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Abstract

Workflow computations have become a major pro-
gramming paradigm for scientific applications. However,
acquiring enough computational resources to execute a
workflow poses a challenge in a batch queue controlled
resource due to the space-sharing nature of the resource
management policy. This paper introduces a scheduling
technique that aggregates a workflow application into
several subcomponents. It then uses the batch queue to
acquire resources for each subcomponent, overlapping
resource provisioning overhead (wait time) of one with
the execution of others. We implemented a prototype of
this technique and tested it using five high performance
computing centers job submission logs. The results show
that our approach can eliminate as much as 70% of the
wait time over more traditional techniques that request
resources for individual workflow nodes or that acquire
all the resources for the whole workflow at once.

I. Introduction

Workflow applications — high-level analyses structured
as a set of inter-dependent tasks — have become an essen-
tial way for many scientists to compose and execute their
computations on high performance computing resources.
Workflow applications are widely used in scientific fields
as diverse as astronomy [?], biology [?], [?] oceanogra-
phy [?], and earthquake science [?].

At the same time, clusters (parallel computers with
high-speed interconnects and shared file systems) have
become the most common high-performance computing
platform. Consequently, workflow applications are often
executed on clusters. The workflow execution systems can
get access to a cluster either locally, through a collaborative
organizations such as TeraGrid [?], or through national

supercomputing centers like TACC [?]. In any case, these
clusters are shared and usually managed by a local resource
management system that has its own resource sharing
methodology and policy. Among them, commercial or
open source batch queue scheduling software [?], [?], [?] is
the most popular resource management system. Section ??
gives more details on the background of both workflow
applications and batch schedulers.

The main goals of a site using batch queues are usually
to achieve high throughput and maximize the system
utilization. Consequently, many production resources have
long queue wait times due to the high utilization levels.
In addition, although it is not unusual for a single cluster
to have several thousand processors, a single user usually
can get only a small portion of the total available resources
(without special arrangements). This creates performance
problems for large scale workflow applications because
each sub-task in the workflow could experience long delays
in the job queue before it runs. The queue wait time
overhead is sometimes much more than the workflow
applications runtime [?]. Alternately, one could submit an
entire workflow as a single batch queue job. However, this
might cause an even longer wait for more resources to
become available at once.

Our work seeks to reduce the workflow turnaround time
by intelligently using batch queues without relying on
reservations. We accomplish this by aggregating workflow
tasks together and submitting them as a single job into the
queue. Section ?? describes our method in greater detail.
This approach can greatly reduce the number of jobs a
workflow execution system submits to the batch queue. It
also makes smaller placeholder requests than the virtual
reservation approach. By overlapping some tasks’ wait
times with others executions, we further shorten the batch
queue wait times for the workflow applications. As we will
see in Section ??, our scheduling reduces the queue wait
time overhead while not disturbing the normal batch queue



operation. We conclude our presentation with a discussion
of related work in Section ?? and our conclusions and
future work in Section ??.

II. Background

A. Batch Queues

Batch queues have become the most popular resource
management method on computational clusters. A batch
queue system is normally a combination of a parallel-
aware resource management system (which determines
“where” a job runs) and a policy based job scheduling
engine (which determines “when” a job runs). We are
mostly interested in the job scheduler component, treating
the individual processors as homogeneous. To illustrate
how this scheduler works, we describe the widely-used
open-source Maui batch queue scheduler [?], [?]. The
experiments in Section ?? are based on simulations of this
scheduler.

The Maui scheduler, like many batch queue schedulers,
is essentially a policy based reservation system. The key
idea is to calculate a priority for each job in the queue
based on aspects of the job and the policy of the queue
system. The priority of each batch queue job is deter-
mined by job properties, such as the requested resource
requirements (number of processors and total time), its
owner’s credentials, and the time it has waited in the queue.
These properties are combined in a formula with weights
configured by the system administrator. For example, to
favor large jobs, a site would choose a high (and positive)
weight for the resource requirements.

