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Abstract

In this dissertation, we present a design and implementation of a tool for auto-

matic mapping and scheduling of large scientific application workflows onto dis-

tributed, heterogeneous Grid environments. The thesis of this work is that plan-

ahead, application-independent scheduling of workflow applications based on perfor-

mance models can reduce the turnaround time for Grid execution of the application,

reducing burden of Grid application development. We applied the scheduling strate-

gies successfully to Grid applications from the domains of bio-imaging and astronomy

and demonstrated the effectiveness and efficiency of the scheduling approaches. We

also proposed and evaluated a novel scheduling heuristic based on a middle-out traver-

sal of the application workflow.

A study showed that jobs have to wait in batch queues for a considerable amount

of time before they begin execution. Schedulers must consider batch queue waiting

times when scheduling Grid applications onto resources with batch queue front ends.

Hence, we developed a smart scheduler that considers estimates of batch queue wait

times when it constructs schedules for Grid applications.

We compared the proposed scheduling techniques with existing dynamic schedul-

ing strategies. An experimental evaluation of this scheduler on data-intensive work-

flows shows that its approach of planning schedules in advance improves over previous



online scheduling approaches.

We studied the scalability of the proposed scheduling approaches. To deal with

the scale of future Grids consisting of hundreds of thousands of resources, we designed

and implemented a novel cluster-level scheduling algorithm, which scales linearly on

the number of abstract resource classes. An experimental evaluation using workflows

from two applications shows that the cluster-level scheduler achieves good scalability

without sacrificing the quality of schedule.



Acknowledgments

I would like to thank my advisor, Ken Kennedy, for his help and support without

which this dissertation would not have been possible. Ken has not only taught me

how to pursue independent research, but also helped me achieve a certain level of

maturity. His tremendous acumen combined with a personality that is magnetic yet

gentle has been an inspiration that goes beyond this dissertation.

I am grateful to my committee members for their insights. Chuck Koelbel has been

a constant source of detailed help regarding all areas of my research – defining research

problems, designing experiments and writing technical papers. John Mellor-Crummey

and William Symes have suggested interesting ideas during my thesis proposal, which

helped be hone my thesis. Keith Cooper has been extremely supportive of all my

efforts.

Throughout my PhD, I have worked on the GrADS and the VGrADS projects.

The common research infrastructure provided by the projects has been extremely

useful for my research and experiments. The infrastructure is a result of a lot of hard

work of GrADS and VGrADS personnel and I take this opportunity to thank them for

all the support. In particular, I would like to thank Mark Mazina, Holly Dail, Martin

Swany, Celso Mendes, Asim Yarkhan, Anshuman Dasgupta, Gabriel Marin, Bo Liu,

Lavanya Ramakrishnan and the system administrators at different sites. I would also

thank Yang Zhang and Daniel Nurmi for help in implementation at various points of

time. Research discussions with several GrADS and VGrADS PIs like Rich Wolski,

Carl Kesselman, Andrew Chien, Henri Casanova and Lennart Johnsson have helped



v

me shape my research. I would like to thank my all my external research collaborators

– Sanjeeb Dash, Ewa Deelman, Jim Blythe, Sonal Jain and Gurmeet Singh.

I would like to thank all my friends and research staff in the compiler group for

many a stimulating discussion and a vibrant work environment – Daniel Chavarria-

Miranda, Yuan Zhao, Rajarshi Bandyopadhyay, Apan Qasem, Cheryl McCosh, Cris-

tian Coarfa, Yuri Dotsenko, Arun Chauhan, Zoran Budimlic, Timothy Harvey, Guo-

hua Jin and Todd Waterman. I also thank my friends in the systems group – Santashil

Palchaudhuri, Amit Saha, Anupam Chanda, Animesh Nandi, Atul Singh and Sitaram

Iyer. My sincere thanks to all the support staff at the Computer Science department,

including Penny Anderson, Darnell Price, Iva Jean Jorgensen, Lena Sifuentes, Donna

Jares, Melissa Cisneros, Rhonda Guajardo, Bel Martinez and BJ Smith, for being so

helpful.

I am extremely grateful to my parents and uncle, who have been with me through-

out this long journey. They have provided all the support and encouragement that

make me who I am. I hope I have fulfilled a part of their dream. My sincere thanks to

Kuntal Das, Indrani Dasgupta and Naureen Shahid for always being there and sup-

porting me. My school friends – Subhendu Chakraborty, Saraswata Chaudhuri, Samik

Raychaudhuri, Tirtha Chatterjee, Arnab Chakraborty and Bhaskar Dutta have been

extremely supportive all through. I would also like to thank Sukanya Das, Ivy Ghose,

Susmita Roy, Ramkumar Balasubramanian and Jatin Shah for their encouragement.



Contents

Abstract ii

Acknowledgments iv

List of Illustrations x

List of Tables xii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Tools for Application Scheduling on the Grid . . . . . . . . . . . . . . 3

1.3 Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Related Work 7

2.1 DAG Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 DAG Scheduling for Homogeneous Platform . . . . . . . . . . 7

2.1.2 DAG Scheduling for Heterogeneous Platform . . . . . . . . . . 11

2.2 Multiprocessor Scheduling of Independent Tasks . . . . . . . . . . . . 14

2.3 Workflow Management on the Grid . . . . . . . . . . . . . . . . . . . 16

2.3.1 GriPhyN - Pegasus . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.2 GridFlow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.3 Condor DAGMan . . . . . . . . . . . . . . . . . . . . . . . . . 19



vii

2.3.4 Meta-heuristic Approach - GridLab . . . . . . . . . . . . . . . 20

2.3.5 TrellisDAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.6 GEL - Grid Execution Language . . . . . . . . . . . . . . . . 21

2.4 Grid Resource Management - Scheduling in Current Grid Projects . . 22

3 Grid Applications 24

3.1 Grid Applications Survey . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Representative Applications . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 EMAN - Electron Micrograph Analysis . . . . . . . . . . . . . 27

3.2.2 EOL - Encyclopedia of Life . . . . . . . . . . . . . . . . . . . 30

3.2.3 Montage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Generalized Representation of Grid Applications - Workflow Application 31

4 Plan-Ahead Workflow Scheduling 35

4.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.1 Calculation of rank values . . . . . . . . . . . . . . . . . . . . 37

4.2.2 Communication Performance Modeling . . . . . . . . . . . . . 38

4.2.3 Component Performance Modeling . . . . . . . . . . . . . . . 38

4.2.4 Solving for the final mapping . . . . . . . . . . . . . . . . . . 39

4.2.5 Heuristic Approach . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.1 Experimental Framework . . . . . . . . . . . . . . . . . . . . . 43

4.3.2 Value of Performance Models and Heuristics . . . . . . . . . . 45

4.3.3 Load Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3.4 Resource Loads and Inaccurate Performance Models . . . . . . 51



viii

4.4 Scalability of Workflow Scheduler . . . . . . . . . . . . . . . . . . . . 52

4.4.1 Theoretical Complexity . . . . . . . . . . . . . . . . . . . . . . 52

4.4.2 Experimental Evaluation of Scaling of Plan-Ahead Scheduler . 52

4.5 Scheduler Applications: Incorporating Batch Queue Wait Times . . . 53

4.5.1 Workflow Scheduler Modifications . . . . . . . . . . . . . . . . 56

5 Middle-Out Workflow Scheduling 60

5.1 Drawbacks of Basic Plan-Ahead Workflow Scheduling . . . . . . . . . 60

5.2 Middle-Out Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2.1 Intuition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2.3 Theoretical Complexity . . . . . . . . . . . . . . . . . . . . . . 62

5.3 Experimental Evaluation of Middle-Out Approach . . . . . . . . . . . 64

5.3.1 Simulation Framework . . . . . . . . . . . . . . . . . . . . . . 64

5.3.2 Benchmark DAGs . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6 Comparison with Dynamic Workflow Scheduling Approach 68

6.1 Dynamic/Online vs Static Scheduling Strategies . . . . . . . . . . . . 68

6.1.1 Online “Task-Based” Algorithm . . . . . . . . . . . . . . . . . 68

6.1.2 Static “Workflow-Based” Algorithm . . . . . . . . . . . . . . . 70

6.2 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.2.1 Simulation Framework . . . . . . . . . . . . . . . . . . . . . . 72

