scheduling Considering Different Processor Capabilities
	3.1 Introduction
	3.2 Problem description
	3.2.1 Task graph
	3.2.2 Resource graph
	3.2.3 Performance criteria

	3.3 The SDC algorithm
	3.3.1 Setting task node weight
	3.3.2 Prioritizing the tasks
	3.3.3 Selecting processors
	3.3.4 Procedure of the algorithm
	3.3.5 Time-complexity analysis

	3.4 Experimental results and discussion
	3.4.1 Comparison metrics
	3.4.2 Randomly generated application graphs
	3.4.3 Performance analysis on application graph of a genomic sequence annotation workflow

	3.5 Conclusions

	4 Robust Task Scheduling in Non-deterministic HDCS
	4.1 Introduction
	4.2 Robust task scheduling problem
	4.2.1 Basic Models
	4.2.2 Slack
	4.2.3 Robustness

	4.3 A Bi-objective Task Scheduling Problem
	4.3.1 -constraint Method
	4.3.2 A Bi-objective Genetic Algorithm

	4.4 Experimental results and discussions
	4.4.1 Effectiveness of slack
	4.4.2 Results of solving the bi-objective optimization problem

	4.5 Conclusions

	5 Stochastic Task Scheduling in HDCS
	5.1 Introduction
	5.2 Stochastic DAG scheduling problem
	5.3 Calculation of the makespan distribution of a task graph
	5.3.1 Estimating the makespan distribution
	5.3.2 Numerical calculation of maximum and addition of two random variables

	5.4 Simulation
	5.5 Results and discussion
	5.5.1 Accuracy of the estimation
	5.5.2 SDS vs. DDS
	5.5.3 Bi-objective optimization

	5.6 Summary

	6 Conclusions and Future Work
	6.1 Conclusions
	6.2 Future work

	Bibliography
	Vita