After all jobs’ priorities are calculated, the Maui sched-
uler starts all the highest-priority jobs that it can run
immediately. It then makes a reservation in the future
for the next highest priority job according to the already
running jobs’ estimated finish time to ensure it will start to
run as soon as possible. Given that reservation, a backfill
mechanism attempts to find jobs that can start immediately
and finish before the reservation time. Once a job begins
execution, it runs to completion or until it exhausts its
requested resources.

Maui, like some other schedulers [?], [?], [?], can
provide advance reservation services at a user level. This
allows the user to request a specific number of resources
for a given period of time, effectively gaining a set
of dedicated resources and eliminating the queue wait
time. However, advance reservation is not available at
all sites, usually involves system administrator assistance,
and always requires notice beforehand. Furthermore, Snell
et al. [?] showed that advance reservation can decrease
the system utilization and has the potential to introduce

deadlocks. We therefore avoid advance reservations in our
work.

One advanced feature of Maui that we do use is the
start time estimation functionality. A user can invoke the
showstart command to get the estimated start time of a
job in the queue or a new job (specified with number of
processors and duration) to be submitted. This can be done
by computing the job’s priority, building (or querying) the
queue’s future schedule, and determining when the job
would run. Note that, because new high-priority jobs could
be submitted before the queried job runs, the estimate may
not be exact. However, it is a useful piece of information
to use in scheduling.

B. Workflow Application Execution

A workflow consists of a set of tasks that produce
and consume data. The data transfer creates a dependence
between the tasks. In scientific applications, there can be
hundreds of such tasks, which can range from setting up
simulation conditions to performing large computations to
visualizing the results. In this paper, we represent such
workflows as directed acyclic graphs (DAGs), where nodes
represent the tasks and edges represent the dependences.
Section ?? has a few examples.

Executing a workflow is conceptually simple. Whenever
a node is ready to execute (i.e. all its predecessors have
completed), it can be scheduled for execution. However,
doing this naively in a batch queue environment could
potentially create long waits for every task to begin. Nev-
ertheless, this is common practice. There are two general
ways [?] (other than advanced reservations) to reduce
this batch queue overhead. One way is to aggregate the
workflow tasks into larger groups [?]. The other method is
to use virtual reservation technology [?], [?], [?], [?]. This
provisioning technique enables users to create a personal
dedicated resource pool in a space-shared computing envi-
ronment. Although there are various implementations, the
key idea is to submit a big placeholder job into the space
shared resource site. When the placeholder job gets to run,
it usually installs and runs a user-level resource manager
on its assigned computing nodes. The user-level resource
manager (in our case, the workflow execution system)
then can schedule jobs onto the those computing nodes
without going through the sites resource manager again.
Our work draws inspiration from the virtual reservation
implementation, but attempts to choose a more propitious
size for the placeholder job.

III. Workflow Application Clustering

Traditional DAG clustering algorithms aggregate the
workflow tasks into larger unit (to reduce the potential
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Fig. 1. Workflow Application Cluster

communications). Figure ?? shows an example. The left
side of the figure is the original DAG that represents a
workflow application. The right side of the figure is a
clustered version of the same DAG that we aggregate all
the tasks in the same level into one aggregation. Our goal
is to choose a clustering algorithm that will reduce the
total batch queue wait time. The main idea behind our
approach is that we can aggregate the workflow by level
and submit a placeholder job for the later levels before
their predecessor finishes. In this way, we can overlap the
running time of the predecessor level with the wait time
of the successor levels.

Figure ?? illustrates this idea. The left shows the possi-
ble result of grouping the workflow DAG in figure ?? into
two aggregations and submitting them in turn. The yellow
rectangles represent the wait time of the two placeholder
jobs in the queue. A placeholder job, represented by
a rectangle that contains one or more levels of tasks,
is submitted into the queue as soon as its predecessor
placeholder job starts. It asks for enough resources for the
tasks it holds to run in full parallelism. The wait time
seen by the users for the clustering on the left is the
dark yellow area marked ”real wait time”. We can see
from the figure that it is less than the queue wait time
for the second task because of the overlap with task 1’s
execution. Ideally, if the first placeholder job gets to run
immediately and the later jobs’ wait times do not exceed
their predecessor’s run times, the queue wait time for
the entire workflow application is eliminated, as shown
on right side of figure ??. However, this perfect overlap
cannot be guaranteed. Furthermore, if the wait time for a
placeholder job is less than its predecessor’s run time (as is
the case for task 10), it must pad its requested time to honor
its dependences. In turn, this will affect the wait time of the
placeholder job. Balancing these effects requires heuristic
scheduling.