6.2.2 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . 75

6.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76



ix

7 Scalable Workflow Scheduling 80

7.1 Scalable Workflow Scheduling using Virtual Grids . . . . . . . . . . . 80

7.1.1 Virtual Grids - vgDL and vgES . . . . . . . . . . . . . . . . . 81

7.1.2 Decoupled Approach: Scheduling in Large Scale Grids . . . . 84

7.1.3 Scheduling Algorithms . . . . . . . . . . . . . . . . . . . . . . 85

7.1.4 What VG to ask for? . . . . . . . . . . . . . . . . . . . . . . . 86

7.1.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.2 Scheduling onto Abstract Resource Classes . . . . . . . . . . . . . . . 88

7.2.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . 88

7.2.2 Abstract Modeling . . . . . . . . . . . . . . . . . . . . . . . . 89

7.2.3 Iterative DP Approach . . . . . . . . . . . . . . . . . . . . . . 90

7.2.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . 91

8 Conclusions 98

8.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

8.1.1 Short and Medium Term . . . . . . . . . . . . . . . . . . . . . 100

8.1.2 Long Term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Bibliography 103



Illustrations

3.1 EMAN Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 EMAN “refinement” workflow . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Montage Application . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Example workflow representation . . . . . . . . . . . . . . . . . . . . 33

4.1 GrADS Execution Cycle . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Comparison of different scheduling strategies . . . . . . . . . . . . . . 47

4.3 Scheduler Scaling for EMAN . . . . . . . . . . . . . . . . . . . . . . . 54

4.4 Scheduler Scaling for Montage . . . . . . . . . . . . . . . . . . . . . . 55

4.5 Example: Workflow Scheduling with Batch Queues - Step 1 . . . . . . 58

4.6 Example: Workflow Scheduling with Batch Queues - Step 2 . . . . . . 58

4.7 Example: Workflow Scheduling with Batch Queues - Step 3 . . . . . . 59

4.8 Example: Workflow Scheduling with Batch Queues - Step 4 . . . . . . 59

5.1 Middle-Out vs. Top-Down: CCR 0.1 . . . . . . . . . . . . . . . . . . 66

5.2 Middle-Out vs. Top-Down: CCR 1 . . . . . . . . . . . . . . . . . . . 67

5.3 Middle-Out vs. Top-Down: CCR 10 . . . . . . . . . . . . . . . . . . . 67

6.1 Example workflow for task-based algorithm . . . . . . . . . . . . . . . 69

6.2 Architecture of Grid Simulator . . . . . . . . . . . . . . . . . . . . . . 75



xi

6.3 Makespan of TBA vs WBA for data-intensive scenario . . . . . . . . 77

6.4 Makespan of TBA vs WBA for compute-intensive scenario . . . . . . 78

6.5 Makespan of random vs TBA/WBA for data-intensive scenario . . . . 78

6.6 Makespan of random vs TBA/WBA for compute-intensive scenario . 79

7.1 Cluster-Level vs. One-Step (greedy and heuristic) for EMAN . . . . . 94

7.2 Cluster-Level vs. One-Step (greedy and heuristic) for Montage . . . . 95

7.3 Scaling of Cluster Level Scheduler . . . . . . . . . . . . . . . . . . . . 96

7.4 Makespan and scheduling time for small and large Montage DAGs . . 97

7.5 Makespan and scheduling time for small and large EMAN DAGs . . . 97



Tables

4.1 Comparison of makespans for different scheduling strategies with rdv

data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Results of EMAN workflow execution with rdv data . . . . . . . . . . 48

4.3 Load balancing of the “classesbymra” instances using the HA strategy 49

4.4 Results for groel data with unloaded resources . . . . . . . . . . . . . 50

4.5 Results for groel data with loaded resources . . . . . . . . . . . . . . 51

4.6 Results for groel data with inaccurate performance models . . . . . . 52

7.1 Number of Clusters and Nodes . . . . . . . . . . . . . . . . . . . . . . 92



1

Chapter 1

Introduction

Grid computing is defined as coordinated resource sharing and problem solving in

dynamic, multi-institutional collaborations [IKT01]. The idea is to view the global

information infrastructure as an active, computational resource. Just like the electric

power grid provides pervasive access to electricity, the “Grid” [FK99] promises to

connect geographically distributed computers, databases, instruments and people in

a fabric of computing that can be used as an integrated problem-solving resource in

diverse fields of science and engineering and provide pervasive access to large scale

computation and data. Grid computing typically involves using many resources (com-

pute, network, data, instruments etc.) to solve a single, large problem that could not

be solved on any single resource [NSW03].

An integral and essential component of Grid computing is Grid Resource Man-

agement. The responsibilities of a Grid resource management system are identifying

application requirements, matching Grid resources for the application, allocating the

resources, scheduling the application onto the resources and monitoring the applica-

tion and resources as the application executes on them. Requirements of applications

are diverse and so are the Grid resources in terms of processor capabilities, data ca-

pabilities, network capabilities, instruments and other services. Scheduling diverse

applications on heterogeneous, distributed, dynamic Grid computing systems is a

hard problem and is one of the most important components of a Grid Resource Man-

agement system. Scheduling applications to the “right” set of grid resources can have
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a dramatic effect on the performance of a Grid application. A good job of scheduling

results in faster turnaround times for the applications.

1.1 Motivation

Through initial progress in Grid Resource Management, it is possible to securely

submit/run jobs across multiple administrative domains and transfer large data sets

(files) across them. But, these systems are still in their infancy offering only very basic

services of secured access and remote job execution. This has provided a platform

for researchers to address the issues on how to use the resources more efficiently and

effectively. Unfortunately, the use of good Grid Resource Management tools is far

from ubiquitous and the scheduling support in the existing ones is rudimentary and

has room for improvement.

From the survey of the different grid applications discussed in detail in chapter 3,

it is evident that the Grid is suitable for coarse-grained parallel applications. These

applications consist of a set of application components that need to be executed in

a certain partial order for successful completion. The application components them-

selves are either coarse-grained parallel components, parameter sweeps or tightly-

coupled components. Applications demonstrating these characteristics are referred

to as workflow applications and represent the dominant class of applications on the

Grid. There is a need for a framework to efficiently schedule and execute the work-

flow applications on distributed, heterogeneous Grid systems. Efficient execution is

contingent upon a “right” choice of resources and a schedule on the chosen resources.

Most successful Grid applications include their own application scheduler. Produc-

ing such a scheduler is tedious and error-prone. Hence, there is a definite need for

generic tools for automatic application scheduling on the Grid. Large-scale scientific
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application workflows can achieve higher performance when they are efficiently and

effectively mapped and scheduled onto Grid resources.

1.2 Tools for Application Scheduling on the Grid

The vision for achieving successful Grid computing is to enable scientists seamlessly

solve large-scale problems using resources on the Grid so that the complexity of the

Grid is hidden from the scientist. For example, a physicist sitting in Houston should

be able to launch from his laptop a large-scale simulation that uses instrument data

from a laboratory in Florida, results of previous runs from a database in Washington

and computation power from a supercomputer at Chicago and a large cluster at San

Diego and is able to get back the results in Houston. The important point is that these

steps need to happen seamlessly from the viewpoint of the scientist, who is shielded

from the dynamic, distributed and heterogeneous nature of the Grid infrastructure.

Unfortunately, we are a long way from achieving this vision. The state of the art

for the scientist is to still transfer the data manually, choose the resources manually

and deal with all the Grid middleware directly to run his jobs and get the results

back. Hence, research in the GrADS[ea02] and VGrADS [vgr] project has focused on

the problem of “how do we develop tools to make programming for the Grid easier

for the end-user/scientist?”

In order to answer that question, we need to demonstrate tools that enable au-

tomatic application level scheduling of the application workflows provided by the

scientist, so that the workflows can seamlessly choose and access resources and at

the same time achieve good turnaround time. In other words, the scientist no longer

has to manually interact with the Grid system to choose resources and schedule the

workflows onto them.
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The current Grid workflow frameworks have limited scheduling capabilities [DBG+03,

dag, TMSW01]. Most of them use random, online or first-come-first-serve scheduling

policies, resulting in poor turnaround times. Hence, we propose tools that auto-

matically produce efficient application schedules from input application workflows

provided by the scientist using accurate performance predictions and heuristics. This

enables achieving both of our objectives:

1. Ease of programming for the Grid.

2. Better application turnaround time for high performance and efficient utilization

of Grid resources.

1.3 Thesis

My thesis is that plan-ahead, application-independent scheduling of workflow applica-

tions based on performance models can reduce the turnaround time for Grid execu-

tion of the whole application, reducing the burden of Grid application development.

