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Abstract

Grid computing faces a great challenge because the resources are not localized, but

distributed, heterogeneous and dynamic. Thus, it is essential to provide a set of

programming tools that execute an application on the Grid resources with as little

input from the user as possible. The thesis of this work is that Grid-centric scheduling

techniques of workflow applications can provide good usability of the Grid environment

by reliably executing the application on a large scale distributed system with good

performance. We support our thesis with new and effective approaches in the following

five aspects.

First, we modeled the performance of the existing scheduling approaches in a

multi-cluster Grid environment. We implemented several widely-used scheduling al-

gorithms and identified the best candidate. The study further introduced a new

measurement, based on our experiments, which can improve the schedule quality of

some scheduling algorithms as much as 20 fold in a multi-cluster Grid environment.

Second, we studied the scalability of the existing Grid scheduling algorithms. To

deal with Grid systems consisting of hundreds of thousands of resources, we designed

and implemented a novel approach that performs explicit resource selection decoupled

from scheduling. Our experimental evaluation confirmed that our decoupled approach

can be scalable in such an environment without sacrificing the quality of the schedule

by more than 10%.

Third, we proposed solutions to address the dynamic nature of Grid computing



with a new cluster-based hybrid scheduling mechanism. Our experimental results

collected from real executions on production clusters demonstrated that this approach

produces programs running 30% to 100% faster than the other scheduling approaches

we implemented on both reserved and shared resources.

Fourth, we improved the reliability of Grid computing by incorporating fault-

tolerance and recovery mechanisms into the workow application execution. Our ex-

periments on a simulated multi-cluster Grid environment demonstrated the effective-

ness of our approach and also characterized the three-way trade-off between reliability,

performance and resource usage when executing a workflow application.

Finally, we improved the large batch-queue wait time often found in production

Grid clusters. We developed a novel approach to partition the workow application and

submit them judiciously to achieve less total batch-queue wait time. The experimental

results derived from production site batch queue logs show that our approach can

reduce total wait time by as much as 70%.

Our approaches combined can greatly improve the usability of Grid computing

while increasing the performance of workow applications on a multi-cluster Grid en-

vironment.
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Chapter 1

Introduction

Advances in networking technologies have made it possible to use distributed infor-

mation infrastructures as a computational resource as well as an information resource

that we refer to as the Grid [40, 41]. Foster et al. [40] described it as a distributed

infrastructure that connects computers, databases, instruments, and people in a seam-

less web of computing and distributed intelligence, that can be used in an on-demand

fashion as a problem-solving resource in many fields of human endeavor. Just as the

electric power grid provides electricity, the ultimate “Grid” vision is to provide per-

vasive access to large scale computation and data as an integrated problem-solving

resource in diverse fields of science, engineering and commerce.

Since the inception of Grid, it has advanced from an ambitious vision pursued by a

small number of academic researchers into a large-scale research and production activ-

ity involving hundreds of scientists and engineers. The Grid vision of flexible, large-

scale deployment and resource sharing across multiple organizations has spawned

not only a wealth of research [4, 82, 3], but also commercial products [36, 112, 77]

and large-scale deployment [107, 45] used by both scientific and commercial applica-

tions [23, 110, 96, 34, 103, 1, 38, 60, 28, 47]. Those computational and data Grids

provide access to software and hardware resources geographically distributed and

maintained by different institutions. In more recent development, the Grid is evolv-

ing towards the “cloud” computing but Grid technologies will still play a critical role

in the new cloud computing.
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1.1 Motivation

The availability of Grid resources gave rise to a new computing paradigm: Grid com-

puting. Unlike scalar or parallel computing, Grid computing enables users to share

their resources, data and software instead of competing for them. Such collaborations

have widespread appeal for the distributed and high performance computing commu-

nities. However, as with most new technologies, only part of the Grid’s potential is

currently a reality.

One of the fundamental challenges in Grid computing is that Grid applications

typically involve massive task-parallelism and may include processing of large-scale

data. The tera or even peta-scale of the applications not only put stress on the

Grid software stacks but also on the hardware infrastructures. Another fundamental

challenge is that the Grid applications run on resources that are distributed, heteroge-

neous, dynamic and sometimes unpredictable. These characteristics of the resources

have largely confined the use of Grid computing to engineers and scientists with ex-

tensive training and experience. Finally, the synchronous use of shared resources

distributed across multiple organization and administrative domains is largely unre-

alized [9] partly because it requires a form of co-scheduling. The underlying technical

challenge is that a Grid application needs to coordinate with several local resource

managers to allocate enough resources for itself.

Because the Grid environment is inherently more complex than previous computer

systems, applications that execute on the Grid would inevitably reflect some of this

complexity. However, we believe that it is possible to encapsulate the complexity of

Grid computing away from the application developers. We believe that the key to

make the Grid usable lies in sophisticated programming tools that embody major

advances in both the theory and practice of building Grid applications. Our ulti-

mate vision is that Grid application developers will write component-based workflow

applications with the help of workflow generator tools. Workflow applications are

an important class of applications that consist of multiple sub-tasks linked to each
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other by dependences. The developers can be Grid-oblivious as long as they express

the general software and hardware requirements for the application. Then, a user

will submit the Grid application through a user portal and a Grid runtime system

will automatically execute it on the matching Grid resources. A Grid runtime sys-

tem usually consists of one global resource manager and one application manager per

application. Finally, the Grid application finishes and automatically stages all the

results to a user designated place for the user to collect. Unfortunately, the reality

is, most Grid application developers have been experts in distributed computing and

the users run the application by directly invoking remote procedure calls through the

Grid middleware. Therefore, instead of our vision that users can submit an applica-

tion onto Grid and leave it unattended, users need to continuously monitor the status

of the application during its execution.

In an effort to fulfill our ambitious vision, we focused on the development of a good

application manager since it plays a critical role in the automation process. A fully

automated application manager identifies the application requirements, selects Grid

resources for the applications, coordinates with the global resource manager to allo-

cate enough resources, schedules the application, executes the application in the right

order, monitors the execution and reschedules or relaunches the application in case an

unexpected event happens. We also believe that a good application manager is key to

the performance of the application. It is already known that the distributed, hetero-

geneous and dynamic characteristics of the Grid resources can unexpectedly hurt the

performance of the application [129]. Thus, one important task for the application

manger is to select and allocate the right resources and schedule the application onto

these resources in a way to minimize the execution time which we usually refer to

as the turn-around time. At the heart of this procedure is the scheduling problem

which is known to be NP-complete except in the simplest scenarios [43]. Traditional

scheduling assumes that the performance of the application on a certain resource is

not only known but also invariant. In a heterogeneous dynamic Grid environment,
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these assumptions do not hold. Thus, Grid application scheduling poses even larger

challenges than does scheduling in a static homogenous environment.

1.2 Thesis

The thesis of this work is that Grid centric scheduling techniques of workflow appli-

cations can provide good usability of the Grid environment by reliably executing the

application on a large scale distributed system with good performance. To support

this thesis, we designed and implemented several workflow application scheduling

mechanisms in the context of the Virtual Grid Application Development Software

(VGrADS) project. Our researches have provided the necessary techniques to reliably

execute a workflow application on a Grid environment and achieve good performance

(turn-around time) and scalability.

1.3 Research Contributions

The main contribution this thesis work is a set of published Grid-centric scheduling

techniques for workflow applications.

• We studied the performance of existing scheduling approaches in the Grid en-

vironment. I analyzed the results and introduced a new measurement called

effective aggregated computing power (EACP) that could improve the results

of some scheduling algorithms by as much as 20 fold [127].

• We studied the scalability of existing scheduling approaches and designed and

implemented a decoupled two-level approach that performs explicit resource

selection decoupled from scheduling. The experimental results confirmed that

our approach can be scalable in a large Grid environment without sacrificing

the quality of the schedule by more than 10%. [130].

• We proposed a new cluster-based hybrid scheduling mechanism that dynami-

cally executes a top-down static scheduling algorithm using the real-time feed-
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back from the execution monitor. The experimental execution results showed

that this approach produces programs running 30% to 100% faster than the

other scheduling approaches we implemented on both reserved and shared re-

sources [129].

• We incorporated fault-tolerance and recovery mechanisms into workflow appli-

cation scheduling and execution that improve the reliability of Grid computing

by at much as 250% when the resources are unreliable [131].

• We proposed a new approach to aggregate a workflow application into several

groups and submit them according to the batch queue wait time estimation to

reduce the workflow’s waiting time in the batch queues on production sites by

as much as 80% [128].

1.4 Organization

The thesis is organized as follows. In Chapter 2, we present the background of

our research and related works. In Chapter 3, we present our study of the various

scheduling algorithms on a multi-cluster Grid environment and propose and evaluate

our new EACP approach. In Chapter 4, we present our two-level scheduling strategy

that addresses the scalability issues for Grid applications. In Chapter 5, we present

a novel two-level cluster based hybrid rescheduling technique and its evaluation on

a real multi-cluster Grid. In Chapter 6, we present our work on incorporating the

fault-tolerance and recovery mechanism with workflow application scheduling. In

Chapter 7, we present a novel workflow aggregation algorithm that can reduce a

workflow application’s wait time in batch queue controlled resources. Finally, we

conclude our dissertation in Chapter 8.
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Chapter 2

Background and Related Work

In this chapter, we first describe Grid computing from the perspective of our re-

search. Then we list related works on Grid middleware systems including the GrADS

project, its successor the VGrADS project on which this thesis work is built, the

Globus project and other Grid projects. Secondly, we present the background of

workflow applications and list some existing workflow application management sys-

tems. Finally, we present workflow application scheduling techniques and related

works on scheduling strategies for homogeneous, heterogeneous and Grid platforms.

We will also present comparisons with our work when appropriate.

2.1 Grid Computing

2.1.1 Overview

The Grid is a distributed infrastructure that connects computers, databases, instru-

ments, and people into a seamless web of advanced capabilities [40]. There are many

types of Grid, such as computational Grid, desktop Grid, data Grid and utility Grid,

to name a few. In our research, we focus on multi-cluster computational Grid. A

multi-cluster Grid composes of several clusters that are physically located in a geo-

graphically distributed manner and its main purpose is to provide enough computa-

tional resources to accommodate applications with large computational needs. Grid

computing is a new computing paradigm that could harness the computing power of

a Grid. In our multi-cluster Grid environment, Grid computing means a user submits

a large application, usually a workflow application, through an application manager

onto one or more clusters and the user can collect the results later without further
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intervention. In other words, we see Grid computing as an automation for a user to

harness the computing power of multiple clusters or a large number of distributed

resources in general.

A flurry of research projects has been proposed on different aspects of the Grid

computing around the world since the inauguration of the Grid concept. A non-

exhaustive list includes the GrADS project [9], the VGrADS project [55], the Globus

project [39], the Condor project [109], the Enabling Grids for E-sciencE (EGEE)

project [8], the GridBus project [83], the GridFlow project [16], the GridLab project [3],

the TeraGrid project [107] and the Unicore project [93]. Here we summarize some of

the more related and more influential ones on our research.

2.1.2 Grid Projects Related to Our Research

Globus

The Globus project, started in 1996, produces by far the mostly widely-used Grid

middleware, the Globus toolkit [39]. It is an open source toolkit that provides funda-

mental technologies for people to share computing power, databases, and other tools

securely online across corporate, institutional, and geographic boundaries without

sacrificing local autonomy. The toolkit includes software services and libraries for re-

mote procedure call, resource monitoring, discovery, and management, plus security

and file management.

The latest release of Globus toolkit version 4(GT4) converged with web services

standards on building Grid middleware and service-oriented-applications. A web

service is a software system designed to support interoperable machine-to-machine

interaction over a network. It has an interface described in a machine processable

format called Web Service Definition Language (WSDL). Other systems interact with

the Web service in a manner prescribed by its description using Simple Object Access

Protocol (SOAP) messages [90, 99]. In this way, a user can write his own client

program that invokes services reside in the Grid server. Several standard services are
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implemented in a Globus toolkit 4 container.

The three mostly commonly used services are the job management service,reliable

file transfer service and the delegation service. The Grid Resource Allocation and

Management (GRAM) service enables users to execute a program remotely and get

a handle to manage the job. A client can then use this handle to query the jobs

status, kill the job and obtain notifications if the job status changes. The Reliable

File Transfer (RFT) service enables users to stage in all the necessary files before a

remote job starts and stage out the results to the next computing job. The delegation

service can delegate a user’s credential through the web service security authentication

system so that a remote job can run with the same permission as the user on that

resource.

Both the GrADS and the VGrADS project use Globus as their infrastructure and

add user level services on top of it. We use Globus in most of our work directly or

indirectly (through VGrADS), as do many other Grid proejcts. However, GT4 services

alone can not provide the type of automation and performance we are looking to

achieve, because Globus is designed to provide the basic functionalities for distributed

computing and is largely single job oriented, thus not directly applicable to a workflow

application execution.

GrADs

Since 1999, the Grid Application Development (GrADS) Project has worked to attack

the problems inherent in Grid computing [26]. The GrADS research has focused on

five inter-institutional efforts: Program Execution System, Program Preparation Sys-

tem, Macro Testbed, MicroGrid, and Applications. Based on those inter-institutional

projects, the GrADS project proposed two key concepts [58]. First, applications are

encapsulated as configurable object programs (COPs) which include not only the code

for the application but also a portable strategy for mapping the program onto the

available distributed resources and a mechanism to evaluate how well that mapped
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program will run. Second, the system relies upon performance contracts that specify

the expected performance of modules as a function of available resources [115].

Figure 2.1 from Kennedy et al. [58] illustrates the overall architecture of the

GrADS software.The left side of Figure 2.1 depicts tools used to construct COPs from

either domain-specific ready-to-use components such as a MPI or multi-threaded pro-

gram. The right side of Figure 2.1 depicts actions when a COP is delivered to the

execution environment. The GrADS infrastructure first determines which resources

are available and uses the mapper to map the application components onto an ap-

propriate subset of these resources. Then the GrADS software invokes the binder to

tailor the COP to the chosen resources and starts it on the Grid. Once launched, con-

tract monitor[71] tracks its execution and detects anomalies. The rescheduler takes

corrective action if necessary based on the monitor’s feedback and the application’s

requirement.

The GrADS project demonstrated through many proof-of-concept experiments
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that it is possible to construct reasonably efficient schemes, such as process swap-

ping, checkpoint/restart and dynamic load balancing, for dynamic rescheduling of

Grid applications onto different resources during execution. It implemented a migra-

tion framework that takes into account both the system load and application charac-

teristics with the help of a contract monitor. It also showed that high performance

can be achieved on the Grid for several different kinds of numerical applications with

a low implementation and execution overhead. The GrADS framework can handle

applications from varying disciplines with varying requirements, such as the biological

sequence alignment application FASTA [121], the propositional satisfiability problem

solver GridSAT [24] and the computationally demanding problem of determination of

3-D structure of large macromolecular complexes from electron cryomicroscopy [66].

GrADS project laid the foundation of the workflow application execution on a Grid

and also led to the VGrADS project that this thesis is built on.

VGrADs

The Virtual Grid Application Development Software (VGrADS) project is based on

the earlier GrADS project. It extends GrADS by introducing the concept of virtual

grids (VGs), that is, sets of selected and bound resources [55]. The virtual grid ex-

ecution system (vgES) provides an additional level of abstraction and implements a

simple interface for resource specification, resource selection, and resource binding in

a complex Grid environment. Figure 2.2 from Kee et al. [55] illustrates the overall

architecture of the original vgES architecture. The system includes a novel resource

description language (vgDL), a resource selection and binding component (vgFAB),

a dynamic resource information retrieving component(vgAgent), a distributed moni-

toring component (vgMON) and an application launcher (vgLaunch). The system is

built on top of the Globus middleware [4] which provides the standard Grid resource

allocation and management (GRAM) service.

The concept of virtual grid allows separation of concerns between levels of the
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Figure 2.2 : Virtual Grid Execution System (vgES) Architecture

system and is the key to allow scalable scheduling. Results show that resource se-

lection and binding for virtual grids of tens of thousands of resources can scale up

to Grids with millions of resources while identifying good matches in less than one

second [22]. Recently the virtual grid execution system extended support to include a

“slot” resource abstraction, representing not only the quantity but also the duration

when resources are available. Combined with advanced batch queue delay prediction

and application performance prediction, the slot-based resource abstraction makes it

possible for a Grid application to virtually reserve resources it needs on a busy batch

queue controlled resource. All together, they provide the leverage for scheduling

availability and allow more-advanced applications to run with VGrADS support.

My thesis work is part of the VGrADS project. The work in Chapter 4 was built

on top of the virtual grid execution system and used vgDL to describe resource needs

for a workflow application. The work in other chapters are also motivated by the

collaboration work with other project members in various phases of the VGrADS

project and could be incorporated into the virtual Grid abstraction.
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2.1.3 Other Grid Projects

Condor

Started in 1988, the Condor project has been focusing on customers with large com-

puting needs and environments with heterogeneous distributed resources [82]. Condor

is a specialized workload management system that provides a job queueing mecha-

nism, scheduling policy, priority scheme, resource monitoring, and resource manage-

ment. However, its main goal is to achieve high throughput for a system, not a typical

object for high performance computing where the main objective is to finish a large

amount of computation as fast as possible. It is not the case for Condor where an

application would wait for a resource to become available.

The first generation of the Condor system grouped agents, resources, and match-

makers together to form what they called a Condor pool. The user submits jobs to an

agent. Then the agent advertises itself through the ClassAd mechanism to a match-

maker, which is responsible for searching potential matching agent and resource pairs.

Once introduced, the agent will contact the resource. If the resource is available, a

safe execution environment (sandbox) will be created for the job to protect the re-

source from any mischief [109]. Although this version of the Condor system enabled

users to harness the computing power of many workstations with a single portal, the

size of the Condor pool was limited by having only one matchmaker.

The second generation of the Condor system introduced the concept of flocking

which allows resource sharing between different Condor installations. There are two

flavors of flocking, gateway flocking and direct flocking. In a gateway flocking Condor

system, the structure of two existing pools is preserved, while two gateway nodes pass

information about participants between the two pools. In a direct flocking Condor

system, an agent can advertise its ClassAd to multiple matchmakers in different pools.

With the development of the Globus toolkit described in Section 2.1.2, the Condor

project developed the Condor-G system that allows a user to treat the Grid as an
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entirely local resource. It comes with a personal desktop agent that allows the user

to submit jobs, query a job’s status, cancel the job and be informed of job termina-

tion or problems by invoking the GRAM services underneath. Condor-G empowers

end-users to improve their productivity by providing a unified view of distributed

resources [42]. However, the Condor-G system does not support workflow application

execution directly. We will describe a workflow management system called DAGMAN

in Section 2.2.3 that builds on top of Condor. All the resources in the Condor pool

are accessible directly instead of having a local resource manager.

GridBus

The GridBus project is located at the Grid Computing and Distributed Systems

(GRIDS) lab in the Department of Computer Science and Software Engineering at

the University of Melbourne, Australia. The project name GRIDBUS is derived

from its research theme: to create next-generation GRID computing and BUSiness

technologies that power the emerging eScience and eBusiness applications [83].

The Gridbus project covers wide research topics on Grid economy, workflow appli-

cation scheduling, service level based resource management, Grid environment simu-

lation and other related areas. The Gridbus project has a market-based Grid resource

broker and a budget aware just-in-time workflow scheduling system. They also have

proposed several plan-ahead scheduling approaches such as greedily searching for the

most cost-effective resources to meet the budget constraint [123], using genetic algo-

rithm to achieve multiple goals [124] and adjusting the critical path of a workflow

application dynamically to achieve better performance [67]. Many of these proposed

approaches are evaluated on their GridSim toolkit [104] that models and simulates

systems-users, applications, resources, and resource brokers (schedulers) in a parallel

and distributed computing environment.

The GridBus project works on many areas that overlap with my research but

my research addressed the scalability problem, put more emphasis on the plan-ahead
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scheduling approach and focused on batch queue managed local resources and resource

reliabilities.

GridLab

The GridLab project is one of the biggest European research undertakings in the

development of application tools and middleware for Grid environments [3]. GridLab

provides twelve application-oriented Grid services and toolkits providing capabilities

such as dynamic resource brokering, monitoring, data management, security, infor-

mation, adaptive services and more.
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Figure 2.3 from Allen et al. [3] shows the GridLab project architecture. At the

highest layer there is the application layer that is a web service application devel-

opment portal called GridSphere. Below it is the Grid Application Toolkit (GAT)

that is a set of coordinated, generic and flexible APIs for accessing Grid services. The
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service layer covers the whole range of Grid capabilities such as Grid resource manage-

ment and brokering, data access and management, Grid authorization, Grid network

monitoring and performance prediction service, Grid monitoring infrastructure and

Grid data and visualization services. Some of the GridLab services overlap with the

Condor-G system. Gridlab uses GRAM to submit jobs to remote resources. The main

object of the GridLab project is to provide end users a unified Grid platform to eas-

ily develop and test Grid-enabled application. However, it does not directly support

workflow applications and does not provide resource co-allocation and application

level scheduling.

2.2 Workflow Management Tools

2.2.1 Workflow application Overview and Notation

Workflow applications are widely used in scientific fields as diverse as astronomy [10],

biology [60, 66] oceanography [47], and earthquake science [28]. It is the most impor-

tant type of application that is suitable to run on a large scale distributed systems

and especially Grids. In a workflow application, the overall application is composed

of multiple (usually coarse-grain) tasks linked to each other by either data or logic

dependences. This property makes workflow application an ideal form of application

to run on a distributed system since the tasks in a workflow application can run on

distributed resources in an asynchronized manner.

The directed acyclic graph (DAG) is an abstract description and is frequently used

to represent a workflow application. We define an abstract DAG as a pair G = (V,E),

where V is a set of nodes, each representing an application task, and E is a set of

edges, each representing a data dependence between tasks. We will later denote the

source of the dependence as the predecessor tasks and the sink of the dependence as

the successor tasks. Our complexity measures will often use v as the size of set V and

e as the size of set E. We will later refer to an abstract DAG as the DAG model. We

assume that an abstract DAG always has a single entry node and a unique exit node
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Figure 2.4 : EMAN Refinement Workflow

because we can insert dummy entry and exit tasks into the DAG that do not take any

time to run and have no input or output files. We also quantify the needs of particular

applications using a popular and simple metric:Communication-Computation Ratio

(CCR). Following Blythe et al. [11], we define the CCR of a DAG as

CCR =
total communication cost

number of tasks× AvgCompCost

2.2.2 Workflow applications

In this thesis, we use five workflow applications in various experiments to test our

workflow scheduling algorithms. Here, we will describe their background and the

characteristics of the DAGs that represent them.