Our algorithm consists of two interrelated parts: an
application manager shown in Figure ??, and a “peeling”
procedure shown in Figure ??. The application manager
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Fig. 2. Workflow Application Cluster by Level

is responsible for launching the workflow application and
monitoring its progress. In general, it chooses partial DAGs
and submits placeholder jobs to the batch queue system.
Individual workflow tasks execute in the placeholder jobs
when those jobs come to the front of the queue, with
the application manager enforcing their dependences. The
peeling procedure selects the partial DAGs to minimize the
exposed waiting time. We now consider the parts in turn.

Figure ?? shows the application manager. After select-
ing and submitting the initial partial DAG (lines 1-5), the
manager becomes an event-driven system. The primary
events that it responds to are:

• A placeholder job starts to run (lines 7-16). The
manger first starts all the workflow tasks associated
with that job whose predecessors have finished. Then
it invokes the peeling procedure to form the next
placeholder job and submit it to the queue.

• A placeholder job finishes running (lines 17-25).
Normally, no processing is needed. However, if the
placeholder is terminated before all its tasks complete
(i.e. because some predecessors were delayed in the
batch queue), the manager must clean up. It cancels
any placeholders that have not started, since some of
their predecessors may be delayed. It also calls the
peeling procedure to reschedule the unfinished DAG
nodes (both interrupted tasks and those not yet run)
and submits the new placeholder job into the queue.

• A DAG task finishes (lines 26-32). The manger starts
all the successor tasks whose placehold job is already
running. One subtlety in the application manager is
that the successors of a DAG node may be in the same
placeholder or a different one. In the latter case, the
manager must handle the possibility that a placeholder
starts without any runnable tasks (lines 28-30). If
all of a placeholder’s tasks are finished, the manger
finishes the job to free the batch queue resource.

We choose to submit a new placeholder job only after its
predecessor begins running. There are several reasons for
this design. In our experience with real queues, we discov-



Algorithm:runDAG (DAG dag, int sub time)
1 task[] partial dag ← levelize(dag);
2 int count ← 0;
3 Placeholder job ← peelLevel(partial dag, sub time, 0);
4 job. name ← count;
5 submit job;
6 while ( dag is not finished)
7 listen to batch queue and task events;
8 if (placeholder job n starts to run at time t)
9 for all (task in job n.getTasks())
10 if (all task predecessors have finished)
11 start task;
12 ear finTime ← job n.runTime;
13 partial dag ← levelize(dag.unmappedTasks());
14 job ← peelLevel(partial dag, t, ear finTime );
15 job. name ← ++count;
16 submit job;
17 else if ( placeholder job n finishes running at time t)
18 if ( job n has unfinished tasks)
19 partial dag ← levelize(job n.unfinishedTasks());
20 for all ( pending placeholder job job m )
21 cancel job m;
22 add job m.tasks() to partial dag ;
23 Placeholder jobResub ← peelLevel(partial dag, t, 0);
24 map all tasks in the partial dag to jobResub;
25 submit jobResub;
26 else if ( task dagTask finishes running at time t)
27 delete the dagTask from its placeholder job
28 for all (dagTask’s successor task chd task)
29 if (chd task’s associated placeholder job is running)
30 start chd task;
31 if (dagTask’s placehold Job has no more tasks to run)
32 stop dagTask’s placehold Job

Fig. 3. The DAG Application Manager

ered that multiple outstanding jobs in the queue interfered
with each other. In turn, this often caused the wait time
for already-submitted jobs to lengthen, which both added
overhead and invalidated our existing schedules. Therefore,
we did not have a good estimate of the later placeholder’s
start time. Although our current design misses the potential
of overlapping two placeholder jobs wait times with each
other or with running jobs, we can calculate the earliest
start time of all the remaining tasks. This is one key to the
aggregate decision described in Figure ??.