To support this thesis, I have developed heuristic, plan-ahead workflow scheduling

algorithms that use application performance models. I have implemented the algo-

rithms and have shown the effectiveness and efficiency of the same by evaluating

the algorithms in context of real scientific workflows - one from the domain of bio-

imaging (EMAN) and another from the domain of astronomy (Montage) using real

Grid testbeds and simulations.

1.4 Research Contributions

The main contribution of this work is a set of techniques for scheduling application

workflows onto Grid resources.
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• I have developed a plan-ahead heuristic scheduling algorithm based on perfor-

mance models for scheduling scientific workflows. I investigated the effect of

performance models, heuristics and machine loads on the generated schedule

and hence overall performance for real applications.

• I designed and implemented a novel middle-out workflow scheduling heuristic

to tackle the short-sightedness of the plan-ahead top-down workflow scheduler

and evaluated it with an application.

• I investigated a comparison of plan-ahead scheduling with existing dynamic,

online scheduling strategies.

• I also investigated the issue of scalable workflow scheduling techniques for future

Grids, which may consist of hundreds of thousands of resources. I designed

and implemented a cluster-level workflow scheduler that scales to thousands of

resources and evaluated it with the applications.

• I have extended the workflow scheduling tool to incorporate batch queue wait

times for taking the scheduling decisions. This increases the applicability of the

scheduling tool to batch-queue controlled systems.

1.5 Organization

The thesis is organized as follows. In chapter 2, we present related work. In chapter

3, we present a survey on existing Grid applications. We describe our plan-ahead

workflow scheduling strategies and evaluations of the same in chapter 4. In chapter

5, we present a new “middle-out” plan-ahead workflow scheduling approach and its

evaluations. We present a comparison of the plan-ahead approach with dynamic task

based approaches to workflow scheduling in chapter 6. In chapter 7, we describe
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scalable workflow scheduling strategies using virtual grids and a new cluster-level

scheduling technique and its evaluation. We conclude the thesis in chapter 8..
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Chapter 2

Related Work

In this chapter, I summarize related work on DAG scheduling on homogeneous and

heterogeneous platforms, multiprocessor scheduling of independent tasks, current

state of the art on workflow management, Grid resource management in general and

other scheduling strategies for the Grid. I also present comparisons with my work on

workflow scheduling (where appropriate).

2.1 DAG Scheduling

This section describes related work on scheduling Directed Acyclic Graphs (DAG)

onto homogeneous and heterogeneous platforms.

2.1.1 DAG Scheduling for Homogeneous Platform

There is a large body of literature on scheduling directed acyclic task graphs onto a set

of homogeneous processors. Kwok et al.[KA99b] [KA99a] present an excellent survey.

The static task scheduling problem can be described as follows. An application is

represented by a directed acyclic graph in which the nodes represent application tasks

and the edges represent dependencies between the tasks. Each node in the DAG has

an associated computation cost that denotes the expected execution time of the node

on a processor (note that the cost is same for all the processors). Each edge in the

DAG has an associated communication cost that denotes the expected communication

time between the tasks. The underlying platform is a contention-free network of fully
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connected homogeneous processors that can send and receive any number of messages

in parallel. Tasks can begin execution only when all the inputs are available. Once

started, the tasks execute to completion without interruption. This model is also

called the macro-dataflow model. The aim is to find a mapping and start times of

tasks to the processors such that (1) the precedence constraints are preserved and (2)

the schedule-length or makespan is minimized. The general DAG scheduling problem

has been shown to be NP-complete [GJ79]. Only a few very restrictive special cases

have a polynomial time solution. Hence, there are many heuristic solutions in the

literature broadly classified into three categories. We describe them in the following

sections.

List-Scheduling Based Heuristics for Bounded Number of Processors

List-scheduling based heuristics assign priorities to tasks in the DAG and place the

tasks in a ready list in descending order of priorities. Then, a task having higher

priority is considered for scheduling before a task having lower priority. There are

numerous methods for assigning the priorities, maintaining the ready list and assign-

ing a task to a processor. The different heuristics differ in terms of these. Most of the

time, the priority of a task is a function of top-level (t-level) , bottom-level (b-level),

SL (static b-level), length of critical-path (CP) or some combination of these. The

t-level of a task/node(n) is the length of the longest path from an entry node to n

(excluding n), where length of a path is defined as the sum of node and edge weights

along the path. The b-level of a task/node(n) is the length of the longest path from

n to any exit node. The SL is the b-level without considering the edge weights. The

critical-path is a path from an entry node to an exit node in the DAG such that the

length of the path is the maximum.

Here are a few of the list-scheduling heuristics. Highest Level First with Esti-
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mated Times (HLFET) [ACD74] prioritizes according to SL and schedules a task to

a processor that allows the earliest start time. The Insertion Search Heuristic (ISH)

[KL88] uses SL to assign priorities and schedules a task to a processor that allows

earliest start time. In addition , ISH also tries to insert other unscheduled nodes

from the ready list in the “holes” created by partial schedules. The Modified Critical

Path (MCP) [WG90] heuristic uses the ALAP time (length of critical-path - b-level)

of a node to assign the priorities, ties being broken by considering ALAP times of the

children. It schedules a task to a processor that allows the earliest start time using

the insertion method. The Earliest Time First (ETF) [HCAL89] heuristic computes

the earliest start times for all the ready nodes on all the processors with ties being

broken by a higher SL. It selects for scheduling the node-processor pair giving the

earliest start time. The Dynamic Level Scheduling (DLS) [SL93] heuristic uses the

Dynamic Level (DL) attribute, which is the difference between the SL of a node and

its earliest start time on a processor. For all the ready nodes the value of DL is

calculated for all the processors. The node-processor pair giving the highest value of

DL is scheduled next.

Clustering-based Heuristics for Unbounded Number of Processors

The clustering-based heuristics map the tasks in the given DAG to an unlimited

number of clusters. Mapping two tasks in the same cluster implies scheduling them

onto the same processor. At each step, a task is selected for clustering. The selection

for the next task depends on criteria that varies from one heuristic to another. Each

iteration refines the previous clustering by merging some clusters. Any clustering

heuristic requires additional steps to generate the final schedule - a cluster merging

step to merge clusters if the number of clusters obtained is greater than the number

of processors available, a cluster mapping step and a task ordering step for ordering
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the mapped tasks within each processor.

Here are a few of the clustering based heuristics. The Edge Zeroing (EZ) [Sar89]

heuristic selects the next cluster for merging based on the edge-weights. At each

step, it finds the edge with the largest weight and merges the end-points (thereby

mapping the two nodes to the same processor and eliminating the communication

cost) if the merging process does not increase the current parallel completion time.

Parallel completion time is the maximum value of the sum of t-level and b-level over

all the nodes. The Linear Clustering (LC) [KB88] heuristic merges all nodes in the

current critical-path into a cluster by zero-ing all the edges in the current critical-

path. Then those nodes and edges incident on them are removed from the graph

and the process is repeated for the unexamined portion of the graph. The Dominant

Sequence Clustering (DSC) [YG94] heuristic considers the dominant sequence (DS)

of the graph. DS is the length of the critical-path in the partially scheduled DAG.

DSC gives higher priorities to free nodes that belong to the dominant sequence for

the next merging step. So, the priority of a free node is the sum of the t-level and

b-level. The free node is merged to the cluster of one of its predecessors that give

the most reduction in the t-level. The t-level of the successor nodes are updated

and the algorithm iterates until all the nodes are examined. The other important

clustering based heuristics are the Mobility Directed (MD) [WG90] and Dynamic

Critical Path (DCP) [KA96] heuristics. Both of them use a mobility attribute, M,

which is a function of the current critical-path length, sum of t-level and b-level and

the weight of the node. M is zero for nodes in the critical-path. Smaller M values

are given higher priority. These two heuristics differ in the way the selected node

is assigned a cluster. MD schedules the node in the first idle time-slot while DCP

computes a look-ahead.
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Other heuristics

Another class of heuristics for scheduling DAGs to homogeneous processors is the

Task-Duplication-Based (TDB) heuristics [KA99b]. The idea behind TDB heuristics

is to schedule a task graph by mapping some of its tasks redundantly, so as to reduce

the effect of interprocessor communications. The TDB heuristics differ on the strategy

to select the next task for duplication. The TDB heuristics are more expensive

than heuristics belonging to the previous two classes. DAG scheduling based on

guided random search techniques like genetic algorithms, simulated annealing etc.

are expensive too.