EMAN

EMAN [Electron Micrograph Analysis] is a bio-imaging application developed at the

Baylor College of Medicine [66]. It primarily deals with 3D reconstruction of single
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Figure 2.5 : A Small Montage Workflow

particles from electron micrographs. Human expertise is needed to construct a pre-

liminary 3D model from the “noisy” electron micrographs. The refinement from a

preliminary 3D model to the final 3D model is fully automated and is the most com-

putationally intensive step that benefits from harnessing the power of the grid. The

EMAN refinement can be represented by the workflow depicted in Figure 2.4. It is

essentially a linear workflow with some sequential and parallel stages. The important

and time-consuming steps are the large parameter sweep steps like “classesbymra”.

Montage

Montage is a data-intensive astronomy application to create custom image mosaics

of the sky on demand [10]. It consists of four steps: (i) Re-projection of input

images to a common spatial scale; (ii) Modeling of background radiation in images

to achieve common flux scales and background levels; (iii) Rectification of images

to a common flux scale and background level; and (iv) Co-addition of re-projected,

background-corrected images into a final mosaic. Figure 2.5 shows the structure of
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Figure 2.6 : BLAST Workflow

a small Montage workflow. The workflow consists of some highly parallel sections

that can benefit from execution over multiple grid sites. Because this application is

data-intensive, potentially large files are transferred on the edges of the workflow.

BLAST

Basic Local Alignment Search Tool (BLAST) [60] is a bioinformatic application that

finds regions of local similarity between primary biological sequence information, such

as DNA or protein sequences. Given a set of k sequences, the program compares each

sequence to a database of n sequences and calculates the statistical significance of

matches. The BLAST application uses a set of heuristic algorithms and is much

faster than the traditional pattern matching dynamic programming. However, it just

works to find the related sequences in a database search. Therefore, it cannot guar-
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Figure 2.7 : Gaussian Elimination Workflow

antee the optimal alignments of the query and database sequences as in the dynamic

programming. To further speed up the matching process, one often partitions the

k input sequences and runs the BLAST matching algorithm in parallel. Figure 2.6

shows the structure of the BLAST application workflow that the pattern matching

process for the k input sequences can be potentially run in parallel since there is no

data race between them.

Gaussian Elimination

The Gaussian Elimination algorithm is widely used in computational science for the

solution of a system of linear equations [?]. It systematically applies elementary row

operations to a system of linear equations until it converts the system to upper trian-

gular form. Once the coefficient matrix is in upper triangular form, one can use back

substitution to find a solution. Figure 2.7 shows the structure of the Gaussian Elim-
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Figure 2.8 : Fast Fourier Transform Workflow

ination application workflow. We can see that it has a long critical path and there

is less and less parallelism as the application executes. These two particular char-

acteristics can affect the effectiveness of scheduling methods in a workflow execution

system as we will see in later chapters.

Fast Fourier Transform

The fast Fourier transform (FFT) is a set of efficient algorithms to compute the dis-

crete Fourier transform (DFT) and its inverse. A discrete Fourier transform (DFT)

transforms one function, which is often a function in the time domain, into its fre-

quency domain representation. By far the most common FFT algorithm is a divide

and conquer algorithm that recursively breaks down a DFT of any composite size N =

N1×N2 into many smaller DFTs of sizes N1 and N2, along with O(N) multiplications

by complex roots of unity traditionally called twiddle factors. The most common

use of this FFT algorithm is to divide the transform into two pieces of size N / 2 at
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each step. Figure 2.8 shows the DAG structure of this commonly used fast Fourier

transform algorithm.

2.2.3 Related Workflow Management Projects

Since it is an important type of application there are many research projects on

workflow application management systems and many of them work closely with one or

several Grid projects we described in section 2.1.2. Here we present several influential

projects.

Dagman

DAGMan (Directed Acyclic Graph Manager) is a workflow meta-scheduler for Con-

dor. It manages dependencies between jobs at a higher level than the Condor Sched-

uler which is solely match based [72].

Condor finds matching resources for the DAG tasks, but it does not schedule

jobs based on dependencies. It is DAGMan’s job to make sure those dependencies

are honored. DAGMan reads a specific input file format that includes a list of the

programs and the dependencies in the DAG and a Condor submit description file for

each program in the DAG. It then submits jobs to Condor in an order that satisfies all

the dependencies. DAGMan is also responsible for monitoring, recovery and reporting

for the set of programs submitted to Condor. DagMan is one of the most widely used

workflow execution system although it lacks sophisticated scheduling mechanisms.

Pegasus

The Pegasus project explores issues related to scientific workflow management. It

works with domain scientists to support their distributed computations in a scalable

and reliable way [46].

The Pegasus project has four sub-projects: the Pegasus Mapper, Pegasus-WMS,

Ensemble Manager and MCS. The Pegasus Mapper first reads in an XML formated
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input abstract workflow (DAX) and all the associated catalogs that help the planning.

Then the mapper tries to reduce the workflow DAG mainly based on the data size and

dependancies. Finally, the mapper schedules different parts of the application onto

different distributed resources based on a relatively simple list scheduling algorithm

or genetic search based algorithms [11]. The Pegasus WMS is an end-to-end workflow

management system that builds on top of the Pegasus Mapper, Condor, and DAG-

Man. Specifically, Pegasus WMS uses DAGMan (and through it, Condor) to execute

the workflow application. Ensemble Manager manages the mapping and executions

multiple workflows. It is build on top of Pegasus WMS. MSC is a metadata catalog

service for the Grid [89].

The Pegasus project addresses the problem of automating workflow application

execution but it does not emphasize on the performance. It also assumes that the

underlying resources are dedicated (i.e. not batch queue controlled) which is more

restrictive than the widely available batch queue system.

Triana

Triana is a workflow-based problem solving environment [106]. It is designed as a

series of pluggable execution components. Triana has a workflow management GUI

where users can drag and drop different components and connect them to create a

workflow, which can easily be integrated with other systems. For example, Triana

works with Pegasus to generate the DagMan input files for the GriPhyN project.

Triana is also part of the GridOneD [88] project for creating Java middleware for grid

applications. Triana is ready to use GridLab’s GAT too. Kepler [86] and Taverna [87]

are two other similar workflow-based problem solving environments that provide a

GUI and execution methods. However, none of them have a sophisticated scheduling

scheme and do not deal with the heterogeneous, dynamic and distributed resources

directly.
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2.3 Scheduling Algorithms

Scheduling is one of the more important research topics in high performance com-

puting. In this section, I will first introduce the problem definition and common

notation. Then, I will summarize related work on workflow application scheduling on

homogeneous, heterogeneous and Grid platforms respectively.

2.3.1 Problem Definition and Notation

The inputs to a scheduling algorithm are an abstract DAG, a set of resources P and

two performance prediction matrices Mp = V × P and Mn = P × P . Here, Mp[i][j]

represents the estimated computation cost of node ni on processor pj measured in

seconds. Mn[i][j] represents the estimated communication cost of transferring data

from processor pi to processor pj measured in MB/s. The cost of an edge (i,j) will

depend not only on the mapping of its endpoints, but also on the amount of data

transferred. Our complexity measures will often use the term p for the size of P .

We will later refer to P as the resource model, Mp as the cost model and Mn as the

network model.

The output of a scheduling algorithm is a concrete DAG G = (V,E,M), where V

and E are the same as in an abstract DAG and M is a map from V to P such that

M [vi] is a pair (ri, ti), where ri is the resource on which the node will be executed and

ti the time it will start. In this thesis, the objective of the scheduling algorithms is to

output a concrete DAG corresponding to an abstract DAG such that certain metrics,

such as makespan, cost or success rate, are optimized.

The process of scheduling a parallel application on a distributed platform can be

described as follows. Given an application that consists of m “tasks” (e.g., compu-

tations, I/O operations), and a platform that consists of n “resources” (e.g., CPUs,

disks, networks), compute a mapping of tasks to time and to resources (i.e., task i

starts executing at time t on resource j). We will later use schedule to denote this

process throughout the thesis. Occasionally, we will use ”mapping” to denote the
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Figure 2.9 : A DAG schedule example

part of the schedule (or scheduling process) that determines only the task to resource

mapping. That is, mapping is scheduling without the timing information, which is

constructed by other means (e.g. by the dynamic scheduling mechanism). The sched-

uler usually queries the cost model to determine the running time of a particular task

on a resource and checks with the network model to get the file transfer time in order

for all the input files to be staged onto that resource. Figure 2.9 shows an example of

a round-robin schedule applied on an abstract DAG (left) that produces a concrete

DAG (right). The upper table in the middle of the Figure 2.9 shows the cost model

and the lower table shows the network model. The number on the left side of each

task in the abstract DAG denotes the size of the output from this task. After apply-

ing the round-robin schedule, we get a concrete DAG with a mapping (denoted by its

color corresponds to the resource), a start time (upper right) and an end time(lower

right) for each task. For each task, the start time is calculated by the finding the

earliest finish time of each predecessor including the file transfer time. For example,

the earliest finish time for task 3 is 35 sec to finish computation plus 10 sec to trans-

fer 200MB output file of task 3 from P3 to P2 which is 45. Similarly, the earliest
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finish time for task 4 is also 45, thus we get the start time of task 8 as 45. Here, we

use round-robin just as an example to illustrate the basic concept of scheduling, we

will describe in the following sections more sophisticated scheduling algorithms that

provide better outcome.

Makespan and turn-around-time are two widely used metrics that measure the

quality of the scheduling output. In this thesis, we will use makespan to denote the

estimated running time or the “scheduled length” of a workflow application. For ex-

ample, the makespan of the DAG in Figure 2.9 is 287. Turn-around-time is used to de-

note the actual measured time difference between the time an application is launched

and is finished. It is usually different from makespan because it takes into account the

external overheads (such as scheduling time) and because the performance models are

usually not precise. The makespans may vary widely among DAGs, making it difficult

to take meaningful averages or make cross-DAG comparisons. Following the method-

ology of other scheduling work [62, 111, 7], we use Schedule Length Ratio (SLR) as

the main metric for the comparisons so that the results will not be sensitive to the

size of the DAG. Conceptually, the SLR is a normalization of the makespan to an

estimate of the best possible schedule length of a given DAG in a given environment.

In a perfect world, we would use an optimal schedule for this estimate; however, since

finding the optimal makespan is NP-complete, we instead use the estimated critical

path length. The critical path through a DAG is the most costly path from the entry

task to the exit task, while the critical path length is the total cost of tasks and edges

along this path. Because the costs of tasks depend on where they are mapped, in this

calculation we approximate the computation cost of a DAG task by its average cost

over all possible processors. Similarly, we approximate the communication cost of a

DAG edge by its average over all possible processor pairs. We compute the Critical

Path Including Communication (CPIC) as the cost of the critical path using these

estimates, and define

SLR = makespan/CPIC
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Intuitively, a small SLR indicates a better schedule than a large SLR. An SLR of

1 occurs when all tasks and edges are mapped to average processors and network

links, and no bottlenecks occur due to lack of resources. An SLR can be below 1

when some tasks are mapped to faster-than-average resources or when a schedule

avoids much cross-processor communication, and above 1 when resources are limited

or when the schedule uses slower-than-average resources. Our definition of SLR differs

slightly from the usual definition of SLR in Kwok and Ahmad [62] that uses CPES

(critical path excluding communication).We prefer our definition because it includes

an approximation of communication cost, thus providing a more realistic standard of

comparison.

2.3.2 Homogenous and Heterogenous DAG Schedulers

Many polynomial-time scheduling heuristics have been proposed although the schedul-

ing problem in general is a NP-complete problem [43]. Scheduling happens at all

levels of high performance computing ranging from machine instruction scheduling

to workflow application scheduling. In the next section, we will present two cate-

gories of scheduling algorithms based on the resources it is used. Homogenous and

heterogenous scheduling algorithms are mostly used in system level computing (i.e.

instruction, thread, process scheduling) while Grid workflow application schedulers

work at the application level. The difference between homogenous and heterogenous

DAG scheduling algorithms is that the former assumes the underlying resources are

identical while later assumes the resources have different capabilities.

McCreary et al. [70] compared five different heuristics for scheduling DAGs on

multiprocessors and Kwok et al. [62] did an excellent survey on the large body of

literature on scheduling a DAG onto a set of homogeneous processors. Despite the

different assumptions of the underlying resources, we can grossly classify various

scheduling algorithms into three categories: list scheduling, clustering scheduling,

task duplication scheduling and level based scheduling. We describe them in the
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following sections.

List scheduling heuristics

One of the first areas DAG scheduling comes into play is in compiler technology.

Instruction scheduling is a critical component in the back end of every compiler. The

most commonly used version of instruction scheduling moves instructions within a

basic block. It first determines the dependencies between instructions and creates a

DAG to represent the block. Each instruction is a node in the DAG and the scheduler

gives higher priority to instructions on the critical path. It then schedules the tasks

in descending order of their priorities. This type of DAG scheduling is simple to

implement and can achieve near optimal performance in most cases. Therefore, a

family of similar scheduling algorithms have been developed. We usually refer to

those scheduler algorithms as list scheduling.

Numerous heuristics have been proposed for assigning the priorities and most of

the time, the priority of a task is either a function of top-level (t-level), which is

the length of the longest path from an entry node to the task itself; or bottom-level

(b-level), which is the length of the longest path from the task itself to any exit

node; or length of the critical path (CP) or some combination of these. This type

of approach works well in a homogenous environment where all the resources are the

same. However, it faces a chicken-and-egg dilemma in a heterogenous environment

because all these attributes can not be calculated until the schedule is computed

while computing the schedule relies on them. For example, a task’s running time

is unknown until a mapping has been made since the task takes different amount

time to finish on each resource. In order to avoid this problem, approximations of

computation cost and communication cost are used. The most commonly used are

average values such as the average computing time on all the resources and average

network bandwidth. The best, worst and median value have all been proposed but

there is no decisive conclusion as to which one should be used [94].



28

Here are a few of the more influential list-scheduling heuristics. The Modified

Critical Path (MCP) [118] heuristic uses the As Late As Possible (ALAP) time, which

is defined as the length of critical-path less the b-level as the priority. If two tasks have

the same priority, the tiebreaker is the maximum ALAP time of the their successors.

MCP also tries to insert a task to a processor that has previously been mapped to

allow the earliest start time. The Earliest Time First (ETF) [48] heuristic assigns

priority to tasks with a higher static level. Static level is defined as the maximum

sum of computation costs along a path from the task to an exit task It is equivalent to

the b-level without communication cost. EFT then computes the earliest start times

for all the ready tasks on all the processors and assign them to the processor with the

earliest start time. The Dynamic Level Scheduling (DLS) [100] heuristic was among

the first list scheduling algorithms applied on a heterogenous enviroment. It uses the

Dynamic Level (DL) attribute, which is the difference between the static level of a

task and its earliest start time on a processor. For all the ready tasks the value of DL

is calculated for all the processors. The task-processor pair giving the highest value

of DL is scheduled next.

Heterogeneous Earliest Finish Time(HEFT) [111] is a well-established list-based

algorithm known to perform well on heterogeneous platforms [7, 111]. In the node

prioritizing phase, HEFT uses an upward rank which is defined as

ranku(ni) = wi + max
nj∈succ(ni)

(ci,j + ranku(nj)),

where succ(ni) is the set of immediate successors of node nj, wi is the average (esti-

mated) computation cost of node ni and ci,j is the average (estimated) communication

cost of edge E(i, j). Averages are computed over the set of all resources in Mp or

the network model Mn, respectively. We assign ranku(nexit) = 0 and traverse the

DAG edges backwards to compute the other upward ranks. In the processor selection

phase, HEFT assigns each node, in order, to the processor that gives the earliest finish

time, i.e. the minimal EFT . HEFT uses an insertion-based policy to find the earliest

available time of a processor pj. Instead of using the time pj finishes its last assigned
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node, HEFT tries to find an idle slot of pj that is later than the available time of the

node ni (the earliest time that all ni’s predecessors finish) and long enough to finish

the execution of ni. Upon examination, we discovered that the upward rank used in

HEFT is a heterogeneous adaptation of the definition of b-level commonly used in

list-based scheduling algorithms. Thus, it can be considered as a heterogeneous ver-

sion of MCP(Modified Critical Path) [118] algorithm. The computation complexity

of this version of HEFT is O(v2 + vp). The HEFT algorithm is considered one of

the best algorithms for scheduling tasks onto heterogeneous processors [7]. We also

compare this algorithm with our approaches in the rest of this thesis.

Clustering scheduling heuristics

Sarkar [97] proposed a two-step method for instruction scheduling on multiprocessors

with communication. The main goal is to reduce unnecessary communication costs

among tasks.

• Aggregate tasks in the DAG together into clusters of tasks, with the intent that

all tasks in a cluster to execute on the same processor.

• If the number of clusters is larger than the number of processors, then merge

the clusters further to the number of physical processors, and also incorporate

the network topology in the merging step.

The aggregation part depends on criteria that varies from one heuristic to another.

One such clustering scheduling heuristic is called Edge Zeroing (EZ) proposed by

Sarkar in [97]. It first sorts all the edges by weight and selects tasks on the highest

weighted edges for aggregation. The aggregation process maps two tasks to a cluster

and eliminates the communication cost if the merging does not increase the current

parallel completion time. The parallel completion time is approximated by the maxi-

mum b-level over all the tasks. Another heuristic is called Linear Clustering (LC) [59].

It first zeros all the edges on the current critical-path. Then it removes the nodes
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and edges on them from the graph and reduces the entire path to one node. This

process is repeated for the unexamined portion of the graph until all paths have been

examined. If there are still more clusters than the number of processors, it tries to

merge all cluster pairs that are not overlapping and merge clusters that can shorten

the overall execution time. The Dominant Sequence Clustering (DSC) [120] and its

heterogenous version [20] considers the dominant sequence (DS) of the graph and is

reported to have a good performance with low complexity of O((v+e)logv) [70]. The

dominant sequence is the length of the critical path in a partially-scheduled DAG.

DSC assigns the priority of a free task as the sum of the t-level and b-level. The pri-

orities of other tasks are just their b-levels. It picks the free or partially free task with

the highest priority. This task is merged into the cluster of one of its predecessors if

that reduces its t-level, otherwise, it starts a new cluster. The t-level of the successor

tasks are updated and the algorithm iterates until all the tasks are examined.

We will propose a clustering scheduling heuristics in Chapter 7 to reduce the total

batch queue wait time for a workflow application.

Task duplication scheduling heuristics

The basic idea behind task duplication based (TDB) scheduling algorithms is to mini-

mize inter-processor communication delay or network overhead by executing copies of

tasks on multiple resources. In this way, some tasks can start earlier because copies of

their predecessors are running on the same resource and this eventually leads to ear-

lier overall completion time of the entire program. Task duplication based scheduling

algorithms are particularly useful for systems with high communication cost and data

centric applications. Most task duplication based algorithms pay the most attention

to the tasks on the critical path and join or fork tasks.

The first duplication based scheduler was proposed by Kruatrachue [61]. It com-

bines some ideas used in list scheduling with duplication to reduce the makespan.

The algorithm considers each task in descending order of priority which is the b-level
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excluding the communication cost. Then it tries to pick a processor for each task. The

algorithm first calculates the start time of the task on a processor without duplication

of any predecessor. Then the algorithm attempts to duplicate the predecessors of the

task into the same processor until either the processor is used up or the start time

of the task does not improve further. This process is repeated for other processors

and the task and its duplicated predecessor tasks are scheduled to the processor that

gives the earliest start time.

Ahamd et al. [2] proposed a duplication based algorithm called Critical Path

Fast Duplication (CPFD). The intuition behind it is to select the important tasks for

duplication. They classified the task in a DAG into 3 categories in order of decreasing

importance: Critical Path Nodes (CPN), In-Branch Nodes (IBN) and Out-Branch

Nodes (OBN). CPNs are on a critical path. An IBN node is a task that is not a CPN

and from which there is a branch reaching a CPN. An OBN is a node that is neither

a CPN nor an IBN. The CPFD algorithm works like this. It first determines the

critical path and creates the CPN-Dominant sequence which contains the topological

order of all the CPNs and IBNs. Then for each task in the CPN-Dominant sequence,

CPFD schedules it to the processor that gives the smallest value of earliest start time

(EST) by recursively duplicating its important predecessors. The time complexity of

CPFD is O(ev2) and

Task duplication scheduling not only can increase the performance but also provide

fault tolerance since some tasks may still finish despite of some resource failures. We

will propose a task duplication scheduling heuristic that focuses on providing the right

amount of fault tolerance for a workflow application in Chapter 6.

Level based scheduling heuristics

Some argue that the main reason for heterogeneous algorithms to fail to provide good

outcome is it becomes so difficult to estimate the b-level, t-level and the critical path

without knowing the actual schedule. Iverson et al. [68] proposed a level based heuris-
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tic scheduling (LHBS) that does not rely on those estimations. The characteristic of

a level-based scheduling algorithm is that it proceeds by partitioning the DAG into

levels of independent nodes. Within each level, a LHBS can apply various heuris-

tics [13] to map the independent nodes to the processors. The simplest approach is

to use a Greedy algorithm that maps the nodes to the fastest processors which has

a computational complexity of O(vp). Three heuristics, min-min, max-min and suf-

ferage, are also widely used to compute the mappings for the independent tasks in a

level. Details of these heuristics are presented in Braun et al. [13]. The computational

complexity of the heuristic scheduling scheme is O(v2p), which is more expensive than

the greedy heuristic.

Both the GrADS [11] and Pegasus [89] schedulers use a version of LHBS. Man-

dal et al. [69] and Sakellariou [94] also proposed similar level based heuristics that

schedule independent sub-tasks in a workflow application level by level. This type

of approach avoids the chicken-and-egg dilemma for those critical path based algo-

rithms but this approach has a tendency to over parallelize one level which may leads

to communication overhead [127].

2.3.3 Grid Schedulers

Dong et al. [31] and Yu et al. [122] both did an excellent summarization on the

state-of-the-art scheduling technologies in a Grid environment. There are two major

types of scheduling in a Grid environment namely resource scheduling and application

scheduling. A Grid resource scheduler is used to manage distributed resources in a

Grid. Its common goal is to increase the utilization or balance of the resources.

Meanwhile a Grid application scheduler is usually used to increases the performance,

reliability and cost effectiveness of Grid application. Here we will present both the

resource and application scheduling techniques but we focus on application scheduler

techniques in this thesis.
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Resource Schedulers

Most Grids today consist of batch queue controlled clusters. In these Grid environ-

ments, the individual resources (clusters, computing farms, servers, supercomputers)

are managed by their local resource management (LRM) systems , such as PBS [79],

SGE [73], LSF [65] and Condor [82]. Many LRMs are already mature commercial

products. There are also numerous researches on how to achieve good schedule for a

set of independent jobs on a local resource [13].

A LRM only controls a single resource while a typical Grid environment consists

of several distributed resources. In order for the user to use all the shared Grid

resources, most Grid environments have a portal from which the users can submit jobs.

Users can use a meta-scheduler that contacts all the distributed resources to secure

the resources for the jobs and then schedule and launch them onto those resources.

Many meta-schedulers have been developed such as GRMS [3], HPC Synergy [112],

Moab [25], GridWay [84] and SPRUCE [81]. Among them, HPC Synergy and Moab

are commercial products that target mostly on enterprise clusters. GRMS is part

of the GridLab project [3]. GridWay works closely with Globus Project [4] and

SPRUCE specializes in providing urgent advanced reservation on TeraGrid [107].