Figures ?? shows the peeling procedure used by the
application manager. We refer to this process as “peeling”
because it successively peels levels of the DAG off of the
unfinished work list. First (lines 1-6), the main peelLevel
function estimates the wait time to submit the entire DAG
as a single placeholder job. It then invokes the groupLevel
function (lines 7-8 and Figure ??) to search for a better
alternative. If groupLevel does not improve the wait time
(lines 10-13), the peeling procedure chooses to submit the
DAG either as a single placeholder job or as one job per
task. The decision depends on whether the total wait time

Algorithm: peelLevel(levelized DAG, int sub time, int ear time)
1 int runTime all, waitTime all;
2 int peel runTime[2], peel waitTIme[2];
3 runTime all ← est runTime(DAG);
4 waitTime all ← est waitTime(runTime all, DAG.width,sub time);
5 peel runTime[0] ← runTime all;
6 peel waitTIme[0] ← waitTime all;
7 int level = groupLevel(DAG,sub time, ear time,
8 peel runTime, peel waitTIme);
9 if ( level == DAG.height)
10 if (runTime all * 2 < waitTime all)
11 return the whole remaining DAG in a batch queue job
12 else
13 return submit the remaining DAG in individual mode
14 else
15 group levels to a partial dag;
16 map each dag job to the batch queue job;
17 return the partial dag in a placeholder job;

Fig. 4. The DAG Peeling Procedure

as a single job is twice the total run time of the DAG. The
intuition for this is that individual submission can take
advantage of the free resources or the backfill window.
When the one giant placeholder job’s wait time is twice as
long as the run time, the individual submission has a better
chance to finish earlier. This is a heuristic parameter chosen
empirically. Otherwise, we use the partial DAG returned by
groupLevel. The earliest job start estimation we used is a
best effort approach like the showstart command in Maui.
However, our experience shows it is a reliable indicator
of the wait time with one experiment shows the mean
difference is within 5% of the real wait time.

Figure ?? shows the key groupLevel procedure. Al-
though the logic is somewhat complex, in essence we
perform a greedy search for a aggregation of DAG that
has enough granularity to hide later wait times and is wait-
effective. We define the wait effectiveness of a job as the
ratio between its wait time and its running time; a smaller
ratio is better. The intuition behind this is that we want a
job to either wait less or finish more tasks. However, we
do not search for the globally best wait-effectiveness. This
is because, once we group several layers of the DAG into a
wait-effective aggregation, any later jobs wait time can be
overlapped with run time of this aggregation. Continually
adding levels onto the current aggregation negates this
benefit.

Here is some more detailed explanation of our algo-
rithm. After some initialization in lines 1-6, the main
loop in lines 8-37 repeatedly moves one DAG level from
the remaining work to the next placeholder job until the
aggregation is less wait-effective than the previous round.
For each candidate job, lines 9-18 adjust the placeholder’s
requested time to allow the workflow tasks to complete.



Algorithm: groupLevel (levelized DAG, int sub time, int ear sTime,
int peel runTime[2], int peel waitTIme[2] )