We cannot apply the DAG scheduling heuristics for homogeneous platforms in the

Grid context because of the heterogeneity on the Grid in terms of both computation

and communication characteristics.

2.1.2 DAG Scheduling for Heterogeneous Platform

A few research groups have studied the task scheduling problem for heterogeneous

systems. In most of the literature for heterogeneous DAG scheduling, the underlying

platform is a fully-connected contention free network of q heterogeneous processors.

The data transfer rates between processors is stored in a matrix B of size q × q. In

addition to that there is a v × q computation matrix, W , in which the wij gives the

expected execution time of task vi on processor pj. The objective is to find a schedule

such that the schedule-length/makespan is minimized. Most of the heuristics are

based on list-scheduling techniques extended for heterogeneous platforms.

The Generalized Dynamic Level (GDL) [SL93] heuristic is the natural extension

of the DL heuristic for homogeneous platforms. The node weight is calculated as

the median cost of the node over all processors. The static-level for all the nodes is
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calculated based on these node weights. Static-level computation ignores the com-

munication costs. The dynamic-level attribute for a node-processor pair is calculated

as the difference between the static-level and the earliest start time on the processor.

The node-processor pair with the highest dynamic-level is scheduled next.

The Best Imaginary Level (BI) [OH96] heuristic is also a list-scheduling based

heuristic that uses the attribute called Best Imaginary Level (BIL). BIL for a node-

processor pair (Ni, Pj) is calculated as the sum of the expected execution cost of Ni

on Pj and the maximum of the communication cost over all children of Ni. As priority

for a node-processor pair, BI uses Best Imaginary Makespan (BIM) that is a function

of BIL and the earliest start time of the node on the processor. The node-processor

pair having the smallest BIM is selected next.

In the Heterogeneous Earliest Finish Time (HEFT) and Critical Path on a Proces-

sor (CPOP) [THW02] heuristics, the node weight, wi for the i-th node is calculated

as the average weight of the node over all processors: wi =
∑

wij/q. The weight of

the edge (i, k) is defined as the average communication cost ,cik = L + dataik

B
over all

processor pairs. Both of them are list-scheduling based heuristics. In HEFT, the pri-

ority of the tasks is set as the upward rank value ranku of the task. ranku of a node,

ni, is ranku(ni) = wi + maxsuccj(cij + ranku(nj)). ranku is calculated recursively

upward from the exit nodes. The highest priority task is selected and is scheduled

on a processor that gives the earliest finish time for the task using an insertion based

policy. In CPOP, the priority is set as the sum of upward and downward ranks.

Downward rank, rankd is defined as: rankd(ni) = maxpredj(rankd(nj) + wj + cji).

If the next task with the highest priority is in the critical-path, it is scheduled to

a designated critical-path processor; else, it is assigned to the processor having the

earliest finish time for the task, both cases using an insertion based approach.

We may not apply the above heuristics directly in the Grid context because (1)
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dramatic heterogeneity in both computational and communication characteristics on

the Grid make them unsuitable - implying average and median values making no

sense (2) list-scheduling heuristics are too sensitive to the methods of node and edge

weighting [ZS03] and (3) list-scheduling algorithms don’t schedule the nodes in a

chunk, which is important in the Grid context.

The Levelized-Min Time (LMT) [THW02] heuristic groups the tasks that can be

executed in parallel using a level attribute. A task at a lower level has a higher

priority than a task at a higher level. Each task at a level is assigned to the processor

such that the sum of the task’s computation cost and total communication costs with

tasks at previous levels is minimized. There are some similarities between LMT and

my initial approach.

My work on scheduling heuristics is closest to the work presented by Sakellariou

et al. in [SZ04]. In this work, the upward rank of each node is calculated as in

HEFT. Hence, the node and edge weights are average weights. The nodes are sorted

according to descending order of the upward rank values. They are scanned according

to this order to create independent sets of nodes that are then scheduled in a chunk

at a later stage. Each independent set is scheduled using a Balanced Minimum

Completion Time (BMCT) heuristic. The main drawback is considering the average

values, which may not make sense in the Grid context because of high heterogeneity.

There is also related work on heterogeneous scheduling assuming a non macro-

dataflow model [BLR02b]. It assumes a different communication model called the one-

port model. Most of this work is on master-slave tasking, divisible-load scheduling,

steady state scheduling and theoretical bounds thereof. These algorithms don’t apply

to the DAG model.

The work by Maheswaran et al. in [MS98] describes a dynamic matching and

scheduling algorithm for heterogeneous computing systems, where scheduling deci-
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sions are taken during runtime. We compare our static scheduling approach with a

dynamic scheduling approach in chapter 6.

2.2 Multiprocessor Scheduling of Independent Tasks

The problem of scheduling independent tasks onto a heterogeneous set of processors

has been studied extensively in the literature. The problem is stated as follows. Given

a set of unrelated/independent tasks, a set of heterogeneous processors and estimates

of execution times of each task on each processor, the aim is to find an assignment

and order of the tasks on each processor such that the overall makespan is minimum.

This problem is also known as the minimum multiprocessor scheduling problem and

belongs to the class of NP-complete problems - generalization of SS8 in Garey et

al. [GJ79]. There are few polynomial-time approximation schemes based on linear

programming to solve this problem [LST90] [JP99]. Though they are polynomial time

schemes, they are expensive to implement.

Most of the literature in this area has resorted to heuristic techniques to solve

this problem. Braun et al. [Tra01] present an excellent survey and comparison of

eleven static heuristics of mapping independent tasks onto heterogeneous distributed

computing systems. Opportunistic Load Balancing (OLB) heuristic assigns each task

in an arbitrary order to the next available machine irrespective of expected execution

times. It is a simple but ineffective heuristic. The Minimum Execution Time (MET)

heuristic maps each task to the processor on which it has the best expected execution

time. It is also a simple heuristic but causes severe load imbalances across the proces-

sors. The Minimum Completion Time (MCT) heuristic assigns the next task to the

processor on which it has the earliest completion time. It tries to overcome some of

the weaknesses of OLB and MET. The min-min heuristic considers the whole set of
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unmapped tasks. It finds the set of minimum completion times (MCT) corresponding

to each unmapped task. It then selects the task with the overall minimum MCT from

the set to be mapped next. It continues until all the unmapped tasks are mapped.

Min-min considers all unmapped tasks while MCT considers just one task. The in-

tuition behind min-min heuristic is that at each mapping step the current makespan

increases the least. The max-min heuristic is similar to min-min, the only difference

being that after the set of MCT is calculated the overall maximum MCT value task

is selected next for mapping. The intuition is that long tasks can be overlapped with

shorter tasks in case of max-min. Duplex heuristic runs both min-min and max-

min and selects the best makespan among them. The sufferage heuristic stores the

sufferage value for each of the unmapped tasks. Sufferage value is the difference be-

tween the minimum completion time and the second minimum completion time. The

task having the largest sufferage value is selected next for mapping. There are other

AI-based approaches/heuristics for mapping, which are based on Genetic Algorithms

(GA), simulated annealing (SA), Tabu search (Tabu), A* search etc. Simulation re-

sults in [Tra01] show that min-min and sufferage heuristics are the best in terms of

quality of makespans over a large range of processor characteristics and the time it

takes to find the mappings.

Heuristics for scheduling independent tasks have also been applied in the context

of Grid applications that are parameter sweeps. The study in [CLZB00] extends the

min-min and sufferage heuristics to incorporate data movement costs for input and

output files. The same work also introduces a heuristic called XSufferage that is an

extension of the sufferage heuristic. In XSufferage, the sufferage value is computed not

with MCTs but with cluster-level MCTs, i.e. by computing the minimum MCTs over

all hosts in each cluster. The results show that when file input/output is considered,

XSufferage works best.
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The study by He et al. in [HSvL03] uses a Quality of Service (QoS) guided min-

min heuristic. Their basic premise is that tasks on the Grid may have extremely

diverse QoS requirements. This means that some tasks may have very stringent

QoS requirements and others may have low QoS requirements. They adapt the min-

min heuristic to this scenario by first mapping all the available tasks with high QoS

requirement followed by mapping of the low QoS tasks.