The services those meta schedulers provide include automatic resource selection [51],

advance resource reservation [102], co-scheduling, on-demand resources [81], support

for workflow applications and fault tolerance which are critical steps towards the

automated workflow application execution vision we have. However, none of them

provide all of these services and few provide good support for automatic workflow

application execution.

Application Scheduler

There are several flavors of application schedulers. For example, a static scheduler

determines the schedule before the application starts to run while a dynamic sched-

uler postpone the schedule decision until the application runtime. An independent
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job scheduler schedules several independent applications at the same time while a

workflow job scheduler schedules one application with internal dependences between

tasks. Here we will mainly describe the workflow application scheduling techniques

that are related to our thesis.

Current Grid workflow management systems use simple approaches such as first-

come-first-served with matchmaking as in Condor DAGMan [82], the Data Grid re-

source broker [132] and the GridLab resource broker [3], or random allocations or

round robin as in Pegasus [89]. Since a Grid environment is a special heterogeneous

platform, most of the DAG scheduling algorithms that work in a heterogeneous en-

vironment can be applied to workflow DAGs executed on the Grid. However, since

the Grid environment is dynamic and even non-deterministic, it is usually hard for

an unmodified heterogenous scheduling algorithm to achieve good performance on

it. Several approaches have been proposed to improve the schedules in a Grid envi-

ronment. The most commonly-used approach is dynamic scheduling which does not

make the schedule decision until a job is available to run. Several workflow manage-

ment systems [82, 89] adopt this approach in that they use a match maker to dispatch

the job to the resource that best matches the job’s requirement when the job is ready

to run. Dynamic scheduling has two major advantages

• The algorithm usually has low computing complexity and is simple to imple-

ment, thus a good fit for a runtime system.

• The algorithm can make decisions based on the current system configuration

instead of relying on prediction or estimation

However, since dynamic scheduling does not have a plan phase, it assumes that by

shortening the current job’s execution time, it will help the workflow’s performance

which is not always the case.

Since the scheduling problem in general is a NP-complete problem and a Grid

environment is particularly heterogenous, some has proposed search based heuristics
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for the Grid environment. Blythe et al. [11] introduced a fuzzy attribute α during the

level by level scheduling. For each level, the algorithm randomly chooses a schedule

that produces the makespan between Lmin and Lmin + α ∗ (Lmax−Lmin) where Lmin

and Lmax are the shortest and longest makespan of this level. The overall algorithm

runs many times and records the best schedule. This approach can find a better

schedule but takes longer to schedule. Another popular class of search based heuris-

tics is the genetic algorithm. In a genetic algorithm, both the resource mapping and

task execution order are usually represented as strings. After the initial population is

generated, different algorithms apply different across and mutation rules on the popu-

lation, represented by strings, in hope for breeding a better generation. Yu et al. [124]

compared several search based algorithms in multi-objective workflow scheduling and

showed that they are good candidates for optimizing multiple objectives such as the

performance and budget.

Although search based algorithms have better theoretical performances, they gen-

erally take long time to run. Since a Grid environment is dynamic and has a large

number of resources, the advance in the schedule quality of a search based algorithm

may not be enough to overcome the schedule time it takes. Therefore, we will fo-

cus on more light weight scheduling algorithms such as the level based heuristic and

other traditional heterogenous algorithms. In this thesis, we will present several new

techniques that can improve the performances of the existing scheduling algorithms

in a dynamic multi-cluster Grid.



36

Chapter 3

Performance of Scheduling Algorithms in a

Multi-cluster Grid Environment

This chapter presents a comparison of the performance of scheduling algorithms in

a multi-cluster Grid environment. The multi-cluster Grid environment is different

from traditional heterogeneous environments because of the drastic cost differences

between the inter-cluster and the intra-cluster data transfers. In this chapter, we

analyze the performance of several scheduling algorithms that represent two classes of

widely used scheduling algorithms for Grid computing. Based on our experiments, we

introduce a new measurement called effective aggregated computing power (EACP)

that dramatically improves the performance of some schedulers.

3.1 Introduction

Although Grid technologies enable the sharing and utilization of widespread resources,

the performance of parallel applications on the Grid is sensitive to the effectiveness

of the scheduling algorithms used. In this chapter we are going to study the perfor-

mance of several traditional static scheduling algorithms in a simulated multi-cluster

environment and we focus on scheduling the important class of workflow applications.

As described in Section 2.2.1, a workflow application consists of multiple (usually

coarse-grain) tasks linked to each other by data dependences, typically requiring file

transfers.

Scheduling parallel and distributed applications is known to be NP-complete in

general [43]. Numerous heuristics have been proposed for scheduling DAGs onto a

heterogeneous or homogenous computing environment [6, 111, 92, 48]. Section 2.3.2
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gives a survey of existing scheduling algorithms and showes that list-based schedul-

ing heuristics are generally accepted as the best overall approach, exhibiting both

low complexity and good results [62]. However, Iverson [68], Illvarasan [35] and

Atakan [30] argue that the pre-computed order for list-based strategy cannot be used

in heterogeneous environments and propose a new heuristic class that we call the

level-based strategy.

A Grid environment usually consists of many clusters with special properties that

poses even more challenges for scheduling applications because not only are the pro-

cessors heterogeneous but also the inter-processor communication variance is larger.

Looking over surveys of state-of-the-art Grid scheduling algorithms [122, 31], we can

see that many Grid projects simply use dynamic dispatching mechanisms similar

to Condor [82]. Besides that, to the best of our knowledge, the list-based and the

level-based algorithms are the only two scheduling heuristics implemented by a Grid

project. Blythe et. al. [11] reported that the level based strategy outperformed the

random matching strategy by more than 50%. However, to the best of our knowl-

edge, there has been no published research that directly compares the performance

of list-based and level-based algorithms in a Grid environment.

In this chapter, we evaluate the schedules produced by several well-known list-

based and level-based scheduling algorithms. Relying on tens of thousands of experi-

mental runs, we show how the performance of these algorithms varies with differences

in resource environments and application DAGs. We analyze these results to explain

why some scheduling algorithms perform better in certain settings and less well in

others. Based on these observations, we introduce a promising new scheduling con-

cept, called effective aggregated computing power (EACP) and demonstrate how it

can be used in scheduling algorithms.

The rest of the chapter is organized as follows. Section 3.2 briefly covers the basic

characteristics of a Grid environment and introduces all the scheduling algorithms

that we will evaluate in this chapter. Section 3.3 presents our applications, the
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experimental environments we are using, and the Grid parameters we vary in the

experiments. Section 3.4 presents our results; it also defines effective ACP and shows

how it works in a scheduling algorithm. Section 3.5 concludes the chapter with a

summary of contributions.

3.2 Background and Related Work

A typical Grid environment consists of many clusters, where the intra-cluster commu-

nication is fast (often as fast as 10 Gigabit/sec) but the inter-cluster communication

can be 10 to 1000 times slower. Thus, the Grid is not just a heterogeneous resource

pool, but also an unevenly distributed (but hierarchical) interconnection network.

Furthermore, while many homogeneous processors reside in any one cluster, the pro-

cessors in different clusters are often significantly different. As Section 3.4 shows,

these features have a big impact on how scheduling algorithms originally designed for

homogeneous or heterogeneous platforms perform in Grid environments.

As we mentioned in Section 3.1, the level-based and list-based algorithms are the

most used ones in Grid environments and we want to compare their performance.

For our experiments, we have chosen some representative and effective algorithms in

both categories. This section gives a brief overview of each of those algorithms.

3.2.1 Static Scheduling Algorithms

Heterogeneous Earliest Finish Time(HEFT) [111] is a well-established list-based al-

gorithm known to perform well on heterogeneous platforms [7, 111]. For more detail,

refer to the Section 2.3.2 and Topcuoglu et al. [111]. Both Ma et al. [83] and Cao

et. al. [16] use HEFT to help schedule application DAGs onto Grid resources. The

computational complexity of this version of HEFT is O(v2 + vp). Levelized Heuristic

Based Scheduling(LHBS) [69] is a level-based algorithm for Grid scheduling we de-

scribed in Section 2.3.3. The complexity of the LHBS using only the greedy heuristic

is O(vp); we will refer to this as Greedy LHBS. The complexity of the LHBS using
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Figure 3.1 : HEFT and LHBS scheduling algorithms

the any combinations of the three heuristics is O(v2p); we will refer to this variant as

Heuristic LHBS.

Figure 3.1 depicts an example that illustrates the difference between HEFT and

LHBS. The color of the tasks in a DAG denotes the resources it is mapped to and

the table in the middle shows the time it takes for each task to run on each cluster

(the performance model) and the time it takes to transfer files between clusters (the

network model). The letter on each node denotes when the scheduler computes the

map for each node. We can see that LHBS always schedule all nodes one level before

moving to the next level. In contrast, HEFT can schedule a node (i.e node E) before

all the nodes (i.e. G,H) in the parent level get a mapping. This is the major difference

between these two types of schedulers and they both have advantages and drawbacks.

The major argument against HEFT is that the order of which the scheduler computes

the mapping is not accurate in a heterogeneous environment since the critical path can

not be determined before a schedule is done. On the other hand, although the order

LHBS uses is not affected by the resources characteristics, it only tries to optimize

the makespan for a single level thus may leads overall less performance.

Hybrid Heuristic Scheduling (HHS) [94] is a class of algorithms that use hybrid
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versions of the list-based and level-based strategy.The version we study in this chapter

first computes levels as in LHBS, then processes tasks in each level following the

prioritized order used by HEFT. This version has the same complexity as HEFT:

O(v2 + vp). Sakellariou [94] reports that it can achieve better performance than

HEFT.

3.3 Experimental Methodology

In order to study how well these scheduling strategies perform in the Grid environ-

ment, we implemented the algorithms described in Section 3.2 and compared the

schedules produced on a variety of DAGs and grids. To achieve a thorough compar-

ison, we developed a simulation platform to create test cases. The platform consists

of three key components: the DAG generator described in Subsection 3.3.1, the cost

generator described in Subsection 3.3.2, and a Grid generator described in Subsec-

tion 3.3.3. As Subsection 3.3.4 discusses, our experiments combined these to schedule

and evaluate over 10,000 combinations of DAGs and grids.

3.3.1 DAG Generator

We use DAGs from actual runs of the EMAN and Montage applications described

in Section 2.2.2, with the total number of tasks, the communication patterns and

output file sizes taken from those cases. Besides the DAGs from real applications,

we also implemented a DAG generator that can generate various formats of weighted

pseudo-application DAGs. The following input parameters were used to create a

DAG.

• Type of DAG: Unlike other DAG generators [7, 111], our DAG generator can

generate different formats of DAGs. Currently, we support fully random, level,

and choke formats. In a random DAG, each task can be connected to any task

on a higher level (to ensure that the graph is acyclic). In a level DAG, a task

can only connect to tasks on the level immediately above. In a choke DAG,
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there is one level (the choke point) that has only one task; it connects to all

the tasks on the levels above and below it. Tasks in other levels are connected

randomly and uniformly distributed as in the random graph.

• Total number of tasks in the DAG, λ.

• Shape parameter, α: α represents the ratio of the DAG height (i.e. number of

levels) to the width (i.e. maximum number of tasks in a level). The height and

the width of the DAG are generated using the method described by Topcuoglu,

Hariri, and Wu [111], which takes α and λ as parameters.

• Out degree of a task, η : Each task’s out degree is randomly generated from a

uniform distribution with mean value η.

3.3.2 Cost Model

Given a DAG, whether from a real application or automatically generated, we gener-

ate base costs for the tasks and edges using three parameters.

• The lower and upper bound of the data size, ε, φ: The data size attached to each

edge in a generated DAG is randomly generated from a uniform distribution

between the lower and upper bound. In level graphs, all edges between two

adjacent levels have identical data size; in random and choke graphs, we generate

costs for every edge independently.

• Communication-Computation Ratio (CCR). We set this ratio defined in Sec-

tion 2.2.1 as a parameter and combine it with the total data size and average

bandwidth in the resource pool to compute the average computation cost for a

task:

AvgCompCost =
total file size/avg bandwidth

number of tasks× CCR

• Range: The task computation costs for generated DAGs are independently

randomly generated from a uniform distribution from AvgCompCost × (1 −
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range) to AvgCompCost×(1+range). For EMAN and Montage DAGs, we use

uniform costs for each level, reflecting the behavior of the actual applications.

This gives us a base cost for every task, which will be modified by the Grid model.

3.3.3 Grid Model

Our resource model is based on a tool that generates populations of representative

compute clusters, as described by Kee, Casanova, and Chien [54]. This tool uses

empirical statistical models of cluster characteristics (e.g., number of processors, pro-

cessor clock rate) obtained from a survey of 114 real-world clusters. Using this tool

we generated a resource pool that contains over 18,000 processors grouped in 500

clusters, which we refer to as the universal environment. We also semi-manually

generated two smaller resource sub-pools. They both have roughly 300 processors,

but one groups them into 20 clusters while the other has only 4 clusters. We will

later refer the resource pool with 20 clusters as the many-cluster environment and

the other as the big-cluster environment. Given the resource model, we computed the

computational cost matrix Mp[i][j] by scaling the base cost for DAG task i by the

clock rate of processor j.

Our network model is based on a tool that generates end-to-end latency matrices

according to the actual latency data collected over the Internet [126]. Following

the experimental results of Yang et al. [119] and Denis et al. [29] we assigned the

bandwidth based on the latency. Low-latency links had high bandwidth, consistent

with the data in Bo et al. [126]. Given the latency and bandwidth of each network

link, it was a simple matter to compute the communication cost matrix Mn.

The costs we generated are static, although actual Grids can have dynamic costs

due to variances in load. However, we claim that the static data helps us focus

on performance of the algorithms and factors out the uncertainties of resource and

network behavior. We will explore the effects of dynamic costs on the algorithms in

Chapter 5.
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3.3.4 Experimental Setup

We used our DAG generator to produce DAGs with the following parameters:

• Type = {random, level, choke}

• λ = {300, 1000, 3000}

• α = {0.5, 1.0, 5.0}

• η ={1.0, 2.0, 5.0}

We generated 5 random DAGs for each possible parameter combination. In addition,

we used 30 EMAN DAGs and 30 Montage DAGs. For all of these DAGs, we applied

our cost model with the following parameters:

• (ε, φ) = { (20,1000),(100,1000),(500,1000)}

• CCR = {0.1, 1.0, 10}

• Range ={0.15, 0.4, 0.85}

With three Grids and four scheduling algorithms, we collected about 120,000 schedules

and their associated makespans.

3.4 Results

We will use SLR described in Section 2.3.1 to measure the schedule quality since

the size of the DAGs in the experiment varies greatly. Over the entire set of DAGs,

Grids and schedulers, SLRs range from 0.06 to 88. (The range of makespans is even

greater.) Moreover, the algorithm that produces the best schedule (low SLR) for any

individual DAG varies with no obvious pattern. Once the results are aggregated,

however, a somewhat clearer picture emerges.
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3.4.1 Results Analysis

Figure 3.2 shows the range of SLRs for each scheduling method on all DAGs for the

universal resource set. The top and bottom of the white boxes are the 75th and

25th percentile SLRs for each scheduler, while the top and bottom of the black lines

are the 90th and 10th percentile. It is clear that all the methods have many high-

HEFT HHS Heuristic Greedy

LHBS LHBS

Mean SLR 1.99 1.97 5.58 2.90

Std. Dev. SLR 4.12 4.12 10.35 6.05

Median SLR 0.90 0.89 1.21 0.92

% of best cases 56% 60% 1% 29%

% of worst cases 0.5% 0.3% 80% 19%

Figure 3.2 : Aggregate behavior of scheduling methods

SLR outliers, but that the bulk of the results from the HEFT, HHS, and Greedy

LHBS methods are comparable. The included table shows the average results for
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each method. Despite the high variance of data, the differences between the means

are statistically significant at levels far less than p = 0.001 (according to paired t-

tests). Even the 1% difference between HEFT and HHS has a statistical significance

of p = 6 × 10−6, although that difference may not be noticeable in practice. The

last two lines of the table show how often each method returned the best and worst

result for the same DAG among the four algorithms we tested. The percentages

add up to more than 100% due to ties; HEFT and HHS often computed equivalent

schedules, particularly for choke DAGs. This would lead us to believe that HEFT

and HHS produce better schedules than level-based methods on average. However,

we did not observe the clear advantages of HHS over HEFT reported by Sakellariou

and Zhao [94].

The difference in behavior was not, however, consistent across types of DAGs,

as shown by Figure 3.3. In particular, all of the methods produced good schedules

for EMAN. Most of the differences are statistically significant (the exceptions are

HEFT and HHS results for level and EMAN DAGs), but many are too small to be

important in practice. Nor was the difference between methods true of all resource

sets, as Figure 3.4 shows for random DAGs. We can clearly see that the LHBS

algorithms perform much worse in the larger resource pool. The differences in the

figures are all statistically significant except for the two LHBS algorithms in the big-

cluster resource set. However, many are likely smaller than the uncertainties in our

simulation.

After examining some of the schedules, we hypothesized that most of the differ-

ences were due to LHBS methods emphasizing parallelism over communication costs.

One scenario is that LHBS might assign some DAG tasks to clusters that have a

earlier start time in order to to achieve a shorter makespan in one level. If these

tasks require input from two or more clusters, the estimated communication costs

might be equivalent for that level. At the next level, however, having the tasks on

different clusters might require additional inter-cluster communications. This sce-
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Figure 3.3 : Results for different DAG types

Figure 3.4 : Algorithms Performance on Different Resource Models

nario would obviously have more impact when a DAG required more point-to-point

communication. (All-to-all communication, as in EMAN, does not necessarily suffer,
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Figure 3.5 : Results for varying communication-computation ratios (CCR)

because the inter-cluster communication is almost always required.) This may have a

smaller impact on HEFT and, to a lesser extent, HHS because tasks with high future

communications requirements could be scheduled earlier with higher rank, when the

resources nearby (i.e. processors within the same cluster) may have not yet been

allocated.

To test this, we examined the sensitivity of the algorithms to various DAG at-

tributes. Figure 3.5 shows the average SLR for low-communication (CCR=0.1) ,

medium-communication (CCR=1), and high-communication (CCR=10) DAGs. We

can see that the performance difference among algorithms is very sensitive to CCR.

We think it is because high communication costs affect the performance of LHBS

the most as expected. Wide DAGs should also show the effect, since there are more

opportunities for inappropriate parallel assignment. Figure 3.6 shows this for wide

(α = 5), square (α = 1), and narrow (α = 0.5) DAGs. Figures 3.5 and 3.6 consider

only the random, level and choke graph types.
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Figure 3.6 : Results for varying shapes (α)

It may be less apparent why our hypothesized parallelism/communication trade-

off affects the large universal environment much more than the others. The connection

is in the characteristics of the resource pools. As we will see in Chapter 4, our

algorithms typically select processors from clusters with the fastest nodes. Table 3.1

lists the number of nodes and their speed in the four highest-GHz clusters in each

of the three Grid environments. Clearly, the per-node speeds of these clusters in the

universal resource environment are closer than in the other environments. At the

same time, the top cluster in the universal environment is larger than in the others.

Therefore, a relatively narrow DAG (e.g. width=40) can be run entirely on a single,

fast cluster in the universal environment. Running the same DAG on the many-

cluster or big-cluster environment must either use a slower cluster (e.g. the second

cluster in the big-cluster environment) or multiple clusters (e.g. all four displayed

clusters in the many-cluster environment). Figure 3.7 illustrates this effect. When
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Universal Big-Cluster Many-cluster

nodes speed nodes speed nodes speed

First 78 4.2 Ghz 38 4.2 Ghz 13 4.2 Ghz

Second 6 4.2 Ghz 52 3.0 Ghz 18 3.8 Ghz

Third 103 4.1 Ghz 88 2.8 Ghz 17 3.7 Ghz

Fourth 118 4.1 Ghz 34 2.0 Ghz 6 3.6 Ghz

Table 3.1 : The Configuration of The Four Clusters with Fastest Processors in The
Resource Pool

Figure 3.7 : DAG Performance in Universal Resource Environment with Different
Widths

the DAG’s width is less than the number of nodes of the fastest cluster or is larger

than all the nodes in the fastest four clusters, the difference between algorithms are

much smaller than when the DAG’s width is in between. In other words, when the

choices between clusters are obvious, all the algorithms perform relatively the same,

while when the choices are tough, different algorithms can perform very differently.

The above observations suggest that we could improve the quality of schedules for
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Grid environments by choosing the clusters on which to run more intelligently.

3.4.2 Effective ACP

To investigate further, we introduce the notion of effective aggregated computing power

(EACP) and apply it within the two-level scheduling approach in Chapter 4. In short,

our two-level scheduler performs a very fast selection phase to select a suitable subset

resource from the large resource base represented by the real Grid. It then performs a

more complex scheduling step, such as LBHS, to map the application to nodes within

the chosen subset of the total resources. Chapter 4 will describe our approach in

detail.

We define Aggregated Computing Power (ACP) for a cluster A as

ACP (clusterA) =
∑
B∈A

computing power of node B

We use the node’s clock rate as an approximation of the computing power, although

we could use more sophisticated performance models [105] as well. ACP represents

the peak computing power of a cluster, but this may not all be usable on a particular

DAG. For example, consider running 20 independent tasks on two clusters. Cluster A

consists of 100 processors running at 1GHz, while cluster B consists of 30 processors

running at 2 GHz. Our unit of comparison is one processor running at one GHz.

Although A apparently has a higher ACP (100 units vs. 60 units), the DAG can

utilize at most 20 processors in either cluster. Therefore, we introduce the notion

of effectiveness which only aggregates the computing power up to the width of the

DAG.

EACP (clusterA, jobJ) = ACP (subclusterE)

where sub-cluster E has just enough nodes to run job J with the maximum parallelism

possible. In our example, cluster B has 40 effective ACP units while cluster A has 20.

Within the two-level scheduling algorithm described above, the selection phase

chooses nodes from clusters with the highest effective ACP for the given DAG. After
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Figure 3.8 : Comparing EACP version with the standard version

this selection, we apply the HEFT, LHBS and HHS algorithms to the smaller uni-

verse of resources. Below we will refer to this as the Effective ACP version or simply

the EACP version of each standard algorithm. Figure 3.8 and 3.9 show how the

EACP versions of HEFT and Heuristic LHBS compared to the corresponding stan-

dard algorithms under the universal resource environment the three generated classes

of DAGs. The EACP versions of the other algorithms exhibited very similar results.

The leftmost set of bars of Figure 3.8 represents DAGs that have low communication

cost (CCR =0.1). In this case, the EACP version algorithms do not have a large ad-

vantage over the standard HEFT or the heuristic LBHS scheduling algorithms. The

middle set represents DAGs that have medium communication cost (CCR =1.0) and

the rightmost set represents the most communication intensive DAGs (CCR =10).