1 int real runTime[2];
2 int runTime all, waitTime all,leeway;
3 runTime all ← peel runTime[0];
4 waitTime all ← peel waitTIme[0];
5 real runTime[0] ← peel runTime[0];
6 partial dag ← level one of DAG;
7 boolean giant ← true;
8 while partial dag ! = DAG
9 peel runTime[1] ← est runTime(partial dag)
10 real runTime[1] ← peel runTime[1];
11 do
12 peel runTime[1] ← peel runTime[1]+ leeway/2;
13 peel waitTIme[1] ←
14 est waitTime(peel runTime[1], DAG.width,sub time);
15 leeway← ear sTime + real runTime[1] - peel waitTIme[1];
16 while leeway > 10 mins
17 if (leeway > 0)
18 peel runTime[1] ← peel runTime[1] + leeway;
19 int real WaitTime ← peel waitTIme[1] - ear sTime;
20 if ( real WaitTime < 0)
21 real WaitTime ← peel waitTime[1];
22 if (giant)
23 if (real WaitTime > real runTime[1])
24 add one level to partial dag;
25 continue
26 giant ← false;
27 if (peel waitTime[1] - ear sTime > 0 )
28 if ( peel waitTime[1] / real runTime[1]
29 > peel waitTime[0] / real runTime[0] )
30 break;
31 if ( peel waitTime[1] / real runTime[1]
32 > waitTime all /runTime all )
33 break;
34 peel waitTime[0] ← peel waitTime[1]
35 peel runTime[0] ← peel runTime[1]
36 real runTime[0] ← real runTime[1]
37 add one level to partial dag;
38 if (giant)
39 return DAG.height;
40 else
41 return partial dag.height-1;

Fig. 5. The Peel Level decision Procedure

As the left side of figure ?? shows, this is sometimes
necessary because the (estimated) queue wait time is less
than the time to complete the current job, creating what we
term the leeway. A simple iteration adds the leeway to the
job request until it is insignificant. (Of course, if the wait
time is more than the time to execute predecessors, then no
adjustment is needed, as in the right side of figure ??.) The
loop then operates in one of two modes based on whether
a good aggregation has been identified. If no aggregation
has been selected, more levels are added until the real run
time is significant enough to create overlap for the next
aggregation(lines 19-25). Once this happens, the current
candidate is marked as a viable aggregation. From then
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Fig. 6. Workflow Application Level Decision

on, levels are added only while the wait-effectiveness of
the aggregation continues to improve (lines 27-37).

IV. Experiments

A. Experimental Methodology

To test the performance of our algorithm, we developed
a prototype batch queue system simulator that implements
the core algorithms of the Maui batch queue scheduler
described in [?]. The input of the system is a batch
queue log obtained from a production high performance
computing cluster and a batch queue policy configuration
file. It simulates the batch queue execution step by step
based on the input. We also implemented the job start time
estimation function (the showstart command). The estima-
tion is based on the batch queue policy and all the existing
queued and running jobs’ maximum requested time. It does
not forecast any future job submissions. Therefore, it is
a best effort estimation within the knowledge of a batch
queue scheduler.

We implemented the methods of Section ?? to submit
placeholder jobs to this simulator. We also implemented
the runtime algorithm in that section, using events gener-
ated by our simulator to drive the workflow management.
We also implemented two other ways to execute a work-
flow application on a batch queue based resources. The first
is a straightforward way to submit each individual task to
the batch queue when it is available to run, which we will
refer to as the individual submission method. The second
is to submit a giant placeholder job that requests enough
resources for the entire DAG to finish, which we will
refer to as the giant submission method. We compare our
algorithm, which we will refer to as the hybrid submission
method, to the individual and giant method by simulating
a DAG submission into the queue using different methods
with exactly the same experimental configuration.
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B. Experimental Setting

We generate DAG configurations for five high per-
formance computing applications that represent typical
parallel computing paradigms, as shown in Figure ??.
EMAN [?] is a computational biology application that
has two parallel phases connected with single execution
steps. BLAST [?] is a bioinformatic application that has a
sequence of parallel executions. Montage [?] is an astro-
nomical application consisting of several inter-leaved lay-
ers of parallel executions. We also use two traditional high
performance algorithms, Fast Fourier Transform (FFT) and
Gaussian elimination. For each application, we generate 25
configurations for different data sizes. The total number
of tasks in a workflow ranges from dozens to thousands,
maximum parallelism ranges from 5 to 256, and total
running time ranges from several hours to a week.