The work by Beaumont et al. in [BLR02a] deals with scheduling divisible work-

loads on heterogeneous systems with one-port communication model. It is mainly

concerned with efficient distribution of workloads to processors (slaves) from the mas-

ter processor for single and multi-round algorithms. It also has theoretical optimality

results for the same. There are some other related work on heuristics for mapping

the tasks online (non-batch mode). Maheswaran et al. [MAS+99] present a survey of

the same. Caniou et al. [CJ04] present heuristics for dynamic, online mapping in the

Grid scenario that outperform the MCT in several metrics including makespan.

The work in this area uses a set of independent tasks as the application model.

In my work, the application model is a DAG model and hence these algorithms can’t

be applied directly. However, I use some of the heuristics from this domain (namely

min-min, max-min and sufferage) to schedule a chunk of available tasks onto available

Grid resources.

2.3 Workflow Management on the Grid

There are a few research groups working on automating management, scheduling and

execution of application workflows on the Grid.
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2.3.1 GriPhyN - Pegasus

The Pegasus [DBG+03] effort from the GriPhyN [grib] project deals with automating

generation of job workflows on the Grid. These workflows describe the execution of

a complex application built from individual application components. Their Concrete

Workflow Generator (CWG) maps an abstract workflow defined in terms of applica-

tion level components to a concrete workflow defined in terms of real executables and

input/output file names. The concrete workflow is mapped to the set of available

Grid resources.

Their infrastructure uses the Globus components for resource discovery (MDS), re-

mote job submission (GRAM), high-performance data transfer (GridFTP) and man-

agement of replicated files (RLS). The Transformation Catalog (TC) provides a map-

ping between the application components and their physical location. The abstract

workflow has information about all the jobs that need to be executed to materialize

the required data. The CWG first reduces the abstract workflow, in the sense that

if the required data has already been materialized for a component and can be ob-

tained via an RLS query and data transfer, the node corresponding to the component

is deleted. The CWG then finds out whether all required inputs for a component can

be materialized or not. If yes, it assigns a random available Grid resource to execute

the component. Data transfer nodes are added in the workflow, if necessary. Once the

final concrete workflow is generated, the workflow is executed using Condor-G and

DAGMan. The entire system was used to execute production runs of CMS [Wul98]

workflows.

The strong point of this work is that this is an end-to-end system for execution of

application workflows. However, the most important drawback of the system is that

there is only bare-bone provision for resource selection and scheduling. Random or
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round-robin scheduling can result in poor makespans for workflows. My work aims

to address this issue when scheduling concrete workflows.

Pegasus also presents the option of using AI techniques. This part of the Pegasus

effort aims at producing the concrete workflows from application metadata attributes

using AI-Planning techniques. This workflow generator is called the Abstract Con-

crete Workflow Generator (ACWG). A typical AI-planning system takes as input the

initial state (the current state of the world in some representation, the goal (a par-

tial description of the desired world state) and a set of operators (described as a set

of preconditions and effects that must hold true when an operator is applied). The

planning system uses different search algorithms to achieve the goals from the initial

state using the operators. There is a wide variation of search algorithms that can be

used.

The authors cast the concrete workflow generation as an AI-planning problem.

The ACWG models the application components along with data transfer as opera-

tors. State information includes description of available resources and files already

registered in the RLS. The goal description may include a metadata specification of

the information the user requires and the desired location of the output file. After the

modeling is done, the ACWG uses the Prodigy planner to come up with a final plan.

The planner uses a combination of local heuristics (for good choice of individual com-

ponent assignments) and global heuristics (for overall makespan reduction) to come

up with a high quality plan(schedule) and a concrete workflow. The main drawback

of this approach is that AI-Planning is very expensive because of exhaustive search

and backtracking.
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2.3.2 GridFlow

The GridFlow [CNS03] work performs workflow management and scheduling side-by-

side. It is mostly concerned with scheduling workflows of parallel message passing

jobs. It takes a hierarchical view of scheduling. The application is viewed hierar-

chically. The applications is assumed to represented as a global workflow of local

sub-workflows. The resources are viewed hierarchically too: the global Grid and

the local Grids. There is a global workflow management step followed by local sub-

workflow scheduling. The global workflow management step looks for a schedulable

sub-workflow, the predecessor sub-workflows of which have all been scheduled. The

start time of the chosen sub-workflow is configured with the latest end-time of its

pre-sub-workflows. The details of the sub-workflow and the start time are then sub-

mitted to an ARMS (Agent Based Resource Management System) [CNS03] agent.

ARMS agents work together to discover an available local Grid that can finish the

sub-workflow execution at the earliest time. The sub-workflows are mapped to the

local Grids using the Titan [CNS03] system. This system is used mostly for map-

ping workflows of tightly-coupled components. My work mainly focuses on mapping

workflows of coarse-grained, loosely-coupled components.

2.3.3 Condor DAGMan

One of the most popular tools supporting the execution of workflow applications is the

Condor DAGMan [dag] tool. DAGMan is a meta-scheduler for Condor jobs. DAG-

Man submits jobs to Condor in an order represented by the DAG and processes the

results. Whenever a component is available, DAGMan sends it to Condor. Condor

uses its matchmaking framework [RLS98] [Uni] to map the component to a resource.

DAGMan schedules the workflow dynamically at each step, so that the overall map-
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ping and schedule is determined by the state of the Grid at the series of points when

the application components are ready to execute. My work uses performance models

to take a more global approach that schedules an entire workflow in advance.

2.3.4 Meta-heuristic Approach - GridLab

Mika et al. in [MWW03] consider the problem of scheduling workflow tasks onto

the Grid. They formulate the problem as a multi-mode resource-constrained project

scheduling problem with schedule-dependent setup times, which is an extension of the

classical NP-complete resource-constrained project scheduling problem to minimize

the makespan. They present a 0-1 linear programming formulation of the problem,

and propose AI-based local search meta-heuristic approach to solve the problem.

The different AI meta-heuristics considered are simulated annealing, Tabu search and

genetic algorithms. This work is being done in the context of the GridLab project

and there are no published results on the effectiveness and efficiency of this approach.

The GridLab effort has also developed a system for workflow specification called

the Triana workflow Specification [TMSW01]. Triana provides an easy-to-use graph-

ical user interface to construct an application workflow. The user specifies the tasks,

dependencies, parameters and the set of machines for each component. Once the

workflow is created, it is converted to a WSFL-like XML taskgraph representation.

The taskgraph is then executed by a Triana controller through a gateway Triana Ser-

vice. There is no notion of scheduling in the Triana architecture. The user chooses

the resources.

2.3.5 TrellisDAG

The TrellisDAG [GLS] system deals with providing a framework to support com-

putations of non-trivial workloads with inter-job dependencies on high performance
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computing platforms. The system provides novel mechanisms for users to specify

both simple and complicated workflows, especially DAG description scripts (along

with flat submission scripts and TrellisDAG Makefiles). They also provide mecha-

nisms to express groups of jobs (that can be potentially pipelined) and dependencies

between groups. It also provides a framework for implementing different schedul-

ing policies. Their scheduling policies have been simple, mostly first-come-first serve

(FCFS) of jobs with satisfied dependencies (like DAGMan) and simple approaches to

data-locality when placing jobs on processors. The framework also provides mecha-

nisms to monitor the progress of complicated workflows. In contrast, my work deals

with global scheduling schemes for complicated workflows, which may overcome the

poor makespans that may result from simple FCFS scheduling.

2.3.6 GEL - Grid Execution Language

Lian et al. [LFPA05] have designed a simple scripting language to write Grid workflow

applications and have built interpretor support for the same. The interpreter builds

and executes portions of the application workflow DAG on the fly (as it interprets,

different application components are executed). All concerns specific to middleware

are pushed to different instances of DAG executor that is responsible for actually

launching the computation for the components. Iterative cyclic dependencies in the

workflow are supported mostly because of the interpretive architecture. Taking care

of cyclic dependencies is a novel feature of their work. Their infrastructure doesn’t

have any scheduling support and proposes to leverage external schedulers.
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2.4 Grid Resource Management - Scheduling in Current Grid

Projects

My work belongs to the general area of Grid resource management. The editors of

[NSW03] give an excellent overview of the state of the art in Grid resource manage-

ment - the general concerns and various projects and research works that address

those concerns. Hence, I herein don’t provide a survey of Grid resource management

in general. However, I will try to specify how my work fits in the general area. My

work specifically falls in the area of application-level scheduling and execution of Grid

application workflows. So, my work has to interface with different components of the

Grid resource management system - mainly the ways to access Grid resource infor-

mation and their predictions [WSH99] [FFK+97] [NSW03], the ways to determine

application requirements [NSW03] and application performance models [TWG+01]

[CDK+04] [Mar03], the ways to interact with the Grid runtime system for secure job

execution over multiple administrative domains and monitoring and ways to interact

with resource level schedulers, batch schedulers etc. [NSW03].