We thought that the standard methods would be more likely to make bad trade-offs

between parallelism and communication in these cases. The results confirm our be-

liefs. The EACP versions of HEFT and Heuristic LHBS outperformed their standard

versions by factors of 2 to 20 in aggregate. Both EACP algorithms performed better
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Figure 3.9 : Comparing EACP version with the standard version

than any standard algorithm.

Similarly, Figure 3.9 shows that the EACP version algorithms have much better

performance than the standard algorithms when the DAG is wide (α = 5.0) and

is similar to standard versions for other cases. Taken together, Figures 3.8 and 3.9

show that 2-level selection based on effective ACP can vastly reduce the inter-cluster

communication cost when communication is significant. In addition, the EACP ver-

sion algorithms are more scalable in very large Grid environments since the complex

scheduling algorithms are only applied to a subset of the universal resources. Chap-

ter 4 will quantify the scalability achieved by this two level decoupled approach that

separates the resource selection and scheduling.

However, the results may vary depending on the Grid used. For example, Fig-

ure 3.10 shows the results of similar experiments using the big cluster environment

shows that the EACP version of HEFT can perform 10 to 20% worse than the stan-

dard HEFT algorithm . We can explain this from the entries of Table 3.1. In the

big-cluster grid, the highest ACP cluster (the third) has relatively slow processors,
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so the fastest two clusters are likely to have the highest EACP for all but the largest

DAGs. However, it happens that the network connection between these two clusters

is slow in our experimental setting. Thus, selection based on EACP actually increases

communication costs because it puts data movement on a slow link. More work is

clearly needed to take effects like this into account.

3.5 Conclusions

In this chapter, we compared the performance of several algorithms that represent al-

ternative major approaches to scheduling on three different Grid environments. Our

experiments show that the list-based, and hybrid, scheduling algorithms are effec-

tive in a Grid environment, outperforming level-based scheduling methods on many

combinations of environments and DAGs. The experiments also show how different

factors in a Grid computing environment affect the performance of the scheduling

algorithms. The most critical question for scheduling in the Grid environment is

whether to assign a task to a cluster different from its parents: performance of the
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algorithms is highly sensitive to this question. Finally, the experiments demonstrate

that using effective aggregate computing power (EACP) in the selection phase of a

two-level algorithm, then scheduling to the resulting virtual grid with a standard al-

gorithm, can produce significantly improved schedules over the standard version of

the same algorithm.
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Chapter 4

Decoupled Resource Selection and Scheduling

This chapter presents our work on producing good schedules in a scalable manner in

a Grid environment with hundreds of thousands of computing nodes. In this chapter,

we are going to focus on the scheduler’s speed which is the time to compute the

schedule instead of the quality of the schedule which is the time for the application

that follows the schedule to finish. The key idea is to decouple resource selection and

scheduling so that we only schedule the workflow application on a subset of the total

available resources. Furthermore, our results show that it is possible to achieve similar

or even better performance than the traditional approach that combines selection and

scheduling by selecting the resource subsets judiciously.

4.1 Introduction

In this chapter, we focus on one potential problem that may keep us from achieving

good performance for a Grid application: the scalability of application scheduling.

One distinguishing feature of grid platforms is the large number of individual re-

sources, with the largest systems containing tens or even hundreds of thousands of

resources [18]. This volume of resources raises scalability issues, especially in resource

discovery and resource monitoring. In this chapter we specifically address the scala-

bility of the scheduling algorithm itself: how can one compute an efficient application

schedule in a short amount of time while considering a large number of potential

resources?

We observe that although the resource environment may contain large numbers

of resources, all of which are mostly likely taken into consideration when computing
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a schedule, typically only a small subset of these resources is used for running the ap-

plication. In essence, most scheduling heuristics perform implicit resource selection:

the set of resources used by the application emerges from the computation of the

schedule. In this work, we improve the scalability of the scheduling process by per-

forming explicit resource selection. In contrast to the traditional one-step approach,

which considers all available resources when scheduling, we use a decoupled approach,

which selects the resources for consideration first and then schedules the application

on these resources.

We use the Virtual Grid (VG) abstraction introduced in Section 2.1.2 and by

Kee et al. [55]. A VG provides a high-level, hierarchical abstraction of the resource

collection that is needed and used by an application. A user creates a VG specification,

written in the Virtual Grid Description Language (vgDL), and passes it to the Virtual

Grid Execution System (vgES). The vgES performs fast resource selection in grid

environments with hundreds of thousands of resources, returning a set of selected

physical resources on which one can schedule the application. The set of selected

resources is typically many orders of magnitude smaller than the whole universe of

resources, and the running time of a scheduling algorithm over this smaller subset of

resources is also orders of magnitude shorter.

While decoupling resource selection from scheduling in large-scale systems as de-

scribed above clearly improves scalability of the scheduler itself, a key question is:

what is the impact of decoupled resource selection and scheduling on the quality of

the resulting schedule? In this chapter we study decoupled resource selection and

scheduling in the context of workflow applications in large-scale highly heterogeneous

grid environments and make three contributions:

1. We demonstrate how the VG abstraction can be leveraged to decouple resource

selection and application scheduling in a generic way (i.e., our approach is in

principle applicable to any scheduling algorithm and any grid application).

2. One key issue in our decoupled approach is that of choosing an appropriate re-
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source selection methodology. We discuss and provide a quantitative evaluation

of several factors that affect the construction of an appropriate VG specification.

3. Using simulations of representative workflow applications on representative grid

environments, we quantify the trade-off between scalability and schedule quality

for our decoupled approach, demonstrating that it achieves schedule quality

comparable to that achieved by one step approaches, at dramatically higher

scalability.

This chapter is organized as follows. Section 4.2 presents our decoupled resource

selection and scheduling idea. It also discusses our resource selection strategy in

detail, by introducing the Virtual Grid concept, the specific scheduling and selection

methodologies used and the application context in which we evaluate it. Experimental

evaluation and results are presented in Section 4.3. Section 4.4 discusses related work.

Section 4.5 concludes the chapter with a summary of contributions and perspectives

on future work.

4.2 Decoupled Application Scheduling in Grid Environments

4.2.1 Virtual Grid and Resource Selection

As we described in the introduction, our proposed solution to address the scheduler’s

scalability problem is to decouple resource selection from application scheduling. In

the first phase, we perform explicit resource selection. In the second phase, we perform

scheduling within the selected resources rather than on the whole resource universe.

The key point here is that a decoupled approach makes it possible to compute sched-

ules faster, by several orders of magnitude, making application scheduling scalable to

large-scale platforms. In fact, this decoupling may make it possible to run expensive

scheduling algorithms on the explicitly selected resources.

We claim that using a system such as vgES (see Section 4.2.1) to perform ex-

plicit resource selection makes it possible to achieve schedules that are comparable in
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quality to the ones obtained when letting the scheduling algorithms perform implicit

resource selection over the whole resource universe, at dramatically higher scalability.

Although our decoupled approach is generic, in this chapter we discuss and evaluate

it in the context of workflow applications, as seen in Section 4.2.4.

A fundamental challenge for grid applications is to describe and obtain appropri-

ate resources to enable efficient, high performance execution. This is challenging from

many standpoints, including the definition of an appropriate abstraction to describe

resource needs, the difficulty of finding appropriate resources quickly in an environ-

ment with many thousands of resources, and interacting with diverse, autonomous

resource managers that implement their own resource management and access poli-

cies. As noted in the introduction, the VGrADS project [55] approaches this by

allowing the user to specify its resource needs using a high-level language, vgDL [22],

which our execution system, vgES [55], uses to find and allocate appropriate resources

for the application, returning a VG abstraction, which is really an active entity (i.e.,

runtime object). By contrast with traditional low-level resource description and se-

lection systems [9, 5] that focus on individual, quantitative resource characteristics,

the VG provides a high-level, hierarchical abstraction of the resource collection that

is needed by an application. The application can then use the VG to find specific in-

formation about the allocated physical resources, to deploy application components,

and to modify or evolve the resource collection.

We refer the reader to previous research by Kee et al. [55, 22] for details regarding

the vgES system and we only describe here features of vgDL that are relevant for

this work. The vgDL language uses high-level resource abstractions that correspond

to what grid application programmers typically use to organize their applications

portably across many different resource environments. VgDL was designed based on

a detailed study of half a dozen real-world applications. This showed that in order

to design for performance (and to manage complexity) portably, application develop-

ers typically use three simple resource abstractions to aggregate individual resources.
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Consequently, vgDL contains three resource aggregates, distinguished based on ho-

mogeneity and network connectivity: (i) LooseBag — a collection of heterogeneous

resources with no guarantee of good connectivity; (ii) TightBag — a collection of

heterogeneous resources with good connectivity; (iii) Cluster — a well-connected set

of homogeneous resources. Each aggregate specifies a range for its size (i.e., number

of resources). The user can specify constraints on attributes of individual resources

within the aggregate (e.g., clock rate, processor architecture, memory, etc.), or con-

straints on aggregate attributes (e.g., total aggregate memory, total aggregate disk

space). Aggregates can be nested (e.g., a LooseBag of Clusters) to arbitrary depth.

With these resource aggregate abstractions, an application can structure the speci-

fication of its resource environment in a top-down fashion and decorate components

with constraints when needed or desired. In addition to constraints, applications

can also express resource preference by using a scalar rank function: a user-defined

expression of basic arithmetic operators, resource attribute and resource aggregate

attribute values that define a scalar value that represents the quality of that resource

set for the application’s request.

The Virtual Grid Execution System (vgES) uses efficient search techniques based

on resource classification in a relational database. Table indices and other sophisti-

cated database optimization techniques make the search highly scalable in environ-

ments with large number of resources. For instance, Figure 4.1 shows that it takes

no more than 5 seconds for the vgES system to process one million resources for

various queries on a Pentium4 3.2 Ghz processor. The different lines in the figure

represent different types of query with L, T, C meaning LooseBag, TightBag and

Cluster respectively and the number denoting the size of the requested VG. We will

see in Section 4.3 that the ability to perform such resource selection in a few seconds

is key for improving the scalability of application scheduling on large-scale platforms.

Given that vgDL makes it possible to specify high-level, qualitative resource re-

quirements and that vgES can perform fast resource selection in large-scale resource
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Figure 4.1 : Time to complete vgDL queries with vgES.

environments, the VGrADS project provides an ideal foundation for decoupling re-

source selection from application scheduling.

4.2.2 Scheduling Algorithms

While our decoupling approach is applicable to any scheduling algorithm, we chose

to apply it to a specific workflow-scheduling algorithm to evaluate our approach.

We use a greedy level-based (LHBS) workflow scheduling scheme as described in

Section 2.3.3. The computational complexity of our greedy scheduling scheme is

O(vp) in which v denotes the number of jobs and p denotes the number of resources.

There are two reasons why we use the greedy LHBS in our experiments. First, it

has the best scalability among all the heuristics we tested in Chapter 3. As we

will see in Section 4.3, even the greedy LHBS takes several hours to finish on the

largest experiment setting, a heuristic LHBS will take an order of magnitude more

time. Secondly, although the greedy LHBS does not produce the best schedule, its

schedule quality is very similar to the list based heuristic HEFT and performs better

than the more expensive heuristic LHBS in our previous experiments. Note that

while Chapter 3 tests various scheduling heuristics’ performance (schedule quality),
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this chapter focuses on how to make the scheduler scalable (time to compute the

schedule), which is mostly orthogonal to the choice of the scheduling algorithm itself

since our approach can be applied generically to any scheduling heuristics.

4.2.3 Selection Methodology

Now that we have picked a scheduling algorithm, we must decide on a resource selec-

tion strategy. Resource selection must be done according to the application’s needs

and we consider three classes for three different types of such needs:

1. Class 1: A set of resources that have high computing power but not neces-

sarily good network connection between them, as needed by a computationally

intensive application.

2. Class 2: A set of resources that are connected with high bandwidth and low

latency but do not necessarily have high computing power, as needed by a

communication intensive application.

3. Class 3: A set of resources that have relatively balanced computing power and

connectivity, as needed by a balanced application that is neither compute- nor

communication-intensive.

It is relatively straightforward to generate selection criteria for class 1: simply

select the resources with the fastest processors. However, we need the help of the

vgDL specifications and of the vgES system to select the resources that meet the

requirement of class 2 and 3. The key concept here is the TightBag. Recall from

Section 4.2.1. that a TightBag is a collection of heterogeneous nodes with good

connectivity. It matches the requirement of class 2 perfectly. For class 3 we will use

vgDL to specify a hierarchy of aggregates. The idea is to aggregate several TightBags

into a single LooseBag so that we can get both high computation power and high

connectivity.
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The above classes provide bases for performing resource selection following three

broad characterizations of an application’s resource needs. For each such application

we perform resource selection according to the three above classes. We expect that

class 1 will be best for applications with low CCRs (described in Section 2.2.1), and

that class 2 will be best for applications with high CCRs. We will verify that the

CCR value of the application provides good guidance for selecting the appropriate

resource selection method.

The final key element for resource selection is the specification of a bound on

the number of required resources. One could ask for as many (potential) resources

as there are resources in the whole universe of resources. This will not lead to any

scalability improvement over a traditional application scheduling approach that per-

forms implicit resource selection. Instead, as a simple heuristic, we request as many

resources as the maximum width of the DAG representing the application’s workflow.

The intuition behind this choice is that this is the maximum number of resources that

can be used by the application at a given time. Any additional resource would stay

idle for the entire application execution.

4.2.4 Case-Study: Workflow Applications

We explore our approach of decoupled resource selection and scheduling in the context

of two real workflow applications, EMAN [66] and Montage [10]. These applications

fall into the general class of workflow applications. We described our two target

applications in Section 2.2.2. We use different versions (with different numbers of

tasks) of the EMAN refinement workflow DAG in our experiments. The largest

EMAN DAG has a maximum parallelism of over 300. Similar to the EMAN workflow,

we use different versions of Montage for our experiments and with the largest DAG

has a maximum parallelism of over 300.
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4.3 Experimental Evaluation

4.3.1 Methodology

Simulation Environment

In order to perform repeatable experiments on a large-scale resource environment we

resort to simulation. Our simulated environment consists of three key components:

the resource model, the network model, and the application model.

We use a similar resource model to the one in Chapter 3 and we generate a resource

pool that contains over 36,000 hosts, which we call the resource universe. Our network

model is also similar to the one we used in Chapter 3. We generated end-to-end

latencies between compute clusters according to a truncated normal distribution. We

set the mean of this distribution to 100ms, conforming to the results in Morris et

al. [74], and we bounded the latencies from 1 to 200ms. For the network bandwidths,

we set the connection within a cluster as 1000Mb/s and the interconnection between

clusters range from 10Mb to 100Mb/s. These numbers are primarily based on results

by Yang and Denis and their collaborators [119, 29]. Furthermore, we ensured that

the higher the latency the lower the bandwidth.

Our application model comes directly from the real-world applications described in

Section 4.2.4. For each application we generate DAGs that follow the same structure

as those of the applications, but we vary their CCR and their widths. When simu-

lating application execution, the execution times of the tasks on resources come from

the DAG task weights and the performance models described in Mandal et al. [69],

and the data transfer times come from the DAG edge weights and the latencies and

bandwidth in our network model.

Since this is a simulated environment, we must make some assumptions that may

not hold for real resources. We assume that we have an accurate performance model

for tasks for both scheduling and computing the simulated makespan. (In fact, we

have such models for EMAN and Montage.) We argue that since both the one-step
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and the decoupled scheduler use the same performance model, this does not bias the

comparison. We assume that the network performance is stable and predictable. This

assumption eliminates the random error that may be introduced by the network fluc-

tuation. We have found it to be the case for our experiments with EMAN, although

other applications may see more variation. We assume that the resources are avail-

able immediately, and will remain available for the duration of the application. We

assume that we already obtained all the resource information before the start of the

experiment. We have these assumptions so that we can compare the performance of

these scheduling algorithms on a level playground. Once again, we believe that these

assumptions do not bias our comparison between the two scheduling approaches. We

will address the scheduling issues caused by the dynamic and unreliable nature of a

multi-cluster Grid in Chapter 5 and Chapter 6.

Experimental Setup

We first generate forty EMAN and Montage DAGs with five different CCRs and eight

different widths. We use the greedy scheduling algorithm described in Section 4.2.2

to schedule these DAGs on the simulated resources. For each DAG, we first run the

scheduling algorithm on the whole resource universe, which we refer to as the one-step

approach, and record the running time of the scheduler. We then run the scheduling

algorithm on smaller subsets of resources explicitly selected using the methodologies

in Section 4.2.3. The running time for this decoupled approach is measured as the sum

of the time for selection and time to compute the schedule. In both cases we record

the (simulated) makespan of the application. To run our experiments, we used the

Rice Terascale Cluster which is composed of Intel 900 MHz Itanium2 machines [113].

In order to determine how resource selection affects scheduler performance, we

selected 10%, 7%, 3%, 1% and 0.3% of the “best” resources, corresponding to the

resource selection methods for class 1 in Section 4.2.3. We will later refer this as the

simple selection approach. We also performed selections based on vgDL specifications.
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Figure 4.2 : vgDL for class 2 type of resource abstraction

To satisfy the requirements of class 2, we generated the vgDL description shown in

Figure 4.2, requesting one TightBag of OPTERON and ITANIUM nodes. The “[1:n]”

means there are at most “n” nodes in the TightBag; we set n as the maximum DAG

width. We will later refer to this selection methodology as the one TightBag approach.

Similarly, we generated the vgDL description shown in Figure 4.3 for class 3. Since

we want to group as many nodes into a TightBag as possible, we set the size of the

TightBag as 500 which is large enough to run the biggest DAG in our experiment. In

our experiments, we set “m” as 3 and 5 and we will later refer to them as the Three

TightBag approach and Five TightBag approach respectively. Later we will also refer

to the three TightBag approach as the LooseBag approach since we use this for most

of the DAGs belonging to class 3.

Finally we refer to the implicit resource selection approach used by the one-step

approach as the Universe approach.

4.3.2 Results

Figure 4.4 shows that the one-step scheduler’s total running time which includes the

resource selection time and the scheduling time is linear in the number of resources

considered. Figures 4.5 and 4.6 further breaks down the number and shows the

average scheduler running time of the one-step and decoupled approaches for EMAN

and Montage. We can see that the time used in the decoupled approaches is only a

small fraction of the time used in the one-step approach, since the number of selected



66

Figure 4.3 : vgDL for class 3 type of resource abstraction
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Figure 4.4 : Average Scheduling+Selection Time for Different Sizes of Resources

resources is much less than the full grid. This confirms our hypothesis of better

scalability of the decoupled approach.

Figures 4.7, 4.8, and 4.9 show the combined makespan (yellow) and scheduling

(blue) time for a range of simulations. In all charts, the total turnaround time for

the application is the overall height of the bar. For the “Simple Selection”, “One

Tightbag”, and “LooseBag” bars, we used the scheduling time for the case in Fig-

ures 4.5 and 4.6 that selects the least resources more than the maximum width of
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Figure 4.5 : Average Scheduling+Selection Time for EMAN DAGs

Figure 4.6 : Average Scheduling+Selection Time for Montage DAGs

the DAG. For example, for a test DAG of width 518, the Simple bar uses the “1012

Best” scheduling time, the TightBag bar uses “One TightBag”, and the LooseBag

bar uses “Three TightBags” since three TightBags most likely to hold just enough

resources for the DAG (as compared to Five TightBags). All results are averages over

a collection of EMAN and Montage DAGs.

Figure 4.7 shows results for computation-intensive DAGs belonging to class 1.

We observe that all the decoupled approaches have much better turnaround time



68

compared to the one-step approach. Among decoupled approaches, the one TightBag

approach performs the worst since it does not provide enough computing power. The

simple selection approach performs the best with makespan only 2% worse than the

one-step approach. This confirms our hypothesis that simple selection is very suitable

for these applications.

Figure 4.7 : Average MakeSpan and Scheduling Time for DAGs with CCR=0.1

Figure 4.8 shows results for communication-intensive DAGs belonging to class 2.

We observe that all decoupled approaches have lower turnaround time than the one-

step approach. The one TightBag approach has the best performance and outper-

forms the one-step approach by almost 66%. The main reason for this result is that

all selected resources are closely connected, which avoids greedily choosing nodes with

poor connectivity. A better scheduling heuristic for the Universe case might reduce

its makespan, but at the cost of even higher scheduling time. This confirms our hy-

pothesis that pre-selecting a TightBag is appropriate and efficient for scheduling this

class of applications.

Figure 4.9 shows results for DAGs with relatively balanced communication and

computation requirements, such as those in class 3. In all cases, the decoupled ap-
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Figure 4.8 : Average MakeSpan and Scheduling Time for DAGs with CCR=10

proaches have lower turnaround times than the one-step approach due to their lower

scheduling times, with gains of up to 50%. Also as we expected, the Simple approach

Figure 4.9 : Average MakeSpan and Scheduling Time for DAGs with CCR=0.5,1,2
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performs relatively better as the CCR gets below one (i.e. more computation-intensive

code) and the TightBag approach performs relatively better as the CCR gets above

one. Unexpectedly however, the LooseBag approach does not show a clear advantage.

Here are two possible reasons

1. The simple selection may implicitly select nodes that are close since fast nodes

are more likely found in a few clusters than scattered around the grid.

2. The bandwidth between the TightBags within the LooseBag we choose may

happen to be very low.

If reason 1 is true, we can further simplify our VGDL requests, while if reason 2 is

the case, we may have to devise more complex queries.

In summary, our experiments confirm our hypothesized advantages for decou-

pled scheduling over the one-step approach. They also confirm our hypotheses of

best scheduling methods for computation and communication-intensive applications.

However, they do not match our expectations for balanced applications.

4.4 Related Work

Current grid workflow management systems use simple approaches as we described

in Section 2.3.3. However, even those simple scheduling approaches (other than the

random or round-robin approach) has the same time complexity as the greedy LHBS

algorithm we used in our experiment. Therefore, they may also face the same sched-

uler scalability issues. Mandal et al.[69] and Blythe et al.[11] have developed level-

based scheduling algorithms to schedule workflow applications onto a multi-cluster

Grid as we described in Section 2.3.3. A key limitation of their approach however is

that it is not scalable to large numbers of resources as it takes into account all the

resources during scheduling.
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4.5 Conclusions

In this chapter, we presented a decoupled mechanism that leverages the concept

of a Virtual Grid to schedule workflow applications onto large-scale grid environ-

ments. Our approach improves scalability when compared to traditional schedul-

ing approaches as schedules can be computed dramatically faster. Furthermore,

our experimental results show that even when the decoupled approach increases the

makespan slightly, the difference is more than made up by the reduced scheduling

time. Therefore, our proposed approach can dramatically decrease workflow applica-

tions’ turn-around-time.
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Chapter 5

Hybrid Scheduling Mechanisms

In this chapter, we present our work on a hybrid scheduling mechanism that dy-

namically executes a top-down static scheduling algorithm using real-time feedback

from the execution monitor. The motivation behind this mechanism is that, although

static algorithms can achieve good schedule performance when the resources are static,

Grid resources are dynamic. Changes to Grid resources can dramatically affect the

application’s performance in ways that a static schedule cannot account for. Our

experimental results show that our hybrid rescheduling approach achieves the best

performance among all the scheduling approaches we implemented on both exclusive

resources and those with dynamic external loads.