We gathered batch queue logs from four production
high performance computing sites with different capacity
and batch queue management systems. Figure ?? lists
the five clusters we studied at those sites. From each
log, we collected all the jobs that finished and their
requested number of processors, requested running time,
submission time and user id (used only for the user fair
share computation). We also obtained the start time and
finish time of each job to compute the real job run time.
Since most sites don’t publish the details of their queuing
policy and it can change from day to day, we generate
three policies that favored large jobs (FL), small jobs (FS)
or jobs that stay in the queue the longest (FCFS). These
policies are modified from real site policies which all have
a cap value on the resource component of the priority. For
example, the FL policy does not assign a higher priory for
a large job beyond certain size. Each policy has a queue
wait time component which does not have a cap value to
avoid starvation. The FCFS policy has a particularly large
weight on the wait time component.

Figure ?? shows our experiment settings. Since the
batch queue loads and number of jobs in the queue fluc-
tuate widely, the results of our algorithms depend highly
on the time we simulate the submission. Therefore, we
run each experimental configuration combination starting

Cluster Institution Batch Length
Lonestar Texas Adv. Computing Center LSF 12 Mon.

Ada Rice University Maui 12 Mon.
LeMieux Pittsburgh SuperComp. Center Custom 12 Mon.

RTC Rice University Maui 12 Mon.
Star University of Arkansas Moab 10 Mon.

Fig. 8. The Clusters

at 100 random times during the batch queue log’s available
time and report the mean results. In total, we ran over
700,000 experiments.

• Algorithms = {individual, giant, hybrid}
• Workflow Application = {EMAN, Montage, BLAST,

FFT, Gaussian}
• DAG = { 25 for each workflow application}
• Batch Queue Logs = {Lonestar, Ada, LeMieux, RTC,

Star}
• Batch Queue Policies = {FL, FS, FCFS}

Fig. 9. The Experiment Settings

C. Result Analysis

Figure ?? shows the average wait time of all workflow
applications on five clusters. All but one of the differences
between averages are statistically significant on a two-
tailed paired t-test with p-value set at 0.05. We can see that
our hybrid scheduling and submission method consistently
has the least average wait time among three execution
methods. The single exception is on cluster Ada with
queuing policy that favors large jobs, and that is the only
statistical tie. In addition, our results indicate that although
the batch queue policy determines each batch queue job’s
priority, it does not affect our experiment significantly.
However, the average wait time from each cluster varies
greatly. For example, the average application wait time
on the Lonetar cluster is only a fraction of the other
four clusters. Furthermore, while the individual submission
method waits significantly more time on the Ada and
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Fig. 10. Overall Average Wait time

LeMieux clusters than the giant method, it waits much less
time than the giant method on the RTC and Star clusters.

Since we ran the same set of experiment on each cluster,
we hypothesized that the differences in the outcomes were
the results of each cluster’s unique combination of its
configuration and usage pattern. Therefore, we further
analyzed the characteristics of each cluster’s batch queue
jobs. We calculated the number of jobs submitted each
day, processors a job requests, time a job runs, the CPU
hours a job requests, the actual load and the requested
load of the system over the duration of each log file. The
actual load is calculated by dividing the total CPU hour

used by the cluster’s maximum capacity and the requested
load is calculated by using the total CPU hour requested.
Figure ?? presents each cluster’s configuration and our
calculations. The results clearly show each cluster has its
own unique usage pattern, and we can use this to explain
the variance in our experiment results. For example, Lon-
estar cluster has the largest computing capacity among the
five clusters. This explains why the average wait time of
workflow application on Lonestar is much less than on
the other clusters since the it’s much easier for Lonestar
cluster to fulfill the resource demand of the same workflow
application than other clusters. The batch queue usage
pattern can also affect the execution results in more subtle
ways.

Figure ?? shows that the Ada cluster users tend to
submit small jobs both in terms of processors and CPU
hours. However, the Ada’s actual load is not particularly
light and it has a large number of jobs get submitted
each day. This explains why the giant method is more
effective on Ada than the individual method when the
queue policy favors large job, see figure ??. It is because
the giant placeholder job would usually be the job with
the highest priority in the queue and thus could start early.
On the other hand, the individual job submission is less
effective not only because the queue policy favors large
jobs but also, since most jobs in the queue are small jobs,
there are fewer opportunities to schedule an individual
job by backfilling. However, figure ?? does not show a
very clear picture of why the giant method still performs
relatively well when the policy favors small jobs (although
the difference is much less). Figure ?? depicts more clearly
the effect of the queue policy on the outcome for each
method. We calculated the average of the relative wait time
In figure ?? by dividing each application’s wait time by its
running time before we computed the mean. In this way,
we give each workflow’s wait time an equal weight in the
final result. Now, we can see that giant method actually
performs worse when the queue policy favors small jobs
in terms of relative wait time. Nevertheless, our hybrid
method performs the best in terms of relative wait time
under all three queue policies since it uses feedback from
the batch queue scheduler.