Here is a short survey on the scheduling/resource brokering strategies used in

some of the other current Grid projects. In the Condor-G [FFLT01] project, each

job is submitted to Condor and the Match-making framework is invoked to match a

resource to the job. The Match-making framework uses a flexible scheme of matching

resources to jobs via resource and job Classified Advertisements (ClassAds) [Uni].

Jobs are ranked according to rank functions present in the job ClassAds. The job is

mapped to the highest ranked resource. So, scheduling is on a job by job basis. In

the DataGrid resource broker [dat], the jobs are expressed in JDL (Job Description

Language), a ClassAds-type language. The broker performs matchmaking returning

all resources satisfying the JDL expression. Then it uses a ranking strategy to get



23

the “best” match for the JDL expression. Here too, scheduling is on a job-by-job

basis and very similar to what happens in Condor-G. The GrADS MPI scheduler

[DCB02] is a modular, application-level scheduler for tightly coupled applications.

Scheduling is based on application performance models and data and computation

mapping strategies. Resource modeling is done using NWS and MDS. It uses a

heuristic search method to find the best possible candidate resources for the MPI

application to run on. My work is based on the same philosophy of performance

model based scheduling, but for a different class of application.
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Chapter 3

Grid Applications

In this chapter, we provide a summary of different Grid applications from several

current Grid projects. We also present in detail three applications that are repre-

sentative of many of the Grid applications. We then infer about the general class

to which many of the Grid applications belong to. We come up with a generalized

representation for this class of applications.

3.1 Grid Applications Survey

Applications running on the Grid belong to scientific fields as diverse as high-energy

physics, astronomy, mesoscale weather modeling, bio-informatics and life sciences,

earthquake modeling, image processing etc. Here are a few important ones categorized

by different fields.

• High-Energy Physics, Astrophysics : The applications for the GriPhyN [grib],

PPDG [ppd] and iVDGL [ivd] projects are mostly from the fields of high-energy

physics, astrophysics and astronomy. These applications manage and process

large amounts of data, run large compute and data-intensive simulations and go

through a software pipeline of various stages of analysis and transformations.

Here are some of these applications.

The Compact Muon Solenoid (CMS) application [Wul98] is their flagship high-

energy physics application. The CMS is a high-energy physics detector planned
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for the Large Hadron Collider (LHC) at the European Center for Nuclear Re-

search(CERN). CMS is scheduled to be completed by 2007 when it will begin to

record data from the high-energy proton-proton collisions. The huge amounts

of data (about several petabytes/year after filtering) from these collisions is

expected to shed light on many fundamental scientific issues. For now, the

CMS collaboration has been doing compute-intensive Monte Carlo simulation

experiments, the output of which will be compared with the actual data once

the CMS is functional. Each production run of these simulations corresponds

to a Monte Carlo Production (MOP) job. Each MOP job is converted to a

DAG that is submitted for Grid execution. Millions of such runs need to be

completed. Each run corresponds to a CMS event that need to be processed

through different stages.

The LIGO [BW99] application deals with detection and measurement of gravi-

tational waves predicted by theories of relativity. The huge amount of raw data

collected during experiments is analyzed in both time and Fourier domains in a

software pipeline. In one of the specific LIGO problems for pulsar search, once

the inputs (like the channel name, start time etc.) are submitted, the processing

required to produce the output data could be represented as a DAG. The DAGs

are then executed on the Grid.

The Cactus [ABD+01] code, a main application for the GridLab [gria] project, is

used by numerical relativists to build and run large-scale simulations that model

black holes, neutron stars, gravitational waves etc. with Einstein’s theory of rel-

ativity. Application code developed using the Cactus toolkit uses task farming

to run large parameter studies corresponding to simulations not requiring much

communication. Also, a large Cactus application may be tightly-coupled and
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use resources from various sites to satisfy its resource needs via use of Grid

computing. Cactus also has advanced features like migration and spawning. In

short, Cactus covers a wide range of Grid usage scenarios.

• Astronomy : The National Virtual Observatory (NVO) [nvo] initiative, often de-

scribed as the Datagrid for astronomy, is aimed at developing tools that make

it easy to locate, retrieve, and analyze astronomical data from archives and

catalogs worldwide, and to compare theoretical models and simulations with

observations. The transformation of raw instrument data (like the ones from

Sloan Digital Sky Survey) into calibrated and cataloged data is a demand-

ing, compute-intensive task. The NVO applications perform computationally-

intensive, complex analysis on large, heterogeneous and distributed datasets

using a computational workflow that generate catalogs of stars, galaxies and

other astronomical objects.

• Bio-informatics : There are a host of Grid applications from several sub-fields

of bio-informatics. They include applications that deal with bio-molecular sim-

ulation and analysis, distributed cell simulations and other systems biology

simulations, sequence comparisons, genome analysis, comparative genomics,

proteomics, drug design, medical imaging, macromolecular and neuroimaging,

immunology and so on. Important initiatives include BIRN (Biomedical Infor-

matics Research Network) [bir], EU-funded GEMSS [gem], Mammogrid [mam]

and BioGrid [bio], UK myGrid [myg] , EOL [LBH+04]. The common themes

of these applications are that (1) most of them involve large computationally

intensive parameter studies and simulations (2) they may access and update

large, distributed and diverse databases and (3) the searches may involve large

data movement and replication.
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• Mesoscale Weather Modeling : The weather modeling and forecasting commu-

nity has also been running large scale weather simulation models on the Grid.

Their applications also involve a computational workflow of setting up initial

models and running suites of large computationally intensive simulations (many

of which can be tightly-coupled codes) of different models. The simulations are

run in order to do parameter studies. The simulation results are visualized and

data-mined to obtain a forecast. The MEAD [mea] and the LEAD [lea] projects

have been involved in this.

• Other Fields : There are other Grid applications from many diverse fields like

earthquake engineering [FK03], distributed aircraft maintenance [FK03], paral-

lel tomography [SCF+00], desktop grid [FK03] and many others.

3.2 Representative Applications

We now discuss three applications (EMAN, EOL and Montage), which are represen-

tative of many Grid applications.

3.2.1 EMAN - Electron Micrograph Analysis

EMAN [LBC99] is a bio-imaging application developed at the Baylor College of

Medicine. It is mainly used for doing 3D-reconstruction of single particles from 2D

electron micrographs. Figure 3.1 gives an overview of the functionality of EMAN.

Biologists’ intervention and expertise is needed to come up with the preliminary 3D

model from the electron micrographs. The refinement from a preliminary model to

a final 3D is fully automated. This “refinement” step is highly compute-intensive

and benefits from harnessing the power of the Grid. The “refinement” step builds up

a refined 3D model of the single particle from a coarser 3D model of the same and
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Figure 3.1 : EMAN Overview

iterates until a “good” quality 3D model is obtained. EMAN refinement is structured

as follows.

One iteration of “refinement” is structured as a linear DAG. Some nodes in the

DAG are inexpensive sequential programs, while the interesting computationally in-

tensive ones are large parallel parameter sweeps. Some of the parallel programs can

be run across multiple clusters while others must run on a single cluster. For multi-

ple iterations of “refinement”, the DAG is unrolled multiple times. Figure 3.2 gives

a detailed view of the EMAN “refinement” computation. There are eight nodes in

each “refinement” chain of computation. Of these, four are parallel nodes and rest

are sequential ones. The classification step in EMAN, “classesbymra” is the most

compute-intensive (and parallel) step in the “refinement” workflow.
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Figure 3.2 : EMAN “refinement” workflow

EMAN “refinement” is not only compute-intensive but also data-intensive. The

input electron micrograph data for a moderate sized experiment can be a few GBs and

for large experiments, it can be 100GB. So, having the computations near the data and

minimizing intermediate data movements are important concerns when scheduling

EMAN on the Grid.

The current EMAN “refinement” is representative of applications having a linear

software pipeline of programs some of which are parameter sweeps. In the future, each

of the EMAN computations will evolve to a DAG that may be described using high-

level Python scripts [per]. Multiple such DAGs can be submitted for Grid execution.