5.1 Introduction

In Chapter 3 and Chapter 4 we examined the quality and performance of several

scheduling heuristics for workflow applications in a multi-cluster Grid environment.

Like most of the previous studies, we assumed that the task execution time and

data transfer time were known beforehand. However, a real-world multi-cluster Grid

environment is usually dynamic and unpredictable at least in three aspects: batch

queue wait time, performance of individual processors (particularly the shared disk

read/write speed) and network bandwidth. Therefore, it is difficult in general to accu-

rately estimate the execution time for each task of the DAG and the communication

time between them. To avoid this problem, many Grid projects use either dynamic

dispatching mechanisms based on matchmaking [3, 72, 87] or application dependent

scheduling [89].
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We argue that we can still harness the better theoretical performance of static

scheduling by integrating the scheduler with the application execution system. We

propose a hybrid approach in which we first statically select the appropriate resources

based on each resource’s effective aggregated computing power as we proposed in

Chapter 3, then dynamically schedule each task onto the selected resources based

on the task’s updated performance model and the execution monitor readings. Each

task is launched with an execution monitor that can adjust the performance model

parameters of the resources where the task is mapped. If the environment changes,

the execution system and scheduler may re-select appropriate resources and re-map

subsequent tasks according to the feedbacks from the monitors. In order to make

our runtime decision efficient and scalable, our scheduler maps each task to a cluster,

leaving the individual compute node assignment to the local resource manager. This

is much more efficient because the number of clusters is usually at least an order of

magnitude smaller than the total number of processors in those clusters. Furthermore,

since a correct decision on when to trigger a reschedule is not always easy to make,

we propose a two phase rescheduling mechanism that can mitigate the effect of a

bad decision. The two phase decoupled approach further improves the scalability of

the scheduler as shown in Chapter 4. The objective of our scheduling algorithm is to

output a schedule for the workflow application such that the application’s turn-around

time, is minimized.

The rest of the chapter is organized as follows.Section 5.2 describe in detail our

hybrid scheduling mechanism. Section 5.3 presents our Grid test-bed environment,

the application DAGs we use and our experimental design. Section 5.4 presents our

results and compares them with other approaches. Section 5.5 discusses the related

works that address the dynamic nature of the Grid. Section 5.6 concludes the chapter

with a summary of contributions.
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5.2 Cluster based Hybrid Scheduling

The dynamic nature of a real-world Grid environment requires support in the schedul-

ing system for detecting and responding to changing resources. In short, some form of

dynamic rescheduling is needed to ensure the performance of applications. We have

developed the framework shown in Figure 5.1 to provide this support, and to enable

comparisons of our work to previous dynamic and static scheduling methods.

Figure 5.1 : The system design

As the figure shows, our framework consists of three major components: the

monitor, the scheduler, and the application manager. The scheduler is responsible for

resource selection and mapping the DAG to the resources. The monitor is responsible

for monitoring the status messages generated by the Grid-run time middleware. The

application manager is responsible for working with the scheduler and monitor to

execute a workflow application on a multi-cluster Grid. In the following sections,

we further describes how these three components work to implement our new hybrid
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scheduling method. We will also note how previous static and dynamic schedulers

can be implemented in this framework.

5.2.1 Scheduler

Section 2.3 describes the basic concepts of workflow application scheduling. We

present the techniques we choose or propose in our cluster based hybrid re-scheduling

mechanism.

Static Schedule Method:

We use a list-based scheduling algorithm since Chapter 3 showed that they generally

perform well in a static Grid environment. Our algorithm is a modification of the

popular HEFT [111] algorithm. Instead of the ranku used in HEFT, we simply use

the earliest finish time (EFT) as the rank which means we favor the task that can

finish first.

We assume that all clusters are controlled by local batch queues (as is the case of

our test Grid). In the resource mapping phase, we choose the batch queue resource

that can finish the task the earliest. Although we only select the batch queue instead

of the individual processor, we have a low-cost way to keep track of the earliest start

time for the queue by maintaining all the compute nodes’ earliest start time in a heap

data structure.

Resource Selection

We presented in the effective aggregate computing power (EACP) concept in Chap-

ter 3 and used it to improve the makespan of the scheduling. The effective aggregate

computing power is used to estimate the computer power of a cluster for an individual

DAG. In this chapter, we extend this approach by taking into account the network

model and make a finer estimation. The pseudo-code for our resource selection pro-

cedure is given in Figure 5.2 and Figure 5.3.
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Algorithm: estimateTime(Resource cluster)

double time[2]

double dtime, ctime, ltime,fileSize

for each level L in the dag

ltime ← the longest task running time of jobs in L

fileSize ← the total file output size of all the jobs in L

if (L.width() > cluster.size)

time[0] ← time[0] + ltime * L.width / cluster.size;

time[1] ← time[1] + ltime + fileSize / cluster.bandwidth()

else

time[0] ← time[0] + ltime

time[1] ← time[1] + ltime

return time

Figure 5.2 : The DAG ACP estimation procedure

Figure 5.2 shows our algorithm to estimate the computing power of a batch queue

resource. The resource computing power consists of two running times. time[0]

estimates the execution time, including the queue wait time and the running time, if

the DAG is mapped to only this resource. time[1] estimates time when other resources

come into play. We denote the running time for the first case as the exclusive time

and the second as the collaborative time and we define the computing power of

a resource as the lesser of the two. We estimate the running time for the DAG

level by level for each resource. For all the tasks in one level, we find the longest

task running time and denote it as its level time. We also sum the output file sizes

from this level’s tasks. If the queue has enough processors to execute all the tasks

in this level simultaneously, we add the level time to both the exclusive time and

the collaborative time. Otherwise, we compute the additional computing time by
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Algorithm: ResourceSelect ( DAG dag, Queue[] res )

Map <Queue, double[]> queueTimePair list

for each queue in res

queueTimePair list.add( dag.estimateTime(queue))

sort queueTimePair list

Queue best ← queueTimePair list.first()

List<Queue> selectedResource

selectedResource.add(best)

count ← best.size()

est acp ← best.getClusterTime ()

while (count < dag.width() )

resourceTimePair list.removeFirst()

sec best ← resourceTimePair list.first()

new acp ← min(selectedResource.getEACP(), sec best.getCollaborateTime())

if ( new acp < est acp)

selectedResource.add(sec best)

est acp ← new acp

else

break

count += selectedResource.size()

return selectedResource

Figure 5.3 : The selection procedure

assuming the additional jobs would wait until the first batch of jobs finishes and add

that to the level time in the exclusive time. We compute the communication time by

dividing the task’s total output file size by the queue’s average bandwidth connecting
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to its neighbors and add that to the level time in the collaborative time.

Figure 5.3 illustrates our resource selection algorithm based on the estimated

exclusive and collaborative time for each cluster. We first sort the resources by their

computing power and then apply a greedy algorithm. We pick the resource with the

most computing power (shortest time) and then try to put more resources into the

pool until the number of processors in the pool is more than the DAG’s width. For

each new resource in the pool, we estimate the new aggregate computing power as

the lesser of the new queue’s collaborative time and the existing pool’s computing

power. We stop the procedure if adding a new resource actually decreases the pool’s

aggregate computing power (increases the execution time).

Rescheduling

After we statically select the batch queue resources, we apply the scheduling algo-

rithm dynamically, meaning we compute the mapping for a task at run-time when its

predecessors have finished. There are two reasons we choose a dynamic over a static

mapping. First, only the dynamic mapping can take advantage of updates to the per-

formance model. The scheduler consults the performance model constantly during

dynamic scheduling but only when rescheduling is necessary during static scheduling.

Second, the dynamic mapping incurs less overhead if rescheduling is needed. Because

static scheduling maps all the unexecuted tasks to a resource, many task mappings are

no longer useful if rescheduling happens. Furthermore, in many cases, a task stages

out the files to the resource where its successors run but if a reschedule happens, the

file transfer might be wasted.

In our hybrid scheduling mechanism, rescheduling happens in the form of resource

re-selection. When the application manager decides it is necessary to do a reschedule,

the scheduler does another resource selection based on the current performance model.

We will present the formula on which a reschedule decision is based in Section 5.2.3.

Furthermore, instead of just using the newly selected resources, we combine these
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two resource pools to be our new resource pool. The rule to combine the selected

resources with the existing ones can be expressed in the following formula

Resnew =

Ressel, Ressel ⊂ Resold

Ressel ∪Resold, Otherwise

(5.1)

where Resnew is the new resource pool while the Ressel is the selected resource pool

and Resold is the existing resource pool. The intuition is that in the first case, the

additional old resources would decrease the computing power of the resource pool

based on the algorithm in Figure 5.3; otherwise they would have been selected. In the

second case, we leave the decision of migrating the rest of the DAG to the scheduling

algorithm instead of forcing the migration. Therefore, when a reschedule is triggered,

the rest of the DAG would either be confined to a subset of the existing resources or

gradually migrate to the new resources depending on the scheduler’s decision on the

trade off between better computing performance and more communication time. This

two phase approach avoids the potential penalty of extra communication cost since

the scheduler would avoid the new resources if the extra communication cost is too

high. Furthermore, we can see that our two phase rescheduling approach also avoids

the potential performance penalty when resource selections become a cycle. In this

case, the application would be migrated back and forth between several resources if we

used the traditional one phase rescheduling. It would be a much smoother transition

in our two phase approach because our intermediate resource pool always includes

the previous resources.

5.2.2 Monitor Component

The monitor component adjusts the performance model constantly so that it can

reflect the observed performance of the underlying resources. There are three sub-

components in the monitor component which monitor the batch queue wait time, the

network bandwidth and the disk write speed, respectively. All three monitors use the
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status notification (callback) system of the Globus middleware layer [4]. The batch

queue wait time monitor records the time when a task enters the batch queue and

the time when the task gets to run. It then calculates the new batch queue wait time

and updates the batch queue wait time linearly

Waitnew = Waitold × 0.7 +Waitobserved × 0.3

The reason we choose a fading memory model is that we want to smooth out possible

system performance fluctuations. The coefficients are heuristic and can be tuned, but

our experience shows that incorporating roughly one third of the new time into the

overall wait time does a good job tracking the actual performance. We acknowledge

that a more sophisticated model could do a better job but this is not the main focus

of our research. The network bandwidth monitor records the observed transfer time

and then computes the new transfer time according to the same linear model. It

then divides the transfered file size by the transfer time to get the new network

bandwidth. Similarly, the disk write speed monitor records the computing time of

a task and calculates the new disk writing time. Although different resources may

have different performance models our monitor will update the coefficient in them

according to the latest time calculated. We will discuss the performance models we

used in our experiments in detail in Section 5.3.2.

5.2.3 Application Manager

The application manager makes sure the workflow application is executed on the Grid

resources correctly and on time. Figure 5.4 shows how it works. When a DAG that

represents a workflow application arrives, the application manager first invokes the

scheduler to select the resources and then collects the tasks that are ready to run.

Once a task finishes, the application manager checks to see if this task is the exit task

(each DAG has a unique dummy exit task) and all the tasks in the DAG are finished.

Otherwise, it checks if a reschedule should be triggered. If so, it invokes the resource
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selection again. Finally, it schedules and submits all the successors that are available

to run.

Idle 

Has child 
 task? DAG Finished 

update 
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Yes 

 Reschedule 
Triggered? Reselect Resources 

Yes 

No 

Has more child task  
that is ready to run? 

No 
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Execution 
Monitor 

No 

Dynamic schedule 

A task finished 

Figure 5.4 : The application manager

The reschedule trigger takes two parameters from the user, the tolerance level T

and the monitor window size WS. The reschedule trigger calculates the actual to

estimated performance ratio and signals a reschedule when the average ratio in the

most recent WS task exceeds the tolerance level

n∑
i=n−WS+1

act(i)

est(i)
> WS × (1 + T )

where the current task is the nth task that finishes. Note that we do not trigger

a reschedule if the actual performance is better than we estimated. It is generally

very difficult to find an optimal parameter pair to always make the right decision.

Section 5.4 will demonstrate that the two-phase approach we described in Section 5.2.1

is fairly robust even if a poor decision is made
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5.3 Experimental Methodology

In order to study how well our rescheduling strategies perform in a Grid environ-

ment, we implemented the schedule algorithm and two-step approach described in

Section 5.2. We will refer to this as the hybrid rescheduling approach. Besides

that, we implemented three other strategies. The static approach uses the usual

static mechanism with a resource selection phase but never triggers a reschedule. The

static rescheduling approach computes a new static schedule with the updated

performance models when rescheduling is triggered. This approach does not per-

form resource selection and is similar to the techniques used in Yu et al. [125]. The

dynamic approach simply dispatches a task to the resource that has the earliest

estimated finish time without taking into account the file staging time or the updated

performance model. This approach is very similar to Condor’s approach [72]. The

rest of this section will further introduce our experimental environment.

5.3.1 Workflow Applications

We use DAGs taken from two real Grid applications, EMAN [66] and Montage [10]

described in Section 2.2.2. In the Montage DAGs, the tasks in the same level have

different execution times while the execution time is the same for EMAN DAGs. In

addition, we used two well-known parallel algorithms that have been widely used

in workflow scheduling research: Fast Fourier Transform (FFT) and Gaussian elim-

ination; both are also described in Section 2.2.2. All paths in the FFT DAG are

theoretical critical paths since all tasks in the same level have the same performance

model and all dependencies are from one level to the next. However the real critical

path depends on the application mapping. In contrast, there is a unique critical path

in the Gaussian DAG that goes through the pivot steps.
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5.3.2 Performance Model

Since we are only interested in the running time of the application instead of the

real output, we chose to represent all four workflow applications using DAGs that

consist of the same configurable tasks. We pre-installed the task executable on all the

resources in our Grid test-bed. Each executable takes three parameters: the number

of iterations it, the output file size size and the output file location. Since different

resources have different capacities, the real time it takes the same configured sub-tsk

to run on different resources are different. However, we use a linear performance

model for all the resources with different parameters. Our performance model is

T = C + Coit × it+ Cosize × size

where C is a constant representing the execute overhead (such as cache build-up) and

Coit is the coefficient related to the computing iterations (the major computation of

each task is a loop) and Cosize is the coefficient related to the disk read and write

amount.

The run time of a task also depends on the batch queue wait time and the network

bandwidth. As we stated earlier, these two coefficients along with the Cosize are

dynamic and hard to predict. Therefore, we only set the initial values for each

resource while the monitor system adjusts them during the DAG’s execution. We

obtain those initial values by running different configurations of the task executable

on each resources many times. We list their values for each resources in the Figure 5.5.

5.3.3 Grid Model

Our multi-cluster Grid environment has four clusters: the Ada and RTC clusters

at Rice university, the Eldorado cluster at University of Houston and the Lonestar

cluster at the University of Texas at Austin. Since Ada, RTC and Eldorado were

heavily used, in order to finish our DAGs within reasonable time we reserved the

batch queues on them. The majority of our DAGs used the three clusters that we
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reserved. Figure 5.5 shows the configuration of our Grid test-bed and the coefficients

Ada RTC Eldorado Lonestar

Nodes 8 16 16 64

CPU Type Opteron Itanium Itanium Xeon

CPU Speed 2.2 GHz 0.9 GHz 0.9 GHz 2.6 GHz

C 4.5 6.5 31.5 4.5

Coit 37.8 52.1 50.72 26.8

Cosize 0.13 0.25 0.43 0.31

Wait Time 30 60 60 1800

Figure 5.5 : The Cluster Configuration and Performance Model

of our performance model. The unit for wait time is seconds.

5.3.4 Experimental Setup

We generated four cases for each type of DAG and applied four scheduling mechanisms

on each case. In addition, we have four batches of experiments run with different

execution environments. Two of them have a Grid environment with no loads on

the reserved batch queues. The difference between them is the reschedule trigger

parameters T and WS. The first batch of experiments uses T = 0.2 and WS = 3

while the second batch uses T = 0.3 and WS = 5. Later we will refer to the first

batch of experiments as the aggressive batch since they are more likely to reschedule

and the second batch as the conservative batch. The third batch of experiments use

the aggressive batch’s reschedule trigger parameters but we submitted a periodic load

of 8 jobs onto the Ada batch queue. We will later refer to this batch as the queue

loaded batch. The last batch of experiments uses the same reschedule parameters but

we introduced an artificial disk write load on the Ada cluster. We will later refer



85

to this batch as the disk loaded batch. We ran the four scheduling mechanisms for

one DAG consecutively to minimize the impact of the dynamic environment on the

results.

Since the turn-around time varies widely among DAGs, we use Schedule Length

Ratio (SLR) that we defined in Chapter 2. Intuitively, a small SLR is indicative of

a better schedule than a large SLR and a SLR greater than 1 means the real turn-

around time is longer than the static estimated finish time. With four batches of

experiments, sixteen DAGs and four scheduling mechanisms, we have a total of 256

DAG executions. It took us about three months to collect all the schedules and their

turn-around time. We used more than 6000 cpu hours since half of our runs did not

finish because of various hardware and software failures.

5.4 Results

We now present our experimental results. Over the entire set of SLR numbers, the

hybrid rescheduling approach outperformed the other three by as much as 45 percent.

Figure 5.6 shows the overall results for each approach with batch queue reservations.

The height of the bar indicates the mean SLR while the line segment shows one

standard deviation. We can see that all approaches have a mean SLR value over

1 which means the average turn-around time is more than the makespan computed

by the static scheduler. This confirms our hypothesis that predicting execution time

accurately is difficult. For our experiment, the main reason why most SLR numbers

are greater than 1 is that our initial performance model does not take into account

the disk and network contention. Thus, the network bandwidth and disk write speed

are lower when multiple tasks are mapped to the same batch queue resource. We

will further analyze the results from different experiment settings in the rest of this

section.

Figure 5.7 presents the results of the aggressive batch of experiment runs. Fig-

ure 5.8 presents the results of the conservative batch of experiments run. The differ-
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Figure 5.6 : Aggregate Results

ence between these two batches are the rescheduling trigger parameters. In both cases,

the difference of means between the hybrid rescheduling and the dynamic scheduling,

and between the hybrid rescheduling and the static rescheduling are statistically sig-

nificant with over 95% confidence level and alpha set as 0.05. The hybrid rescheduling

also outperforms the static approach on average, but the difference is not statistically

significant. These results echo our findings in Chapter 3 that the static approach

works well in a more stable environment.

In Figures 5.7 and 5.8 we can also see that the performance of static rescheduling

is most sensitive to the rescheduling policies. While it is obvious that the static

and the dynamic approaches are little affected by the rescheduling since they don’t

do rescheduling at all, it is interesting to see the hybrid rescheduling approach is

virtually not affected either. The reason is that the reschedule is done in two phases

as we described in section 5.2.1. The resource selector first selects a suitable resource

and then the scheduler can gradually move some tasks to the new resources or leave

them where they were depends on the estimated communication costs. Thus, the

reschedule decision plays a less important role in our execution time since the real
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Figure 5.7 : Results of Aggressive Rescheduling Batch
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Results of Conservative Batch Run 

Hybrid Reschedule Static Schedule Dynamic Schedule Static Reschedule 

Figure 5.8 : Results of Conservative Rescheduling Batch

migration decision is made by the scheduler. In addition, the resource selector in

our hybrid rescheduling mechanisms provides a global view of the DAG and could

correct the reschedule trigger mistakes by selecting the correct resources. However,

this is not the case in the static rescheduling approach. We know that it is usually
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Results of Queue Load Batch Run  
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Figure 5.9 : Results of Artificial Batch Queue Loads Batch

difficult to find a good set of rescheduling trigger parameters, threshold and window

size, that works well for all system performance changes. In our case, it appears that

the reschedule trigger in the aggressive batch is more effective than the trigger in the

conservative batch for the experimental system since the static reschedule performs

30% slower in the conservative batch. However, the aggressive batch’s trigger may

not work well on other resources. Without a resource selection phase, the entire

rest of the DAG will be remapped whenever a reschedule is triggered. Therefore, a

bad reschedule decision can negatively affect the overall performance of a workflow

application significantly.

Figure 5.9 presents the results of the queue loaded batch. In this experiments, we

submit a periodic load of queue jobs onto the Ada batch queue which is the fastest

among the clusters we use. We can see that the external batch queue loads affect the

static and dynamic approaches the most while the hybrid rescheduling approach again

outperforms the others. The paired t-test shows that all the differences of mean value

between the hybrid rescheduling and other approaches are statistically significant.

This shows that our hybrid rescheduling approach can maintain a certain level of
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performance when the underlying resources performance unexpectedly deteriorate.
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Results of Disk Load Batch Run 
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Figure 5.10 : Results of Artificial Disk Write Loads Batch

Figure 5.10 shows the results of the disk loaded batch. In this case, the extra disk

write loads’ effect not as dramatic because the tasks are not I/O bound. However,

the static rescheduling approach suffers most because it assigns tasks to multiple

clusters without the resource selection phase. This caused a lot of communication

overhead when it tried to migrate the DAG when it detected the performance of Ada

deteriorating. This experimental result also confirms that our hybrid rescheduling

approach is effective in an unpredictable environment.

5.5 Related Work

As we mentioned in section 7.1, the traditional scheduling does not take into account

that a real Grid environment is dynamic. Some efforts have been made to address

these new complexities.

Condor [72] and DAGMan [82] provide checkpoint and migration when a resource

is no longer available. However, Condor does not consult a performance model or the
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network model. The mapping decision is solely based on finding the resource that

matches the individual task’s needs.

Sakellariou and Zhao [95] propose a low-cost rescheduling scheme which only starts

rescheduling when the delay in a task would create a longer critical path (delay>slack

of a successor). Their work shows improvements over the original static scheduling

algorithms in a simulated environment. However, there is a chicken and egg dilemma

in their approach that the slack of each sub-task can not be calculated precisely if

the prediction of the job compute time and communication cost are not accurate.

Rahman et. al. [67] propose a scheduling algorithm that would compute the

critical path dynamically and schedule the task on the critical path first. Their work

shows that the dynamic critical path algorithm can generate a better schedule by

up to 20% in simulated environments. However, similar to Sakellariou’s approach,

the absolute latest start time (ALST) of a sub-task can not be calculated precisely

without the assumption of known computation and communication cost.

Yu et. al. [125] propose an adaptive rescheduling schema that takes advantage of

additional resources during execution. Their work also shows improvement over static

algorithms of up to 20% when new resources become available during the execution.

However, this has limited usefulness in our multi-cluster Grid environment since the

total number of resources is usually far greater than a single DAG’s needs. This work

is also done in a simulated environment.

Contract-based rescheduling was implemented in the GrADS project [26] on a

real-world testbed. Vadhiyar et. al. [114] proposed a performance oriented migration

framework that takes into account both the load changes and the remaining execution

times of the subtasks. However, this framework is only designed for a single iterative

MPI job.