We can also deduce from Figure ?? that the users
of the Star cluster request long run times but not as
many processors. In addition, we notice that the average
requested load on Star is almost five times more than the
actual load, the highest among all clusters we tested. This
means the Star users tend to request many more CPU hours
than they actually use. This can partially explain why the
individual submission method works well on Star since the
system reserves resources for the next highest priority job
by basing its start time on the running jobs’ requested time.
When a job finishes early, it creates a backfill window, so



Cluster Cluster Size Mean Jobs Mean Job Mean Job Mean Job Actual Request
per Day Width Run Time Request Size Load Load

Lonestar 5000 core 932 26.18 core 3.03 hour 274 hour 0.81 2.13
Ada 520 Core 1342 3.57 core 3.57 hour 25 hour 0.81 2.76

LeMieux 2048 Core 251 43.80 core 3.30 hour 329 hour 0.91 1.68
RTC 270 Core 108 2.43 core 13.69 hour 112 hour 0.57 1.87
Star 1200 Core 108 13.16 core 16.93 hour 1050 hour 0.83 3.94

Fig. 11. Cluster Configuration and Batch queue Job Characteristic
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Fig. 12. The Effect of Queue Policy on Ada

Star would have many backfill opportunities based on its
usage pattern. Small jobs, as generated by the individual
method, are more likely to be able to use these backfill
slots. However, this does not explain why the giant method
works better under a queue policy that favors small jobs
on Star cluster.

We computed the average resource usage for our work-
flow applications on the clusters with FS queue policy.
The resource usage for a workflow application is the
sum of the actual running times for all placeholder jobs
submitted into the queue. The wait time is not included.
Figure ?? shows that the giant submission method uses
almost three times more resources than individual method
while our hybrid submission method uses 10-20% less than
the giant method. In both the hybrid and giant method, the
additional CPU usage is mainly due to resources allocated
to the placeholder according to the level with the maximum
parallelism but not used on the other levels. On the Star
cluster, we can see the average giant placeholder job uses
less than 600 CPU hours while Figure ?? shows the
average job on Star requests over 1000 CPU hours. This
means the giant jobs are actually small compared to other
jobs’ requests (although, again referring to Figure ??, not
their actual run time). This explains why all the execution
methods work better under the queue policy that favors
small jobs on the Star cluster. At same time, we can see
that the idle processor overhead for both the giant and
hybrid methods can be substantial. Despite the large job
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size and inaccurate job request on the Star cluster, our
hybrid method again has the lowest mean wait time.

Figure ?? also explains the giant method’s ineffective-
ness on the small RTC cluster. When virtual reservations in
the giant method request more than 128 processors (which
about 30% of the total workflows do), it takes more than
half the cluster. Even when the queue policy favors large
jobs, such a job cannot run until all the already running
jobs on RTC finish. Figure ?? presents the average wait
time of the workflows that require less (small DAG) or
more (large DAG) than 128 processors on the RTC cluster.
It shows the giant method indeed suffers the most when a
single workflow application requires too much of the entire
cluster. The same would be true for placeholders generated
by the hybrid method, but the estimated wait times prevent
our scheduler from generating such pathologies. As a
result, our hybrid method outperforms both giant and
individual under any policy on the RTC when the DAGs
are small and it virtually submits all the big DAGs in
individual mode.