The more general model that future EMAN application will be representative of

is a mixed parallel application where there will be

• A set of large input files (replicated or distributed)
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• A set of software components arranged in a DAG (a simple chain or a more

complicated DAG described through a high-level scripting language), where

each component accesses the input data and/or data produced from preceding

components. Some of the components will be parameter sweeps themselves.

• A set of such DAGs needs to be processed, as many as possible and as fast as

possible.

3.2.2 EOL - Encyclopedia of Life

The Encyclopedia of Life (EOL) [LBH+04] is a collaborative global project designed

to catalog the complete genome of every living species in a flexible reference system.

It is an open collaboration led by the San Diego Supercomputer Center, and currently

has three major development areas: (i) creation of protein sequence annotations using

the integrated genome annotation pipeline (iGAP); (ii) storage of these annotations

in a data warehouse where they are integrated with other data sources; and (iii)

a toolkit area that presents the data to users in the presence of useful annotation

and visualization tools. The key computation-intensive step is the first one since its

goal is to discover relationships across genomes, and thus involves extensive compu-

tation, access to databases that contain data derived from the iGAP processing of

multiple genomes (dozens initially and ultimately hundreds). However, this coupling

across genomes is achieved exclusively through accesses and updates to these shared

databases.

EOL is not a single code, but rather a script (iGAP) that glues together a number

of well-known community software packages. These packages operate on input files

(“sequence files”) as well as on community databases. EOL processes genomes that

can be all processed independently and in any order. Each genome consists of a
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number of sequences. These sequences can be processed independently and in any

order. Each sequence is processed in a series of steps (a workflow called the iGAP

“pipeline”), implemented as a set of shell scripts that call community codes one after

another genomes and subsequences, as well as for the protein sequences described in

the genome.

3.2.3 Montage

Montage[ea04] is a large-scale data-intensive astronomy application and comes from

the NVO initiative. The Grid-enabled version of Montage is suitable for large scale

processing of 2MASS images (from the NASA/IPAC Infrared Science Archive) of

a large portion of the sky with the goal of providing custom, science grade image

mosaics in FITS format. The application consists of the computational workflow

of re-projection of input images that can be done in parallel utilizing required Grid

resources, modeling of background radiation, rectification of images and co-addition

of re-projected, background corrected images into a final mosaic. In short, Montage

has the DAG structure shown in Figure 3.3. mProject, mDiffFit and mBackground

are parallel components. There are equal number of mProject and mBackground

nodes. Each mDiff node has two mProject nodes as predecessors.

3.3 Generalized Representation of Grid Applications - Work-

flow Application

From the above survey of the different Grid applications, we have come up with a

generalized representation of a Grid Application. We represent the application as a

Directed Acyclic Graph (DAG).

• Node Semantics : The nodes in the DAG represent sequential, parameter sweep
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Figure 3.3 : Montage Application

or tightly-coupled/parallel computations. Each node must run to completion

without interruption. The nodes save the output data to a local file-system.

The nodes may access and update databases or distributed data-sets. Some of

the nodes may be control nodes like nodes for data assimilation and explicit

data movements.

• Edge Semantics : The edges represent data and control dependencies. All com-

munication is done using file transfers over the network. The volume of com-

munication is annotated on the edges. We don’t consider pipelining of commu-

nication as a part of the thesis.

We call an application that can be represented using this format a workflow ap-

plication and the DAG with all the attributes the workflow representation of the

application. Instead of the application being a single large component doing all the
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tasks, the workflow application consists of a collection of several interacting compo-

nents that need to be executed in a certain partial order for successful execution of

the application as a whole. Figure 3.4 gives an example of the representation. Most

Grid applications can be instantiated using this representation. The main issues of

Figure 3.4 : Example workflow representation

executing workflow applications on the Grid are

• The ability for the components to seamlessly access the required Grid resources.

This may be achieved by leveraging a framework like VGrADS vgES [vgr] using

Globus services (authentication, remote job launch etc.).

• Efficient resource selection and scheduling for the components in order to achieve

good performance. This means harnessing the Grid resources effectively for the
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compute-intensive steps and minimizing communication, thereby minimizing

the makespan for the whole workflow. Chapter 4, 5 and 7 provides the details

of efficient workflow scheduling.

• Satisfying all dependencies and automating the Grid execution of the entire

workflow. This may be achieved by leveraging workflow management frame-

works (like Pegasus).
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Chapter 4

Plan-Ahead Workflow Scheduling

As discussed in the last chapter, large scientific workflows arise from scientific exper-

iments involving large scale simulations, search, analysis, mining etc. Most of these

workflows are coarse-grained and hence suited for execution in Grid environments.

A fundamental issue for efficient execution of the workflows on the Grid is selection

and scheduling of Grid resources for workflow execution. In this chapter, we describe

our approach to “plan-ahead” scheduling of large scientific workflows onto the Grid.

Our scheduling strategy is based on accurate performance predictions of the work-

flow components. We call our strategy “plan-ahead” because we take the scheduling

decisions for all the components in the workflow before executing any component of

the workflow. This is in contrast to dynamic scheduling approach where scheduling

decisions are taken in tandem with workflow execution.

The design space for Grid Schedulers in general is very rich. First, it depends on

what objective function the user wants to minimize or maximize – examples being

minimizing overall job completion time, minimizing communication time and volume,

and maximizing resource utilization or throughput. Second, it depends on how the job

requirements, job performance models, and Grid resource models are specified and

used. The scheduler must also carefully choose between different implementations

of user authentication, allocation, and reservation. Other choices include scheduling

application components for single or multiple users and whether rescheduling or re-

planning is required. In our workflow scheduling work, we have chosen the following
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design parameters. Our objective is to minimize overall job completion time or the

makespan of the application. The makespan of a workflow application is defined

as the time at which the last component in the workflow finishes execution. We

develop Grid resource model through calls to different Grid services - Monitoring and

Discovery Service (MDS) [FFK+97] and Network Weather Service (NWS) [WSH99].

We derive application component performance models using methods described in a

later section. We state the scheduling problem we are trying to solve as follows.

4.1 Problem Statement

Given a DAG of the workflow representation of the application, let the set of cur-

rently available application components (for the purpose of scheduling) from the

DAG be denoted by C = {c1, c2, ...cm} and the set of available Grid resources be

G = {r1, r2, ...rn}. The solution to the scheduling problem is an output of a mapping

and schedule of elements of C onto elements of G, or in other words, an output of

which component runs on which Grid resource in what order.

4.2 Approach

We take a two-stage approach to solve the problem. In the first stage, for each

component, we rank the resources and assign specific rank values to each resource on

which the component can be mapped. Rank values reflect the expected performance

of a particular component on a particular resource. We will explain how to assign

these rank values in detail in the next section. As a result of this step, we will

have associated rank values for a set of resources for a particular component. In the

second stage, we take the rank values for each component and build up a Performance

Matrix. We then use certain known heuristics to obtain a mapping of components to
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resources. These steps are explained in detail below.

4.2.1 Calculation of rank values

Calculating rank values involves matching a specific component to a set of resources

and then ranking the resources. For this purpose, we assign rank values for each

possible mapping of the component to an available resource. According to our ranking

convention, resources with a lower rank are a better match for the component. We

assign the rank value for each resource in the following manner.

• At first we check whether the Grid resource meets certain hard requirements

(like required OS, required memory, storage, required minimum CPU speed

etc.) for the component. If the resource doesn’t meet the hard requirements,

we assign it a rank value of infinity. We derive the resource properties from

calls to MDS services.

• Next, we evaluate the rank values for the eligible resources. Rank value is a

weighted linear combination of expected execution time on the resource, rj for

the component, ci denoted by eCost(ci, rj) and expected cost of data movement

denoted by dCost(ci, rj).

rank(ci, rj) = w1 × eCost(ci, rj) + w2 × dCost(ci, rj) (4.1)

We can customize the weights to give more importance to one over the other.

We derive eCost(ci, rj) from application component performance model and

dCost(ci, rj) from communication performance model. We describe them in

detail in the next two sections.
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4.2.2 Communication Performance Modeling

We calculate dCost(ci, rj) as follows. Let map(ci) denote the resource onto which ci

has been mapped, vol(ci) denote the volume of data produced by ci, Parent(ci) denote

the set of parent components for ci , Lat(rp, rq) denote the estimated latency from

resource rp to resource rq and BW (rp, rq) denote the estimated bandwidth between

resource rp and rq. Then, we define dCost(ci, rj) as

dCost(ci, rj) =
∑

p∈Parent(ci)

(Lat(map(p), rj) + vol(p)×BW (map(p), rj)) (4.2)

We estimate Lat(rp, rq) and BW (rp, rq) from latency and bandwidth information

from the NWS. Note that when the rank for the current set of available components

is being calculated, the mapping for the parents of the current components will be

already known.