Our work is closest to the GrADS project [26] but we extend it to handle workflow

applications which, we argue, are significantly more complex and difficult to scale.

In addition, most scheduling algorithms mentioned above assign each task to an
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individual processor while we assign a task to a cluster or batch queue. Furthermore,

we propose a new rescheduling mechanism and test our approaches on a real-world

multi-cluster Grid.

5.6 Conclusions

The major contributions of this chapter are: (1) we propose a light-weight hybrid

scheduling mechanism that works with local batch queue resource managers; (2) we

propose a two-step rescheduling decision approach that mitigates the effect of a bad

rescheduling decision; and (3) evaluate the performance of our approach in a real-

world multi-cluster Grid and confirm that it performs well. Our experiments show

that the static scheduling approach works reasonably well in a relatively predicable

environment but the performance predictions are usually over-optimistic.

Furthermore, our hybrid scheduling mechanism performs better by correcting the

prediction based on the runtime feedbacks. Our experiments also show that the run-

time rescheduling policy is critical to the performance of the rescheduling approaches.

However, if the application does not know the reason of the performance deteriora-

tion, it is very difficult to general policy to work well on all resources. We apply a two

step approach to this problem so that we can take a relatively aggressive rescheduling

policy while leaving the real migration decision to the scheduler. Our experiments

show that this approach works better than the single step approach, such as the static

rescheduling mechanism we implemented, in most cases.
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Chapter 6

Fault Tolerance and Recovery for Workflow

Applications

In this chapter, we present our work that combines fault tolerance mechanisms such

as over-provisioning and checkpoint-recovery approaches with existing workflow ap-

plication scheduling algorithms. We analyze our approach’s impact on the workflow

application’s performance, reliability and resource usage under different reliability

models, failure prediction accuracies and application types.

6.1 Introduction

Recent developments in grid infrastructure technologies make it possible to execute

large and distributed applications [10, 38, 17] on it. Many of these applications

fall in the category of workflow applications we described in Section 2.2. At the

same time, the recent growth in size and complexity of the grid infrastructure makes

it susceptible to failures at all system levels - power supply, computing hardware,

network, operating system, grid middleware, etc. For example, the study in Iosup et

al.[50] shows that the mean time between failures (MTBF) on Grid5000 [44] is only

around 12 minutes. Hence, not only is managing and scheduling workflow applications

a hard problem studied in detail [69, 127, 122], challenges in providing reliability to

workflow executions also arise because of the unreliable nature of the underlying

hardware and software.

To address the reliability challenges, existing grid systems resort to fault toler-

ance and recovery mechanisms [80] such as checkpoint-recovery and over-provisioning.

Checkpoint-recovery techniques make it possible for the workflow to resume execution
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from the last checkpoint instead of restarting from the beginning, should a failure oc-

cur. Over-provisioning [53] techniques replicate a task on more than one resource to

increase the probability of successful execution. Although these techniques address

the reliability challenges to some extent, to the best of our knowledge, no large-

scale study has been done on how effective they are when coupled with workflow

management and scheduling. In this chapter, we study the performance, cost and

effectiveness of different fault tolerance mechanisms when combined with different

scheduling techniques.

The main contributions of this chapter are:

• We propose and implement several scheduling and fault tolerance mechanism

combinations.

• We evaluate the reliability, performance and cost of different mechanisms with

a large scale reliability and resource model and provide a quantified model for

the three-way trade-offs.

• We evaluate the effect of resource reliability and the accuracy of the failure

prediction on the reliability, performance and cost of each mechanism

The rest of the chapter is organized as follows. Section 6.2 presents the details

of the combined fault tolerance and scheduling techniques that we proposed and

implemented. Section 6.3 describes our experimental design. Section 6.4 presents our

results and evaluation. Section 6.5 presents related work and section 6.6 concludes

the chapter with a summary of our contributions.

6.2 Scheduling with Fault Tolerance

Fault tolerance and recovery techniques used to mitigate the effects of workflow fail-

ures in grid systems fall in two major categories: (a) checkpoint-recovery and (b)

over-provisioning/replication. In this section, we describe how we integrated these
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fault tolerance and recovery techniques during scheduling and execution phases. First,

we briefly describe the two scheduling algorithms and the traditional fault tolerance

techniques used in this study.

6.2.1 Scheduling and Fault Tolerance Techniques

We will use two scheduling heuristics in our study. The first one is a list based algo-

rithm called HEFT [111]. Our work in Chapter 3 has shown that it performs well in

a multi-cluster grid environment. The second is a duplication based algorithm called

DSH that was first proposed by Kruatrachue et al. [61]. Please refer to Section 2.3.2

for more details of both algorithms.

Checkpoint-recovery techniques are widely used for applications that run for a

long time. The basic idea is that a usually combined effort of the application and

the support system stores the intermediate state of the application periodically on

a reliable storage system. The stored state of an application is usually called a

“checkpoint”. If the application or the resource crashes during the execution of the

application, one can restart the application from the latest checkpoint instead of

wasting the entire work. Checkpoint-recovery is very effective for recovering from

application failures but it can not prevent the failures.

Over-provisioning is a more proactive techniques that duplicates an application

onto multiple resources. In case one or more copies of the application or the re-

sources fail, one can still get the result as long as at least one copy finishes. Even

though checkpoint-recovery and over-provisioning are two different approaches, they

can also complement each other because checkpoint-recovery techniques are applied

mostly during workflow execution, while over-provisioning is applied mostly during

the scheduling/planning phase. However, it is not trivial to combine them with the

traditional workflow scheduling algorithms.
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6.2.2 Scheduling Algorithms with Over-provisioning

Since the HEFT and DSH scheduling algorithms themselves do not take into account

any fault tolerance, we integrated the over-provisioning technique with the vanilla

HEFT and DSH scheduling algorithms to develop a fault-tolerant scheduling scheme.

Fault Tolerance Using Over-provisioning

We use over-provisioining/replication as the primary mechanism for fault tolerance

when scheduling workflow tasks onto resources. In the most general case, each work-

flow task has performance constraints (expressed through performance models and

deadlines) and reliability constraints (expressed through an user designated success

probability). We will show the exact constraints we used in our experiment in the

next section. Our goal is to find the smallest set of resources to replicate the given

workflow task to satisfy these constraints.

Kandaswamy et al. [53] described an effective algorithm to find the smallest subset

of resources that satisfies these constraints for an individual task. In the cases when

it is not possible to satisfy both the success probability and deadline constraints, the

task over-provisioning algorithm returns all possible resource combinations tagged

with the success probabilities for each resource set solution, so that a best-effort

replicated set of resources can be chosen.

The task over-provisioning algorithm that determines the set of resource the tasks

should be replicated on uses (a) performance models for the estimation of computa-

tion time on a resource for the workflow task, (b) network latency, bandwidth and

intermediate data sizes for the estimation of data transfer times and (c) reliability

models (based on Weibull distribution) of resources for the estimation of resource

failure probabilities. Let the application deadline be d, the required success probabil-

ity be x and [1 . . .M ] be the set of available resources. The algorithm defines hri
to

be the expected completion time for a task on resource ri, which is obtained by ag-

gregating performance models and data-transfer time estimates. The algorithm also
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defines mri
to be the probability that the task fails on resource ri, which is obtained

using the reliability model as described in section 6.3.1.

The problem is to find a subset, P = {r1, r2, . . . rm} of [1 . . .M ] such that the

following holds true:

• 1−mr1 ×mr2 · · ×mrm ≥ x

• |P | is minimum

• max(hr1 , hr2 , · · hrm) ≤ d

The algorithm finds the degree and resources for over-provisioning by carefully enu-

merating a selected portion of the subsets of [1..M] and returning the smallest subset

of resources that satisfies all the conditions [53].

Integrating Fault Tolerance with HEFT/DSH

The over-provisioning we described above works well for an individual task but it

is not designed for workflow applications. Figure 6.1 describes the algorithm that

we use to integrate the task over-provisioning algorithm with HEFT. First, we sort

the tasks in the DAG by upward ranks. Then, we assign each task to the resource

that has the earliest finish time. After a task is assigned, we check its predecessor

task. If all successor tasks of the predecessor have been assigned to a resource,

we invoke the task over-provisioning algorithm(TOP) to find a set of resources on

which the predecessor should be replicated so that its deadline and success probability

constraints are satisfied. We only invoke TOP to duplicate a task after all its successor

tasks have been assigned because it takes into consideration the communication time

when it computes the degree of duplication. We set the deadline as 30% more than

the task’s finish time without duplication and the probability constraint as 0.95. We

assign the predecessor task to the resources in the set. If there is no resource set

that can statistically guarantee a success probability of 0.95, the over-provisioning

algorithm returns a set of resource sets and the corresponding success probabilities.
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HEFT-Dup(DAG dag, Resource res, PerfModel pM)

Task[] tasks = dag.sortTask(res)

for each task t in the tasks

t.mapResource(res, pM)

t.assigned = TRUE

for each pTask in t ’s parent Task

Vector dupRes;

if ( pTask.allChildrenAssigned() == True )

dupRes = TOP.getDupRes(pTask, res, pM)

if (dupRes.isEmpty() )

dupRes = TOP.getAllDup(pTask, res, pM)

dupRes = dupRes.selectMostReliable()

for each resource r in dupRes

if ( pTask is not assigned to r already )

assign pTask to r

if (pTask replicated to LIMIT resources)

break

end

end

end

Figure 6.1 : HEFT with Over-provisioning

In this case, we pick the resource set with the highest reliability. We assign the

predecessor to those resources in addition to the original one if it is not included in

the replication resource set. We also limit the total number of resources on which

one task can be replicated. In case the total number of resources is more than the
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limit, we keep the resource that HEFT assigns this task to and select the subset of

resources TOP returns that has the best reliabilities. We will discuss in section 6.4

how this limit affects the outcome.

Similarly, we integrate the DSH scheduling algorithm with over-provisioning to get

the DSH with over-provisioning algorithm. The only difference is that we duplicate

the predecessor for the performance purpose first and then invoke the TOP for better

reliability.

6.2.3 Scheduling Algorithms with Checkpoint-recovery

To mitigate the effect of failures during execution time, we use checkpoint and resub-

mission of workflow steps. We chose to implement a light-weight checkpoint strategy

that saves only the current location of the intermediate data as opposed to a heavy-

weight checkpoint strategy that saves the data on a separate system [80]. We made

this choice because the performance of the heavy-weight checkpoint mechanism re-

lies heavily on the reliability and performance of the backup system. This could

lead to a chicken and egg problem since the backup system’s reliability also relies on

over-provisioning. Hence, we decided to focus on light-weight checkpointing.

Since a workflow application consists of multiple tasks, it is natural to do a light-

weight checkpoint when each task finishes. If a task fails to finish due to resource

unavailability, we restart it on the most reliable resource that is available based on the

reliability prediction. However, since we only implement light-weight checkpointing,

it is possible that some of the resources on which the predecessor tasks were running

are also not available. In this case, we restart those predecessors on new resources.

However, this approach has a potential to cause infinite loops if a task fails repeatedly

while its predecessors always finish after restart. Therefore, we put a limit on the

number of times a task can restart. In our study, the limit is set to three, since our

initial experiments showed that a higher limit did not provide better reliability and

used more resources.
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Since checkpoint and recovery happen during execution time, we can apply them

to the over-provisioning version of HEFT and DSH directly. So, we have the following

combined versions - (a) HEFT with over-provisioning and checkpoint-recovery and (b)

DSH with over-provisioning and checkpoint-recovery. We will refer to the combined

versions as over-provisioning with checkpoint version of HEFT and DSH.

6.2.4 Whole DAG Over-provisioning and Migration

The fault tolerance strategy described in section 6.2.2 is task based, which means

that it only guarantees the statistical success probability of an individual task, not

the entire DAG. For a workflow application with N tasks, with each task having a

success probability of si, the success probability of the entire workflow is

SuccProboverall =
N∏

i=1

si

The DAG success probability can be very low when N is large. For example, the suc-

cess probability of a 100-task workflow application where each task has a 99% success

probability is only 36.6%. Therefore, in addition to the task based fault tolerance

strategy, we also propose a whole DAG over-provisioning (WDO) mechanism that

replicates the whole DAG onto multiple resources.

Figure 6.2 describes the algorithm that we use for whole DAG over-provisioning.

We first estimate the makespan of the entire DAG for each resource using the exclusive

time estimation method developed in Section 5.2.1. We then compute the failure

probability of the entire DAG according to each resource’s reliability model. After

we sort the resources by their failure rate in descending order, we apply a greedy

approach that assigns a DAG to the resources with the highest reliabilities until the

aggregated success probability is over 0.95. The aggregate success probability is

SuccProboverall = 1−
M∏
i=1

fi

where fi is the failure probability of resource i and M is the number of resources.
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DAG-Dup(DAG dag, Cluster res, PerfModel pM)

TreeSet<Entry<Cluster, Double>> relSort

float time, failProb

for each resource r in res

t = dag.getEstimateTime(r, pM)

failProb = r.reliabilityModel.getFailProb(t)

reliabilitySort.put(r,failProb)

end

Sort resources in relSort by the reliability

for each resource r in relSort

calculate the aggregate success prob.

if overall success prob ≤ 0.95

assign dag to r

if ( dag replicated to LIMIT resources)

break

else

break

end

Figure 6.2 : Whole DAG Over-provisioning

We can also combine the whole DAG over-provisioning algorithm with the checkpoint-

recovery mechanism, which happens during the execution time. Therefore, we have

10 different scheduling and fault tolerance mechanism combinations in total. We

will apply these in our workflow management system and analyze their reliability,

performance and resources usages.
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6.3 Experimental Methodology

To study how these fault tolerance and scheduling strategies perform in a multi-

cluster grid environment, we implemented a prototype workflow management system

that schedules and executes a workflow application on a simulated multi-cluster grid

based on our previous work described in Chapter 3 and Chapter 4. We use this

system to schedule and execute workflow applications with different fault tolerance

and scheduling techniques. In this section, we will first discuss the resource reliability

models we use. Then, we present our experimental design which includes (a) the

chosen resource configurations, (b) the workflow applications, (c) performance models

used and (d) the number of experiments.

6.3.1 Resource Reliability Model

Recent studies [91, 50, 98, 75] show that the mean time between failures (MTBF) on

modern high performance clusters is best modeled by a Weibull distribution [117].

However, the shape and scale parameters are different for each study. Nurmi et al. [75]

and Schroeder et al. [98] report that the shape parameter is less than 1, which means

that the hazard rates (the frequency a system or component fails) decrease with

time. In contrast, Iosup et al. [50] report that the shape parameter is greater than

1, which indicates an increasing hazard rate over time. Hence, we wanted to explore

both regions for the shape parameter in our study and created two sets of reliability

configurations - one set with shape parameter ranging between 0.5 and 0.9 according

to Schroeder et al. [98] and the other set with shape parameter ranging between 10

and 13 according to Iosup et al. [50]. For a given range of shape parameter, we

generated three reliability models based on three mean values of the scale parameter

- three days (for shaky), one week (for normal) and three weeks (for stable). Note

that the expected value (the MTBF in our case) of a random variable that follows a

Weibull distribution with a shape parameter k and scale parameter λ is λΓ(1 + 1
k
).

So, with two ranges of shape parameters, we explore 6 different reliability models
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in this study. The resource failures are randomly generated following the Weibull

distributions in the reliability model. Figure 6.3 presents the six different Weibull

parameters in our experimental setup.

WeiBull distribution Shaky Normal Stable 

[Iosup] 
shape (k) 11.3~12.8 11.3~12.8 11.3~12.8 
scale  (λ) 28~64 hour  84~192 hour 250~650 hour 

[ Nurmi] 
[Schroeder] 

shape (k) 0.61~0.90 0.61~0.90 0.61~0.90 

scale  (λ) 28~64 hour  84~192 hour 250~650 hour 

Figure 6.3 : Weibull Parameters in Our Experiment

6.3.2 Experimental Setup

We use a multi-cluster simulated grid environment with nine clusters that have the

same processor configuration as nine sites in the TeraGrid [107]. Correspondingly,

there is a Weibull distribution for each cluster with a pair of shape and scale param-

eter. Although the scale and shape parameters are different for each cluster, they are

within the range of one of the six models listed in Figure 6.3. For example, in a shaky

model with large shape parameters, the nine clusters have their own distinguished

shape parameters between 11.3 and 12.8 and scale parameters between 28 and 64

hours.

Similar to our approaches in Chapter 3 and Chapter 4, we generated three types of

DAGs corresponding to three different parallel applications and algorithms - Montage,

Fast Fourier Transform and Gaussian elimination that we described in Section 2.2.1.

We also generated two types of DAGs that represent common parallel programming

models - fork-join and level. For each type of DAG, we generated over 100 DAGs
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with configurations differing in the total number of tasks, the average size of the task,

and the computation to communication ratio. We use historical performance models

generated from the performance data we collected in Chapter 5. The estimated

running time of those DAGs on the clusters we use, based on the performance data

and without duplication, range from a few hours to a month. The success probabilities

of those DAGs range from almost zero to almost one based on the estimation we used

in whole DAG over-provisioning (WDO) algorithm.

In total, we used 635 different DAGs and 6 different reliability models. Since the

failures are randomly generated, we ran each DAG and reliability model combination

10 times. For each run, we used all 10 different scheduling and fault tolerance mecha-

nism combinations so that each approach sees the same resource failures. In addition,

we ran 3 batches of experiments allowing the number of times a task was duplicated

or restarted from checkpoints to vary as we described in section 6.2. Therefore, we

collected over 1 million different executions’ results for each batch of experiments so

we have 4 million data points in total. We will discuss the experiments and results

in the following section.

6.4 Results

We present our experimental results for the algorithms we described in section 6.2.

We have two basic scheduling algorithms, HEFT and DSH. We denote the over-

provisioning versions of them with an “ O” at the end and the checkpoint-restart

version with a “ C” at the end. An “ OC” in the end means both fault tolerance

mechanisms are applied. In addition, we have the duplication based whole DAG over-

provisioning (WDO) algorithm and its checkpoint-restart version “W C”. Figure 6.4

shows the overall percentage of workflow applications that successfully finished after

using one of the ten scheduling and fault tolerance technique combinations. From

the graph, we observe that the over-provisioning mechanism can increase the DAG

success probability by around 25% while light-weight checkpoint-restart can increase
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Figure 6.5 : Overall Standard Length Ratio (SLR)

the success probability by around 12%.

Figure 6.5 shows the workflow performance for each approach. We compare the

Schedule Length Ratios (SLRs), described in Chapter 2, of the methods rather than

raw makespan to ensure a level playing field. In general, both high-reliability meth-

ods and low-reliability methods will complete small DAGs, which can run before
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Figure 6.6 : Overall Cpu Time Usage

the MTBF becomes a significant factor. However, more reliable methods complete

longer-running DAGs while other methods do not. Therefore, averaging run times of

completed executions would clearly favor less-reliable methods, without giving insight

into any overhead of either method. Normalizing the results using SLR avoids this

bias. Lower SLR indicates better performance. We can see that over-provisioning

only increases the SLR by at most 5% while checkpoint-restart increases SLR by at

most 6%.

The relatively small performance penalty is because the makespan for the schedule

with over-provisioning is the same as that of the original schedule unless the original

resource assigned by the scheduler is down. In that case, the penalty is just the

completion time difference between the next fastest resource and the fastest one.

Also, we see that the duplication based scheduling (DSH) has a 10% advantage over

HEFT and produces the best schedules (i.e. lowest SLRs) among all algorithms.

Thus, some over-provisioning decision could also make the DAG run faster in the

same fashion. Whole DAG over-provisioning also performs better than HEFT. This

is because WDO almost eliminates all the communication time unless there are task
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Figure 6.7 : Success Probability with Different Reliability Models

failures since each task’s parent is already assigned to the same resource.

Figure 6.6 shows the resource usage for each approach in terms of total CPU hours

used. However, since each approach finishes a different number of DAGs, we divided

the total usage into three parts in order to further analyze the result. “Used” resource

time denotes the total CPU hours consumed by the completed tasks in the DAGs that

successfully finished. The “wasted” resource time is the total CPU hours consumed by

the completed tasks in the DAGs that failed to finish. The “failed” resource time is the

total CPU hours consumed by the failed tasks no matter whether the DAG finished or

not. The solid stacked bar in figure 6.6 thus shows the aggregated CPU hours that all

workflows used including all three usage types. We can see that over-provisioning uses

around 2.5 times more resources than HEFT while checkpoint restart uses 1.5 times

more resources than HEFT (and similarly for DSH). Besides that, we also calculated

the total CPU hour that failed DAGs would need to complete successfully, if there

were no more resource failures. We call this the “potential” resource usage and plot

it as a transparent bar on top of the solid bar. We can see that since HEFT and

DSH have a lower completion rate, the “potential” resource usage is higher relative

to the amount used. Whole DAG over-provisioning (WDO) uses 20% more resources
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than HEFT with over-provisioning but since it completes more DAGs, it would use

just 10% more resources than HEFT with over-provisioning (or about 5% more than

DSH with over-provisioning) taking into account the “potential” resources to finish

all the DAGs.

Figure 6.7 illustrates how resource reliability affects the overall success probability

of workflow applications with our approaches. Scale parameters affect the DAGs’ suc-

cess probability more than the shape parameters, we categorize our reliability models

into three groups corresponding to the reliability characteristics of the resource. The

results show that, using HEFT only, the average success probability of workflows

is 32% when they are executed on the most unreliable resources, referred to as the

shaky resources. The average success probability of workflows using HEFT only is

83% when they are executed on the most reliable resources, referred to as the stable

resources (similarly for DSH). We refer to the third group as the normal resources,

where reliability is somewhere between the two. We can see that the more fault

tolerant techniques we use, the less is the dependence of the workflow application’s

success probability on the underlying resource reliability. The success probability of

HEFT on the stable resources is over 150% more than that on the shaky resources.

The algorithms with over-provisioning alone has a better success probability on sta-

ble than on shaky by about 80%. Meanwhile, the whole DAG over-provisioning

with checkpoint-restart has only about 20% difference in success rate. Also, the

less reliable the resource is, the more impact the fault tolerance techniques have on

the success probability. The scheduling algorithms with over-provisioning improves

the reliability average by over 50% than their base algorithms on shaky resources,

while only by 10% on stable resources. Similarly, the scheduling algorithms with

checkpoint-recovery improves their performance over the base algorithms by 17% on

shaky resources but have almost the same success probabilities on stable resources.

Finally, we notice that the whole DAG over-provisioning (WDO) and whole DAG

over-provisioning with checkpoint-recovery (W C) provides the best success probabil-
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Figure 6.8 : Expected Resource Usage
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Figure 6.9 : Expected Resource Usage with Different Reliability Models

ity on all resource types.