Figure ?? shows why the hybrid method performs the
best on the LeMieux cluster. We can see that the LeMieux
cluster’s ratio of requested load to actual load is the lowest,
which means that users do a good job in estimating their
jobs’ running time. That greatly improves the accuracy of
the batch queue start time estimation and in turn reduces
the opportunities for individual jobs to be backfilled. In
short, the individual method has no leverage to schedule
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its small tasks. On the other end of the spectrum, the
accurate wait time estimation helps the hybrid method
avoid submitting large requests that would endure long
waits, as the giant method is prone to do. As a result,
we see a better advantage for the the hybrid method on
LeMieux than any other cluster.

The type of workflow application can also affect the
performance of the execution methods. Figure ?? shows
the average wait time of the five workflows we tested
averaged across all the clusters under the FL policy. While
the giant method is best for Gaussian elimination, it is
worst for the other four applications. The difference lies
in the application configuration as shown in figure ??.
The Gaussian elimination workflow has the most levels
relative to the number of tasks among our test cases.
For example, EMAN and Montage both have a constant
number of levels, and FFT grows logarithmically to a
total of level 20 in our test while the longest Gaussian
DAG has over 100 levels. Since the tasks in the individual
submission method have to wait for the previous level of
task to finish before it can be submitted into the queue,
there are more stalls for the Gaussian workflow than other
applications. Another reason is the maximum parallelism
for a Gaussian placeholder is 55 while other applications
have up to 256 in our experiment settings. As we saw
in Figure ??, the giant method performs better than the
individual method when a DAG’s maximum parallelism is
small relative to the cluster size. The giant method results
on RTC cluster alone increase the average wait time for all
the applications but the Gaussian workflow. Again, we see
that our hybrid algorithm consistently has the least wait
time for any workflow applications we tested.

V. Related Work

Brevik et al. [?] provided upper bound prediction of the
queue wait time for an individual job. They used a binomial
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Fig. 15. The Average Wait Time for Different
Applications

model and historical traces of job wait times in the queue
to produce a prediction for a user specified quantile at a
given confidence level without knowing the exact queuing
policy of the resource. We use the estimate provided by the
system itself, but in principle we could use any predictor.

There are several techniques for a user to reserve re-
sources in a batch queue system without using the system’s
advanced reservation function. Condor glide-in [?] is used
to create condor [?] pools in a remote resource. Nurmi
et al. [?] implemented probabilistic based reservations for
batch-scheduled resources. The basic idea is to use their
wait time prediction [?] to choose when to submit a job
so that it runs at a given time. Walker et al. [?] developed
an infrastructure that submits and manages job proxies
across several clusters. A user can create a virtual login
session that would in turn submit the user’s jobs through
a proxy manager to a remote computing cluster. Kee et
al. [?] developed a virtual grid system that allows a user
to specify a number of resource reservations. Our work is
inspired by these techniques to get a personal cluster from
a batch queue controlled resource for each aggregation of
tasks in the workflow application.

Limited research has been done on scheduling a work-
flow application on a batch queue controlled resources.
Nurmi et al. [?] took into account the queue wait time when
each individual task in a workflow application is scheduled.
Singh et al. [?] demonstrated the effectiveness of clustering
a workflow application using the Montage [?] application.
Our approach builds on top of their ideas by dynamically
choosing the clustering for the workflow, whereas they use
static mappings.

VI. Conclusions and Future Work

In this paper, we presented an algorithm that clusters a
workflow application and submits them when the previous
aggregation begins to run in the batch queue. The aggre-



gation granularity is computed so that it can minimize the
total wait time experienced by the workflow by overlapping
most of the wait time and running time between the aggre-
gations. By using system-provided estimates of the current
queue wait time, we were able to substantially improve
turnaround time over standard strategies of submitting
many small jobs or a single large job. The results that
we collected from running over half a million experiments
using logs from five production HPC resources showed
that our hybrid execution method consistently results in
less overall wait time in the batch queue. We were able
to accomplish this without modifying the site policies or
software.

Not every batch queue resource management softwares
provide the earliest job start time estimation yet so in
the future we would like to integrate this feature into
open source systems. Moreover, we believe that providing
support for workflow DAGs directly in the batch queue
software would be a valuable service to users, particularly
when coupled with intelligent scheduling techniques such
as those we have presented.
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