Figures 6.8 and 6.9 show the expected resource usage for each approach overall

and under different reliability models. We use the expected value instead of the ac-

tual value because algorithms using no or fewer fault tolerance techniques complete
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Figure 6.10 : Performance with Different Reliability Models

a smaller number of DAGs. Figure 6.8 illustrates the idea. To better compare their

total resource usage, we incorporate the success rate of the approach to normalize

the resource usage. We view the repeated run of a DAG as a Bernoulli process in a

sense that it resembles a scientist tries to complete her DAGs on unreliable resources

using any of our schedulers. If one run fails, she simply retries it until it succeeds.

This is a Bernoulli process if the trials are independent. We know that the expected

number of trials before one sees a success is 1/p where p is the success probability for

an individual trial. We then calculate the expected resource usage for algorithm algo

as the cpu houralgo × 1/p. That is the expected resource one approach uses to get a

successful execution. From Figure 6.8 we can see that the over-provisioning versions

of the scheduling algorithms use about twice the expected resources of their base

algorithms while the checkpoint-recovery versions use around 20% more. Figure 6.9

shows that the over-provisioning versions of the algorithms have about 100% more

expected resource usage than the vanilla scheduling algorithm on shaky resources,

while they use 50% more on stable resources. We notice that WDO uses less to-
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Figure 6.11 : Fast Fourier Transform Performance

tal expected resources than all over-provisioning and checkpoint-recovery combined

approaches while providing higher reliability. We also measured the performance in

terms of SLR under different reliability models, shown in Figure 6.10. The reliability

does not affect the performance much. Each approach’s SLR differences on different

reliability models are within 10% and the difference between different approaches is

similar to the data in figure 6.5.

We grouped data for DAGs that represent different types of applications. Most

of the data representing a single type of application are similar to the overall graphs.

However, certain applications showed some distinct features . For example, Fig-

ure 6.11 shows the Fast Fourier Transform(FFT) application’s performance. The

WDO technique has an almost 50% improvement over the other methods. We be-

lieve that is because it eliminates all the potential communication costs that occur

in the expensive message exchange phase of FFT while DSH would not duplicate the

whole DAG because it would delay the start time of those tasks.

Since failure probability prediction is hard, we tested the robustness of our fault

tolerance approaches with respect to failure prediction accuracies. Figure 6.12 shows
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Figure 6.12 : Success Probability with Different Failure Prediction Accuracies
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Figure 6.13 : Performance with Different Failure Prediction Accuracies

the workflow application execution success probabilities with different failure predic-

tion accuracies. The accurate prediction is the failure probability that we get from the

Weibull distribution’s cumulative distribution function. For the optimistic prediction,

we multiply the accurate failure probability by a random number evenly distributed

between 0 and 1. Therefore, the expected failure probability is half of the accurate
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Figure 6.14 : Resource Usage with Different Failure Prediction Accuracies

one. For the pessimistic prediction, we divide the accurate failure probability by a

random number evenly distributed between 0 and 1 thus make it higher and we cap

the pessimistic prediction under 1. From Figure 6.12 we can see that although the

accurate prediction always leads to best success probabilities, all the fault tolerance

mechanisms are pretty robust under inaccurate failure predictions. Figure 6.13 shows

that the approaches’ performance is minimally affected by the failure probability

prediction.

Figure 6.14 shows the expected resource usages under accurate, optimistic and

pessimistic failure probability predictions, analogous to Figure 6.8. We see that the

pessimistic prediction can lead to increases of as much as 20% in resource usages over

optimistic prediction. It is because the over-provisioning algorithms over-replicate

applications onto more resources than necessary under pessimistic prediction. Since

optimistic prediction does not lead to significantly lower success probability, but does

cause less duplication, its expected resource usage is even better than with accurate

prediction. This suggests that it is better to err on the side of optimism in estimating

failure probabilities, at least from the resource usage point of view.

We believe that one reason why our over-provisioning mechanisms does not use
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Figure 6.15 : Success Probability with Different Replication Limits
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Figure 6.16 : Resource Usage with Different Replication Limits

too many resources under pessimistic failure predictions is that we have a limit set

for how many resources each task can be over-provisioned. The default value is set

to 3. Thus, even if the failure prediction is too pessimistic, we will not over-provision

too much. To show the effect of the resource limit, we also used 5 and 10 as the
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limit. Figure 6.15 shows that it does not affect the application success probability

does not affect more than 5%. The performance differences between different levels of

replication are also within 5% of each other. However, Figure 6.16 shows that it does

affect the expected resource usage. We can see that the replication limit 10 batch

uses almost 100% more resources than the replication limit 3 batch while providing

only less than 3% more success probability.

Overall, our experiments evaluate the three way trade-off between reliability, per-

formance and resources usage in a large-scale simulated environment. We believe

this can be a useful reference for future workflow application developers to balance

between these three aspects.

6.5 Related Work

Workflow application scheduling on grids [69, 122, 127] is an active area of research.

Workflow scheduling has largely focused on heuristic techniques using performance

models to qualitatively select resources and map tasks to the resources that have good

performance [57]. Few scheduling algorithms take into account reliability of the grid

resources.

One of the most widely implemented fault-tolerance techniques on computational

Grid is simple retry [80] which means the application is resubmitted on a resource in

case of a failure. In many workflow management frameworks [72, 46], the remaining

portion of the workflow is resubmitted in case of a failure.

Hwang et al. [49] present a failure detection service (based on notifications) and

a flexible framework for handling Grid failures. Therefore, we assume that a failure

could be detected relatively shortly after it occurs in our work. Budatiet al. [15]

present a reliability-aware system which uses a resource’s prior performance and be-

havior to get better performance and reliability on large-scale donation-based dis-

tributed infrastructures. However, their system mainly targets P2P solving systems.

Limaye et al. [63] have developed a checkpoint/restart mechanism that places check-
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points based on system reliability. We could incorporate their work to increase our

checkpoint-recovery’s statistic success rate. Dongarra et al. [32] use the product of

failure rate and unitary instruction execution time to guide the scheduling of inde-

pendent tasks onto heterogeneous clusters. Their work could also be used to increase

the base line algorithm’s reliability in our system.

6.6 Conclusions

This chapter presents workflow scheduling and execution mechanisms that incorporate

a balanced approach toward reliability and performance which is not very sensitive

to the underlying resource reliability prediction. It also presents a new algorithm

that replicates the whole DAG (WDO) onto several clusters which provides the best

reliability. From the experiments, we observe that the fault tolerance techniques are

effective. They can increase the reliability of workflow executions by as much as 200%

and do not affect performance by more than 10%. Also, we presented a quantitative

model for the three-way trade offs between the reliability, performance and resource

usage. We believe it could be valuable to system architectures who want to design a

fault tolerance / high availability system.
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Chapter 7

Batch Queue Resource Scheduling for Workflow

Applications

In this chapter, we present our work on reducing the resource provisioning overhead for

the workflow application running on batch queue controlled resources. Our approach

groups a workflow application into several aggregations and uses the batch queue

to acquire resources for each aggregation, overlapping queue wait time of one with

the execution of others. We implemented a prototype of this technique and the

experimental results show that our approach can eliminate as much as 70% of the wait

time over more traditional techniques that request resources for individual workflow

tasks or that acquire all the resources for the whole workflow at once.

7.1 Introduction

In this Chapter, we will focus on a special but very important case in the second

step of our decoupled scheduling approach that schedules a workflow onto an individ-

ual cluster to achieve the best turn-around-time. Clusters (parallel computers with

high-speed interconnects and shared file systems) have become the most common

high-performance computing platform. With the emergence of super clusters that

often have more than 100k cores in one cluster [18], a single cluster now can usually

provide enough resources for a workflow application to run in maximum parallelism.

Therefore, it is more and more likely that the resource selector in the decoupled

scheduling approach we used in Chapters 3, 4 and 5 will select a single cluster as a

TightBag that provides both the high computation power and tight connections. The

whole DAG over-provision (WDO) mechanism we proposed in Chapter 6 also dupli-
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cates an entire workflow application onto a single cluster. We therefore consider this

special case (i.e. executing a workflow on a single cluster), and attempt to minimize

the turnaround time in that environment.

Workflow execution systems can get access to a cluster either locally, through col-

laborative Grid organizations such as TeraGrid [107], or through national supercom-

puting centers like TACC [108]. In any case, these clusters are shared and usually

managed by a local resource management system that has its own resource shar-

ing methodology and policy. Among them, commercial or open source batch queue

scheduling software [79, 25, 65] is the most popular resource management system.

Section 7.2 gives more details on the background of both workflow applications and

batch schedulers.

The main goals of a site using batch queues are usually to achieve high throughput

and maximize the system utilization. Consequently, many production resources have

long queue wait times due to the high utilization levels. In addition, although it is

not unusual for a single cluster to have several thousand processors, a single user

usually can only obtain a small portion of the total available resources (without

special arrangements). This creates performance problems for large scale workflow

applications because each sub-task in the workflow could experience long delays in

the job queue before it runs. The queue wait time overhead is sometimes much more

than the workflow applications runtime [101]. Alternately, one could submit an entire

workflow as a single batch queue job. However, this might cause an even longer wait

for a larger resource pool to become available at once.

Our work seeks to reduce workflow turnaround time by intelligently using batch

queues. We accomplish this by aggregating workflow tasks together and submitting

them as a single job into the queue. Section 7.3 describes our method in greater

detail. This approach can greatly reduce the number of jobs a workflow execution

system submits to the batch queue. By overlapping some tasks’ wait times with

others executions, we further shorten the batch queue wait times for the workflow
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applications. As we will see in Section 7.4, our scheduling reduces the queue wait

time overhead without requiring special system privileges and using only user-level

mechanisms. We conclude our presentation with a discussion of related work in

Section 7.5 and our conclusions and future work in Section 7.6.

7.2 Background

7.2.1 Batch Queues

Batch queues have become the most popular resource management method on com-

putational clusters. A batch queue system is normally a combination of a parallel-

aware resource management system (which determines “where” a job runs) and a

policy based job scheduling engine (which determines “when” a job runs). We are

mostly interested in the job scheduler component, treating the individual processors

as homogeneous. To illustrate how this scheduler works, we describe the widely-used

open-source Maui batch queue scheduler [51, 12]. The experiments in Section 7.4 are

based on simulations of this scheduler.

The Maui scheduler, like many batch queue schedulers, is essentially a policy

based reservation system. The key idea is to calculate a priority for each job in the

queue based on aspects of the job and the policy of the queue system. The priority of

each batch queue job is determined by job properties, such as the requested resource

requirements (number of processors and total time), its owner’s credentials, and the

time it has waited in the queue. These properties are combined in a formula with

weights configured by the system administrator. For example, to favor large jobs, a

site would choose a high (and positive) weight for the resource requirements.

When a batch queue event happens, i.e a job finishes, a new job is submitted, etc,

the Maui scheduler calculates all jobs’ priorities and starts all the highest-priority

jobs that it can run immediately. It then makes a reservation in the future for the

next highest priority job according to the already running jobs’ requested finish time

to ensure it will start to run as soon as possible. Given that reservation, a backfill
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mechanism attempts to find jobs that can start immediately and finish before the

reservation time. Once a job begins execution, it runs to completion or until it

exhausts its requested resources.

Maui, like some other schedulers [73, 79, 25], can provide advance reservation ser-

vices at a user level. This allows the user to request a specific number of resources for

a given period of time, effectively gaining a set of dedicated resources and eliminating

the queue wait time. However, advance reservation is not available at all sites, usu-

ally involves system administrator assistance, and always requires notice beforehand.

Furthermore, Snell et al. [102] showed that advance reservation can decrease the sys-

tem utilization and has the potential to introduce deadlocks. We therefore assume

advance reservation is not available in this chapter.

One advanced feature of Maui that we do use is the start time estimation func-

tionality. A user can invoke the showstart command to get the estimated start time

of a job in the queue or a new job (specified with number of processors and dura-

tion) to be submitted. This can be done by computing the job’s priority, building

(or querying) the queue’s future schedule, and determining when the job would run.

Note that, because new high-priority jobs could be submitted before the queried job

runs, the estimate may not be exact. However, it is a useful piece of information to

use in scheduling.

7.2.2 Workflow Application Execution

Executing a workflow is conceptually simple. Whenever a task is ready to execute (i.e.

all its predecessors have completed), it can be scheduled for execution. However, doing

this naively in a batch queue environment could potentially create long waits for every

task to begin. Nevertheless, this is common practice. There are two general ways [52]

(other than advanced reservations) to reduce this batch queue overhead. One way

is to aggregate the workflow tasks into larger groups [101]. This would reduce the

total number of job submissions needed to complete the workflow thus may leads to
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less overall batch queue wait time. However, larger jobs may need to wait for longer

in the batch queue for all the resources it requested to be freed. Therefore, it is

essential to have an intelligent way to aggregate the workflow so that the total batch

queue wait time can be reduced. The other method is to use virtual reservation

technology [56, 78, 42, 116]. This provisioning technique enables users to create a

personal dedicated resource pool in a space-shared computing environment. Although

there are various implementations, the key idea is to submit a big placeholder job

into the space shared resource site. When the placeholder job gets to run, it usually

installs and runs a user-level resource manager on its assigned computing nodes.

The user-level resource manager (in our case, the workflow execution system) then

can schedule jobs onto the those computing nodes without going through the site’s

resource manager again. Our work draws inspiration from the virtual reservation

implementation, but attempts to choose a more propitious size for the placeholder

job.
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Figure 7.1 : Workflow Application Aggregation
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7.3 Workflow Application Aggregating

Our workflow aggregating technique groups the workflow tasks into larger units. Fig-

ure 7.1 shows an example. The left side of the figure is the original DAG that repre-

sents a workflow application. The right side of the figure is an aggregated version of

the same DAG in which we group all the tasks in the same level into one aggregation.

Our goal is to choose an aggregation that will reduce the total batch queue wait time.

The main idea behind our approach is that we can aggregate the workflow by level

and submit a placeholder job for the later levels before their predecessors finish. In

this way, we can overlap the running time of the predecessor level with the wait time

of the successor levels.
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Figure 7.2 : Workflow Application Cluster by Level

Figure 7.2 illustrates this idea. Placeholder jobs are represented by rectangles that

contain one or more levels of tasks. The yellow rectangles represent the wait time

of the placeholder job in the queue. The left portion of the figure shows a grouping

of the workflow DAG in Figure 7.1 into a single placeholder job. We can see that

it may need a long wait time before it can start. The middle of Figure 7.2 shows

a grouping of the same workflow DAG into two aggregations and submitting them
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in turn. A placeholder job is submitted into the queue as soon as its predecessor

placeholder job starts. It asks for enough resources for the tasks it holds to run in

full parallelism. The wait time seen by the users for the later task is the dark yellow

area marked “real wait time”. We can see that it is less than the queue wait time

for the second aggregation because of the overlap with task 1’s execution. Ideally, if

the first placeholder job gets to run immediately and the later jobs’ wait times do

not exceed their predecessor’s run times, the queue wait time for the entire workflow

application is eliminated, as shown on right side of Figure 7.2. However, this perfect

overlap cannot be guaranteed. Furthermore, if the wait time for a placeholder job

is less than its predecessor’s run time, it must pad its requested time to honor its

dependences. In turn, this will affect the wait time of the placeholder job. Balancing

these effects requires heuristic scheduling.

Our algorithm consists of two interrelated parts: an application manager shown in

Figure 7.3, and a “peeling” procedure shown in Figure 7.4. The application manager

is responsible for launching the workflow application and monitoring its progress. In

general, it chooses partial DAGs and submits placeholder jobs to the batch queue

system. Individual workflow tasks execute in the placeholder jobs when those jobs

come to the front of the queue, with the application manager enforcing their depen-

dences. The peeling procedure selects the partial DAGs to minimize the exposed

waiting time. We now consider the parts in turn.

Figure 7.3 shows the application manager. After selecting and submitting the

initial partial DAG (lines 1-5), the manager becomes an event-driven system. The

primary events that it responds to are:

• A placeholder job starts to run (lines 8-16). The manger first starts all the

workflow tasks associated with the job whose predecessor tasks have finished.

Then it invokes the peeling procedure to form the next placeholder job and

submit it to the queue.

• A placeholder job finishes running (lines 17-25). Normally, no processing is
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needed. However, if the placeholder is terminated before all its tasks complete

(e.g. because some predecessors were delayed in the batch queue), the manager

must clean up. It cancels any placeholders that have not started, since some

of their predecessors may be delayed. It also calls the peeling procedure to

reschedule the unfinished DAG tasks (both interrupted tasks and those not yet

run) and submits the new placeholder job into the queue.

• A DAG task finishes (lines 26-32). The manger starts all the successor tasks

whose placeholder job is already running. One subtlety in the application man-

ager is that the successors of a DAG task may be in the same placeholder or

Algorithm:runDAG (DAG dag, int sub time)

1 task[] partial dag ← levelize(dag);

2 int count ← 0;

3 Placeholder job ← peelLevel(partial dag, sub time, 0);

4 job. name ← count;

5 submit job;

6 while ( dag is not finished)

7 listen to batch queue and task events;

8 if (placeholder job n starts to run at time t)

9 for all (task in job n.getTasks())

10 if (all task predecessors have finished)

11 start task;

12 ear finTime ← job n.runTime;

13 partial dag ← levelize(dag.unmappedTasks());

14 job ← peelLevel(partial dag, t, ear finTime );

15 job. name ← ++count;

16 submit job;
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Algorithm:runDAG (DAG dag, int sub time)

17 else if ( placeholder job n finishes running at time t)

18 if ( job n has unfinished tasks)

19 partial dag ← levelize(job n.unfinishedTasks());

20 for all ( pending placeholder job job m )

21 cancel job m;

22 add job m.tasks() to partial dag ;

23 Placeholder jobResub ← peelLevel(partial dag, t, 0);

24 map all tasks in the partial dag to jobResub;

25 submit jobResub;

26 else if ( task dagTask finishes running at time t)

27 delete the dagTask from its placeholder job

28 for all (dagTask’s successor task chd task)

29 if (chd task’s associated placeholder job is running)

30 start chd task;

31 if (dagTask’s placehold Job has no more tasks to run)

32 stop dagTask’s placehold Job

Figure 7.3 : The DAG Application Manager

a different one. In the latter case, the manager must handle the possibility

that a placeholder starts without any runnable tasks (lines 28-30). If all of a

placeholder’s tasks are finished, the manger finishes the job to free the batch

queue resource.

We choose to submit a new placeholder job only after its predecessor begins running.

There are several reasons for this design. In our experience with real queues, we

discovered that multiple outstanding jobs in the queue interfered with each other. In

turn, this often caused the wait time for already-submitted jobs to lengthen, which
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Algorithm: peelLevel(levelized DAG, int sub time, int ear time)

1 int runTime all, waitTime all;

2 int peel runTime[2], peel waitTIme[2];

3 runTime all ← est runTime(DAG);

4 waitTime all ← est waitTime(runTime all, DAG.width,sub time);

5 peel runTime[0] ← runTime all;

6 peel waitTIme[0] ← waitTime all;

7 int level = groupLevel(DAG,sub time, ear time,

8 peel runTime, peel waitTIme);

9 if ( level == DAG.height)

10 if (runTime all * 2 < waitTime all)

11 return the whole remaining DAG in a batch queue job

12 else

13 return submit the remaining DAG in individual mode

14 else

15 group levels to a partial dag;

16 map each dag job to the batch queue job;

17 return the partial dag in a placeholder job;

Figure 7.4 : The DAG Peeling Procedure

both added overhead and invalidated our existing schedules. In addition, it is possible

that the execution order of the two placeholder jobs gets reversed which leads to

even greater schedule overhead. Therefore, we did not have a good estimate of the

later placeholder’s start time. Although our current design misses the potential of

overlapping two placeholder jobs wait times with each other or with running jobs, we

can calculate the earliest start time of all the remaining tasks. This is one key to the

aggregate decision procedure described in Figure 7.5.
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Figures 7.4 shows the peeling procedure used by the application manager. We

refer to this process as “peeling” because it successively peels levels of the DAG off

of the unfinished work list. First (lines 1-6), the main peelLevel function estimates

the wait time to submit the entire DAG as a single placeholder job. It then invokes

the groupLevel function (lines 7-8 and Figure 7.5) to search for a better alternative.

If groupLevel does not improve the wait time (lines 10-13), the peeling procedure

chooses to submit the DAG either as a single placeholder job or as one job per task.

The decision depends on whether the total wait time as a single job is twice the total

run time of the DAG. The intuition for this is that individual submission can take

advantage of the free resources or the backfill window. When the one giant placeholder

job’s wait time is twice as long as the run time, the individual submission has a better

chance to finish earlier. This is a heuristic parameter chosen empirically. Otherwise,

we use the partial DAG returned by groupLevel. The expected job start estimation

we used is a best effort approach like the showstart command in Maui. However,

our experience shows it is a reliable indicator of the wait time with one experiment

showing the average estimated wait time is within 5% of the average actual wait time

although the variance is high.

Figure 7.5 shows the key groupLevel procedure. Although the logic is somewhat

complex, in essence we perform a greedy search for an aggregation of DAG that

has enough granularity to hide later wait times and is wait-effective. We define

the wait effectiveness of a job as the ratio between its wait time and its running

time; a smaller ratio is better. The intuition behind this is that we want a job to

either wait less or finish more tasks. However, we do not search for the globally best

wait-effectiveness. This is because, once we group several layers of the DAG into a

wait-effective aggregation, any later jobs’ wait time can be overlapped with run time

of this aggregation. Continually adding levels onto the current aggregation forfeits

this benefit for the following levels.

Here is some more detailed explanation of our algorithm. After some initialization
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in lines 1-6, the main loop in lines 8-37 repeatedly moves one DAG level from the

remaining work to the next placeholder job until the aggregation is less wait-effective

than the previous round. For each candidate job, lines 9-18 adjust the placeholder’s

Algorithm: groupLevel (levelized DAG,int sub time, int ear sTime,

int peel runTime[2], int peel waitTIme[2] )

1 int real runTime[2];

2 int runTime all, waitTime all,leeway;

3 runTime all ← peel runTime[0];

4 waitTime all ← peel waitTIme[0];

5 real runTime[0] ← peel runTime[0];

6 partial dag ← level one of DAG;

7 boolean giant ← true;

8 while partial dag ! = DAG

9 peel runTime[1] ← est runTime(partial dag)

10 real runTime[1] ← peel runTime[1];

11 do

12 peel runTime[1] ← peel runTime[1]+ leeway/2;

13 peel waitTime[1] ←

14 est waitTime(peel runTime[1], DAG.width,sub time);

15 leeway← ear sTime + real runTime[1] - peel waitTIme[1];

16 while leeway > 10 mins

17 if (leeway > 0)

18 peel runTime[1] ← peel runTime[1] + leeway;

19 int real WaitTime ← peel waitTIme[1] - ear sTime;

20 if ( real WaitTime < 0)

21 real WaitTime ← peel waitTime[1];
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Algorithm: groupLevel (levelized DAG, int sub time, int ear sTime,

22 if (giant)

23 if (real WaitTime > real runTime[1])

24 add one level to partial dag;

25 continue

26 giant ← false;

27 if (peel waitTime[1] - ear sTime > 0 )

28 if ( peel waitTime[1] / real runTime[1]

29 > peel waitTime[0] / real runTime[0] )

30 break;

31 if ( peel waitTime[1] / real runTime[1]

32 > waitTime all /runTime all )

33 break;

34 peel waitTime[0] ← peel waitTime[1]

35 peel runTime[0] ← peel runTime[1]

36 real runTime[0] ← real runTime[1]

37 add one level to partial dag;

38 if (giant)

39 return DAG.height;

40 else

41 return partial dag.height-1;

Figure 7.5 : The Peel Level decision Procedure

requested time to allow the workflow tasks to complete. As the left side of Figure 7.6

shows, this is sometimes necessary because the (estimated) queue wait time is less

than the time to complete the current job, creating what we term the leeway. A

simple iteration adds the leeway to the job request until it is insignificant. (Of course,

if the wait time is more than the time to execute predecessors, then no adjustment
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Figure 7.6 : Workflow Application Level Decision

is needed, as in the right side of Figure 7.6.) The loop then operates in one of two

modes based on whether a good aggregation has been identified. If no aggregation has

been selected, more levels are added until the real run time is significant enough to

create overlap for the next aggregation(lines 19-25). Once this happens, the current

candidate is marked as a viable aggregation. From then on, levels are added only

while the wait-effectiveness of the aggregation continues to improve (lines 27-37).

7.4 Experiments

7.4.1 Experimental Methodology

To test the performance of our algorithm, we developed a prototype batch queue sys-

tem simulator that implements the core algorithms of the Maui batch queue sched-

uler described in [51]. The input of the system is a batch queue log obtained from

a production high performance computing cluster and a batch queue policy configu-

ration file. The log contains the pseudo user id, submission time, start time, finish

time, requested number of resources and time, and finish time for each job. I use
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the job’s submission time and the request information to compute the priority. Our

system simulates the batch queue execution step by step based on the input. We

also implemented the job start time estimation function (the showstart command).

The estimation is based on the batch queue policy and all the existing queued and

running jobs’ maximum requested time. It does not forecast any future job submis-

sions. Therefore, it is a best effort estimation within the knowledge of a batch queue

scheduler.

We implemented the methods of Section 7.3 to submit placeholder jobs to this

simulator. We also implemented the runtime algorithm depicted in Figure 7.3, using

events generated by our simulator to drive the workflow management. We also im-

plemented two other ways to execute a workflow application on a batch queue based

resources. The first is a straightforward way to submit each individual task to the

batch queue when it is available to run, which we will refer to as the individual sub-

mission method. The second is to submit a giant placeholder job that requests enough

resources for the entire DAG to finish, which we will refer to as the giant submission

method. We compare our algorithm, which we will refer to as the hybrid submission

method, to the individual and giant method by simulating a DAG submission into

the queue using different methods with exactly the same experimental configuration.

7.4.2 Experimental Setting

We generated DAG configurations for five workflow applications - EMAN, Montage,

BLAST, FFT, and Gaussian Elimination described in Section 2.2.2. For each appli-

cation, we used a similar approach as in our previous Chapters to generate 25 config-

urations for different data sizes. The total number of tasks in a workflow ranges from

dozens to thousands, maximum parallelism ranges from 5 to 256, and total running

time ranges from several hours to a week.

We gathered batch queue logs from four production high performance computing

sites with different capacities and batch queue management systems. Figure 7.7 lists
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Cluster Institution Batch Length

Lonestar Texas Adv. Computing Center LSF 12 Mon.

Ada Rice University Maui 12 Mon.

LeMieux Pittsburgh SuperComp. Center Custom 12 Mon.

RTC Rice University Maui 12 Mon.

Star University of Arkansas Moab 10 Mon.

Figure 7.7 : The Clusters

the five clusters we studied at those sites. From each log, we collected all the jobs that

terminated (either finished or reached the requested time limit) and their requested

number of processors, requested running time, submission time and user id (used only

for the user fair share computation). We also obtained the start time and finish time

of each job to compute the actual job run time. Since most sites don’t publish the

details of their queuing policy and it can change from day to day, we generated three

policies that favored large jobs (FL), small jobs (FS ) or jobs that stay in the queue

the longest (FCFS ). These policies are derived from real site policies which all have

a cap value on the resource component of the priority. For example, the FL policy

does not assign a higher priory for a large job beyond a certain size. Each policy has

a queue wait time component which does not have a cap value to avoid starvation.

The FCFS policy has a particularly large weight on the wait time component.

Figure 7.8 shows our experimental settings. Since the batch queue loads and

number of jobs in the queue fluctuate widely, the results of our algorithms depend

highly on the time we simulate the submission. Therefore, we run each experimental

configuration combination starting at 100 random times during the batch queue log’s

available time and report the mean results. In total, we ran over 700,000 experiments.
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• Algorithms = {individual, giant, hybrid}

• Workflow Application = {EMAN, Montage, BLAST, FFT, Gaussian}

• DAG = { 25 for each workflow application}

• Batch Queue Logs = {Lonestar, Ada, LeMieux, RTC, Star}

• Batch Queue Policies = {FL, FS, FCFS}

Figure 7.8 : The Experiment Settings

7.4.3 Result Analysis

Figure 7.9 shows the average wait time of all workflow applications on five clusters.

The wait time is defined as the

Timewait = Timeturn-around-time − TimeDAG

where TimeDAG is the time to run the DAG on the cluster with exclusive access.

All but one of the differences between averages are statistically significant on a two-

tailed paired t-test with p-value set at 0.05. We can see that our hybrid scheduling

and submission method consistently has the least average wait time among the three

execution methods. The single exception is on cluster Ada with queuing policy that

favors large jobs, and that is the only statistical tie. In addition, our results indicate

that, although the batch queue policy determines each job’s priority, it does not

affect our qualitative results significantly. However, the average wait time from each

cluster varies greatly. For example, the average application wait time on the Lonestar

cluster is only a fraction of the other four clusters. Furthermore, while the individual

submission method waits significantly more time on the Ada and LeMieux clusters

than the giant method, it waits much less time than the giant method on the RTC

and Star clusters.
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Figure 7.9 : Overall Average Wait time
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Cluster Cluster Size Mean Jobs Mean Job Mean Job Mean Job Actual Request

per Day Width Run Time Request Size Load Load

Lonestar 5000 core 932 26.18 core 3.03 hour 274 hour 0.81 2.13

Ada 520 Core 1342 3.57 core 3.57 hour 25 hour 0.81 2.76

LeMieux 2048 Core 251 43.80 core 3.30 hour 329 hour 0.91 1.68

RTC 270 Core 108 2.43 core 13.69 hour 112 hour 0.57 1.87

Star 1200 Core 108 13.16 core 16.93 hour 1050 hour 0.83 3.94

Figure 7.10 : Cluster Configuration and Batch queue Job Characteristic

Since we ran the same set of experiments on each cluster, we hypothesized that the

differences in the outcomes were the results of each cluster’s unique combination of its

configuration and usage pattern. Therefore, we further analyzed the characteristics

of each cluster’s batch queue jobs. We calculated averages for the number of jobs

submitted each day, requested number of processors, actual time a job runs, requested

CPU hours a job requests, the actual load and the requested load of the system over

the duration of each log file. The actual load is calculated by dividing the total CPU

hours used by the cluster’s maximum capacity and the requested load is calculated by

using the total CPU hours requested. Figure 7.10 presents each cluster’s configuration

and our calculations. The results clearly show each cluster has its own unique usage

pattern, and we can use this to explain the variance in our experiment results. For

example, Lonestar cluster has the largest computing capacity among the five clusters.

This explains why the average wait time of workflow application on Lonestar is much

less than on the other clusters since the it’s much easier for Lonestar to fulfill the

resource demand of the same workflow application than other clusters. The batch

queue usage pattern can also affect the execution results in more subtle ways.

Figure 7.10 shows that the Ada cluster users tend to submit small jobs both in

terms of processors and CPU hours. However, Ada’s actual load is not particularly



135

light and it has a large number of jobs submission each day. This explains why

the giant method is more effective on Ada than the individual method when the

queue policy favors large jobs (see Figure 7.9). It is because the giant placeholder

job would usually be the job with the highest priority in the queue and thus could

start early. On the other hand, the individual job submission is less effective not only

because the queue policy favors large jobs but also, since most jobs in the queue are

small jobs, there are fewer opportunities to schedule an individual job by backfilling.

However, Figure 7.9(c) does not show a very clear picture of why the giant method

still performs relatively well when the policy favors small jobs (although the difference

is much less). Figure 7.11 depicts more clearly the effect of the queue policy on the

outcome for each method. We calculated the average of the relative wait time In

Figure 7.11 by dividing each application’s wait time by its running time before we

computed the mean. In this way, we give each workflow’s wait time an equal weight in

the final result. Now, we can see that giant method actually performs worse when the

queue policy favors small jobs in terms of relative wait time. Nevertheless, our hybrid

method performs the best in terms of relative wait time under all three queue policies

since it uses feedback from the batch queue scheduler. Combined with the results

in Figure 7.9(c), we see that the giant method works relatively better for the bigger

DAGs while the individual method works relatively better for the smaller DAGs.

We can also deduce from Figure 7.10 that the users of the Star cluster request

long run times but not as many processors. In addition, we notice that the average

requested load on Star is almost five times more than the actual load, the highest

among all clusters we tested. This means the Star users tend to request many more

CPU hours than they actually use. This can partially explain why the individual

submission method works well on Star since the system reserves resources for the next

highest priority job based on the running jobs’ requested time. When a job finishes

early, it creates a backfill window, so Star would have many backfill opportunities

based on its usage pattern. Small jobs, as generated by the individual method, are
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Figure 7.11 : The Effect of Queue Policy on Ada

more likely to be able to use these backfill slots. However, this does not explain why

the giant method works better under a queue policy that favors small jobs on Star

cluster.

We computed the average resource usage for our workflow applications on the

clusters with FS queue policy. The resource usage for a workflow application is the

sum of the actual running times for all placeholder jobs submitted into the queue.

We gather this information by record the actual start, finish time and the number of

processors each placeholder job requested. The wait time is not included. Figure 7.12

shows that the giant submission method uses almost three times more resources than

the individual method while our hybrid submission method uses 10-20% less than the

giant method. In both the hybrid and giant method, the additional CPU usage is

mainly due to resources allocated to the placeholder according to the level with the

maximum parallelism but not used on the other levels. On the Star cluster, we can see

that the average giant placeholder job uses less than 600 CPU hours while Figure 7.10

shows the average job on Star requests over 1000 CPU hours. This means the giant
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Figure 7.12 : The CPU Hour Usage

jobs are actually small compared to other jobs’ requests (although, again referring to

Figure 7.10, not their actual run time). This explains why all the execution methods

work better under the queue policy that favors small jobs on the Star cluster. At

same time, we can see that the idle processor overhead for both the giant and hybrid

methods can be substantial. Despite the large job size and inaccurate job request on

the Star cluster, our hybrid method again has the lowest mean wait time.

Figure 7.10 also explains the giant method’s ineffectiveness on the small RTC clus-

ter. When virtual reservations in the giant method request more than 128 processors

(which about 30% of the total workflows do), it takes more than half the cluster.

Even when the queue policy favors large jobs, such a job cannot run until almost

all of the already running jobs on RTC finish. Figure 7.13 presents the average wait

time of the workflows that require less (small DAG) or more (large DAG) than 128

processors on the RTC cluster. It shows the giant method indeed suffers the most

when a single workflow application requires too much of the entire cluster. The same

would be true for placeholders generated by the hybrid method, but the estimated
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Figure 7.13 : The Average Wait Time of Small DAGs on RTC Cluster

wait times prevent our scheduler from generating such pathologies. As a result, the

hybrid method submits nearly all the big DAGs in individual mode on Ada, perform-

ing competitively with the individual method and handily beating the giant method.

On small DAGs, the hybrid method finds appropriate-sized placeholder jobs, and is

able to outperform both other policies.

Figure 7.10 shows why the hybrid method performs the best on the LeMieux

cluster. We can see that the LeMieux cluster’s ratio of requested load to actual load

is the lowest, which means that users do a good job in estimating their jobs’ running

time. That greatly improves the accuracy of the batch queue start time estimation

and in turn reduces the opportunities for individual jobs to be backfilled. In short,

the individual method has no leverage to schedule its small tasks. On the other end

of the spectrum, the accurate wait time estimation helps the hybrid method avoid

submitting large requests that would endure long waits, as the giant method is prone

to do. As a result, we see a better advantage for the the hybrid method on LeMieux

than any other cluster. Furthermore, LeMieux also has the highest actual load and
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Figure 7.14 : Results on All Clusters With FL Policy

its jobs request the most processors which makes it hard for the giant method to get

the highest priority and get to run quickly. Our hybrid execution method is more

effective since we can choose the best granularity of the cluster so that they can get

to run early and overlap the wait time with the previous cluster.

The type of workflow application can also affect the performance of the execution

methods. Figure 7.14 shows the average wait time of the five workflows we tested

averaged across all the clusters under the FL policy. While the giant method is best

for Gaussian elimination, it is worst for the other four applications. The difference

lies in the application configuration as shown in Section 2.2.2. The Gaussian elimi-

nation workflow has the most levels relative to the number of tasks among our test

cases. EMAN and Montage both have a constant number of levels, and FFT grows

logarithmically to a total of level 20 in our test while the longest Gaussian DAG has

over 100 levels. Since the tasks in the individual submission method have to wait for

the previous level to finish before they can be submitted into the queue, there are

more stalls for the Gaussian workflow than other applications. Another reason is the
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maximum parallelism for a Gaussian placeholder is 55 while other applications have

up to 256 in our experimental settings. As we saw in Figure 7.13, the giant method

performs better than the individual method when a DAG’s maximum parallelism is

small relative to the cluster. The giant method results on RTC cluster alone increase

the average wait time for all the applications but the Gaussian workflow. Again, we

see that our hybrid algorithm consistently has the least wait time for any workflow

applications we tested.

7.5 Related Work

Brevik et al. [14] provided upper bound prediction of the queue wait time for an

individual job. They used a binomial model and historical traces of job wait times in

the queue to produce a prediction for a user specified quantile at a given confidence

level without knowing the exact queuing policy of the resource. We use the estimate

provided by the system itself, but in principle we could use any predictor.

There are several techniques for a user to reserve resources in a batch queue system

without using the system’s advanced reservation function. Condor glide-in [42] is

used to create condor [82] pools in a remote resource. Nurmi et al. [78] implemented

probabilistic based reservations for batch-scheduled resources. The basic idea is to

use their wait time prediction [14] to choose when to submit a job so that it runs

at a given time. Walker et al. [116] developed an infrastructure that submits and

manages job proxies across several clusters. A user can create a virtual login session

that would in turn submit the user’s jobs through a proxy manager to a remote

computing cluster. Kee et al. [56] developed a virtual grid system that allows a user

to specify a number of resource reservations. Our work is inspired by these techniques

to get a personal cluster from a batch queue controlled resource for each aggregation

of tasks in the workflow application.

Limited research has been done on scheduling a workflow application on a batch

queue controlled resources. Nurmi et al. [76] took into account the queue wait time



141

when each individual task in a workflow application is scheduled. Singh et al. [101]

demonstrated the effectiveness of aggregating a workflow application using the Mon-

tage [10] application. Our approach builds on top of their ideas by dynamically

choosing the aggregation for the workflow, whereas they use static mappings.

7.6 Conclusions and Future Work

In this chapter, we presented an algorithm that creates aggregations from a workflow

application and submits them when the previous aggregation begins to run in the

batch queue. The aggregation’s granularity is computed to minimize the total wait

time experienced by the workflow by overlapping most of the wait time and running

time between the aggregations. By using system-provided estimates of the current

queue wait time, we were able to substantially improve turn-around-time over the

standard strategies of submitting many small jobs or a single large job. The results

that we collected from running over half a million experiments using logs from five

production HPC resources showed that our hybrid execution method consistently

results in less overall wait time in the batch queue. We were able to accomplish this

without any inside knowledge of the site policies, software/hardware configurations

or usage patterns.

Not every batch queue resource management softwares provides the earliest job

start time estimation, so in the future we would like to integrate this feature into

open source systems. Moreover, we believe that providing support for workflow DAGs

directly in the batch queue software would be a valuable service to users, particularly

when coupled with intelligent scheduling techniques such as those we have presented.
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Chapter 8

Conclusion

The objective of this dissertation is to develop new techniques to automate the process

of running workflow applications on heterogeneous, distributed Grid systems and

achieve good performance and reliability. To achieve this objective, the research

leading to this dissertation resulted in designing and implementing novel approaches

to schedule workflow applications.

8.1 Contributions

The primary contributions of this dissertation include:

• In Chapter 3, we investigated the performance of the scheduling algorithms

in multi-cluster Grid environments. We are the first to compare the perfor-

mance of two major classes of scheduling algorithms and to investigate the

reason why some do not perform as expected. We also introduced the effective

aggregated computing power (EACP) concept and showed it could drastically

enhance scheduling algorithms’ performance for applications that involve heavy

communications.

• In Chapter 4, we studied the scalability of the scheduling algorithms and found

that scalability of traditional scheduling algorithms could be a problem in a large

Grid environment. We developed a generic approach to address this problem.

We further verified that it improved the scalability of scheduling algorithms

while achieving comparable performance.

• In Chapter 5, we measured how the resource performance unpredictability of a
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Grid environment affects the scheduling algorithms. Based on our observations,

we developed an application execution framework with performance feedbacks

to address this issue and showed that combining the dynamic and static schedul-

ing techniques can lead to good workflow application performance in a dynamic

and unpredictable computing environment

• In Chapter 6, we modeled the reliability of large multi-cluster Grid systems

and also the success probability of a workflow application running on such re-

sources. We incorporated traditional fault tolerance techniques into workflow

application scheduling heuristics and demonstrated how effective they are. We

also estimated the additional resource usage.

• In Chapter 7, we proposed a novel DAG aggregation algorithm that can reduce

the resource provisioning overhead for a workflow application on a batch queue

controlled resource. The algorithm reduces the overall wait time by aggregating

a DAG into several components and submitting each component into the batch

queue so that its wait time is overlapped with its parent component’s run time.

8.2 Future Work

The strategies and techniques developed in this dissertation are not only steps toward

making Grid programming easier and efficient, they also can lead to future researches

on various related platforms. Here are three closely related areas where we see good

potential for us to explore many interesting ideas.

Workflow application manger. Although our dissertation developed new and

effective techniques to help run a workflow application on a large distributed Grid

environment, it would be great to put all the work together and build an open source

workflow application manager. The application manager would incorporate all the

techniques we developed in this dissertation into some existing workflow execution

engines, such as Pegasus [89], and provide the performance and reliability we demon-
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strated in our prototype implementations. The application manager would also be a

valuable infrastructure on which we conduct future research experiments. It would be

very helpful if the high performance computing (HPC) community would embrace our

work and use the application manager to execute large scale workflows on production

resources. This would help us identify the weakness of our work in a real production

environment and not only motivate our future researches but also verify our results.

Parallel computing. Most scheduling algorithms for workflow applications are

derived from traditional instruction or thread/process scheduling algorithms. The

latest trend towards multi-core in the commodity hardware domain makes it possible

to apply our findings to the future many-core based parallel computing infrastruc-

tures. It is because the model of multi-threaded (multi-process) computation in a

run-time system can be modeled as a directed acyclic graph(DAG), they are essen-

tially workflow applications at a lower level (finer grained).

Furthermore, as a single processor gets more and more cores, it can no longer

keep a flat connection between cores. In addition, with the development of GPGPU

(General Purpose computation on Graphics Processing Units) and Cell processors,

the cores are no long homogenous in a single chip. These features make a multi-core

processor machine resemble a multi-cluster Grid environment because not only the

processing speeds of the heterogenous cores are different but the communication times

between the cores are also not the same. Therefore, workflow scheduling is essential

to enhance the performance of shared memory programs, such as those written in

openMP [27], on a multi-core processor. Scheduling is also very important for parallel

programs written in partitioned global address space (PGAS) such as Chapel [19],

X10 [21],and Co-Array Fortran [33]. This is because in a partitioned global address

space the program usually makes asynchronized calls, either implicitly or explicitly,

that require communication between a pair of processors. Different communication

patterns can greatly affect the program performance thus a good scheduling algorithm

is essential to minimize unnecessary communications between processors in different
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partitions which would be more costly than within a partition. For the similar reason,

languages that target both shared memory and distributed memory architectures like

High Performance Fortran [64] and Habanero [85] could also use workflow scheduling

to enhance the program performance.

Compared with Grid workflow application scheduling, the multi-thread/process

scheduling environment usually has less and fewer resource performance fluctuations

which makes performance prediction very difficult. Therefore, to some extent, multi-

thread/process scheduling is actually less challenging than Grid workflow application

scheduling and it could determine the performance of the application more. We

believe our dissertation experience can be applied to the parallel computing domain

and improve the performance of future multi-core based parallel computing.

Cloud computing Another major development in the high performance domain

recently is the emergence of cloud computing. Although there is no exact definition

of cloud computing, most cloud computing infrastructure, with the help of virtu-

alization techniques, enable users to create customized computing environments on

demand. In general, there are three types of cloud computing. The first one is public

cloud computing. A public cloud is maintained by an off-site third-party provider.

It provides some sort of computing power (either hardware or software) in a flexible

lease term and bills the user based on resource usage. Amazon EC2 [36] and Google

App Engine [37] are two of the more influential cloud computing services with the

former providing cloud infrastructure (hardware) and the later providing platform

(software). The second type of cloud computing is private cloud computing. It es-

sentially emulates public cloud computing on private networks since many companies

hesitate to move their critical services off-site. The third type of cloud computing is

a hybrid cloud that is a mix of a public cloud and a private cloud.

Although the virtualization techniques make the resources appear homogenous,

the underlying resources are still distributed. Thus, we think cloud computing is

another platform on which we can adept our techniques to run workflow applications.
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For example, a public cloud computing site usually charges users by usage, we can ex-

tend our scheduling algorithms to provide a balanced approach towards performance

and cost for the user. However, there are some differences between a traditional Grid

and a cloud that affect the effectiveness of our approaches on a cloud. For example,

a public cloud usually abstracts away the network topology or configuration under-

neath it. This makes the fine grained style of scheduling in our dissertation work

not applicable directly although we can measure the or monitor the bandwidths and

latencies between each node pairs. However, most of our work can be applied directly

on private clouds.

8.3 Conclusions

In this thesis, we investigated an important class of workflow application scheduling

problem and explored the potential of Grid computing. Although Grid computing,

like many other once promising disruptive technologies, does not live up to the high

expectation we originally projected, the research work that we did nevertheless help

advance the state-of-the-art of high performance computing in general. These efforts

not only help us gain in-depth knowledge of the large scale distributed computing

but also teach us lessons that we could use to avoid set-backs in our future endeavor.

In the end, just like Albert Einstein said, “if we knew what it was we were doing, it

would not be called research, would it?”
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