4.2.3 Component Performance Modeling

To estimate the eCost(ci, rj), we build architecture independent component perfor-

mance models semi-automatically. The performance models take into account both

the number of floating point operations executed and the memory access pattern for

the component. [CDK+04] describes the strategy.

The rank values can now be determined using the performance models and equa-

tion (4.1). We build a matrix using these rank values and call it the Performance

Matrix, M , where the entry pij denotes the rank value of executing the ith component

on the jth resource. Once we have this matrix, we can solve for the final mapping of

components to resources.
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4.2.4 Solving for the final mapping

The mapping problem is an NP-Complete problem since the Minimum Multiproces-

sor Scheduling problem is NP-Complete [GJ79] and can be reduced to our mapping

problem. We use an heuristic approach to solve the mapping problem.

4.2.5 Heuristic Approach

We chose to apply three heuristics from the domain of scheduling parameter sweep

applications [CLZB00, Tra01]. These heuristic approaches to finding a mapping run

in polynomial time but don’t guarantee an optimal mapping. The three heuristics we

chose are

• Min-min heuristic: For each component, the resource having the minimum

estimated completion time (ECT) is found. Denote this as a tuple (C, R, T),

where C is the component, R is the resource for which the minimum is achieved

and T is the corresponding ECT. In the next step, the minimum ECT value

over all such tuples is found. The component having the minimum ECT value

is chosen to be scheduled next. This is done iteratively until all the components

have been mapped. The intuition behind this heuristic is that the makespan

increases the least at each iterative step with the hope that the final makespan

will be as small as possible.

• Max-min heuristic: The first step is exactly same as in the min-min heuristic.

In the second step the maximum ECT value over all the tuples found is chosen

and the corresponding component is mapped instead of choosing the minimum.

The intuition behind this heuristic is that by giving preference to longer jobs,

there is a hope that the shorter jobs can be overlapped with the longer job on

other resources.
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• Sufferage heuristic: In this heuristic, both the minimum and second best

minimum ECT values are found for each component in the first step. The

difference between these two values is defined as the sufferage value. In the

second step, the component having the maximum sufferage value is chosen to

be scheduled next. The intuition behind this heuristic is that jobs are prioritized

on relative affinities. The job having a high sufferage value suggests that if it

is not assigned to the resource for which it has minimum ECT, it may have an

adverse effect on the makespan because the next best ECT value is far from the

minimum ECT value. A high sufferage value job is chosen to be scheduled next

in order to minimize the penalty of not assigning it to its best resource.

We run all three heuristics over the entire workflow and choose the mapping that de-

livers the minimum makespan. In the pseudo-code for the overall workflow scheduling

presented below, ECT(j,R) is the estimated completion time of a particular compo-

nent on a particular resource. EAT(R) is the expected time at which the resource,

R will be next available (probably after the previous component finishes on the same

resource). maxECTparents(j) is the maximum over the estimated completion times

of the parents of job,j. The overall algorithm, described in Algorithm 4.1, works as

follows. For each heuristic, until all components in the workflow are mapped, the

current set of available components are found. The rank matrix is then obtained for

the set of available components. Then, Algorithm 4.2 is invoked with the current rank

matrix, available components and heuristic as arguments. Algorithm 4.2 implements

the core scheduling heuristics. Depending on the current heuristic, it returns a map-

ping for the current set of available components. Algorithm 4.1 updates the mappings

and current makespan. When the outer loop of Algorithm 4.1 finishes execution, we

have the mappings and makespans corresponding to the three heuristics. We choose
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the mapping that gives the minimum makespan among the three and output that as

the final mapping.

foreach heuristic do

while all components not mapped do

Find availComponents; // components whose dependencies have been sat-

isfied

Calculate the rank matrix;

findBestSchedule(availComponents, heuristic);

endwhile
endforeach

Select mapping with minimum makespan among three;

Output selected mapping;

Algorithm 4.1: Workflow Scheduling

Other Heuristic

We have also implemented a simple Greedy heuristic to map the available jobs. In

the greedy heuristic, each available component is immediately mapped to the resource

that gives the minimum ECT over all resources. The EAT vector and makespan are

updated with each mapping.
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while all availComponents not mapped do

foreach Component, j do

foreach Resource, R do

ECT(j,R)=rank(j,R)+max(EAT(R),maxECTparents(j));

endforeach

Find minECT(j,R) over all R;

Find 2nd-minECT(j,R) over all R;

endforeach

if min-min then

Calculate min(minECT(j,R)) over all j;

endif

if max-min then

Calculate max(minECT(j,R)) over all j;

endif

if sufferage then

Calculate min(2nd-minECT(j,R)-minECT(j,R)) over all j;

endif

Store mapping(current heuristic);

Update EAT(R) and makespan;

endwhile

Algorithm 4.2: findBestSchedule
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4.3 Experimental Evaluation

4.3.1 Experimental Framework

Infrastructure for workflow execution

In this section we address the issue of automating the Grid execution of the entire

workflow. We have used and extended the GrADSoft infrastructure to handle launch-

ing of workflow style applications. Figure 4.1 describes the GrADS execution cycle.

The application along with the performance model is handed over to the Workflow

Figure 4.1 : GrADS Execution Cycle

Engine, which in combination with the workflow scheduler schedules the application

components onto available resources. The workflow scheduler consults the GrADS

information system for MDS/NWS information and uses the available performance
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models. Once the set of resources are chosen, the GrADS Application Manager is

invoked. The GrADS Application Manager is the central controller for the GrADS

execution system. Once the schedule is obtained, the execution system invokes the

binder to execute the components on the chosen resources. The binder queries the

information system to find out the application specific libraries, inserts sensors for

run-time performance monitoring, configures/compiles/links the components on the

target resources and actually launches the components. Heterogeneity is handled as

a part of the design since the binder compiles from source at each target resource.

Cooper et al. [CDK+04] describe the GrADS binder in detail.

Testbed and Data-set for Experiments

The testbed for the experiments consisted of distributed, heterogeneous resources

from multiple participating institutions of the GrADS and VGrADS projects. There

were 64 dual-processor 900MHz Itanium IA-64 nodes at the Rice University Terascale

Cluster (RTC). There were 16 Opteron nodes (2009MHz) at the University of Houston

Opteron cluster (MEDUSA) and 60 dual processor 1300MHz Itanium IA-64 nodes

at the University of Houston Itanium cluster (ACRL). We also used 7 Pentium IA-

32 nodes from the TORC cluster at the University of Tennessee, Knoxville and 6

Itanium IA-64 nodes from the MCKINLEY cluster at University of Houston for some

experiments. Note that the testbed was heterogeneous in terms of architecture, CPU

speeds, memory and storage.

We used two EMAN refinement data sets for the experiments. One was a moder-

ately large data set corresponding to a virus particle called “rdv”. The input data set

was 2GB and was replicated across all the clusters. The other data set was relatively

small corresponding to the “groel” particle. The input data set was 200MB and was

replicated across all clusters. We used version 1.6 of the EMAN software for the



45

experiments along with per component performance models for this version.

4.3.2 Value of Performance Models and Heuristics

Our goal was to investigate the importance of performance models and heuristics

in scheduling workflows. Hence, we experimented with four scheduling strategies to

isolate the effects of each of these factors on the quality of schedule, and quality of

application makespan. We chose the random scheduling as a baseline case. This is,

in essence, what is used in the Condor DAGMan tool, where the available compo-

nents are dynamically mapped to resources without any consideration of the resulting

overall makespan. In order to investigate the value of (1) use of performance models

and (2) use of heuristics for taking the scheduling decisions when using a plan-ahead

whole workflow scheduling, the following four scheduling strategies were compared.

Competing Strategies

• RN: Random scheduling with no performance models. In this scheme the appli-

cation components are mapped randomly. Each available component is mapped

to a resource that is randomly picked from the universe of resources.

• RA: Weighted random scheduling with accurate performance models. In this

scheme, the number of instances mapped to a randomly picked resource de-

pends on the accurate performance model of the instance on that resource.

Proportionally more instances are mapped to “better” resources.

• HC: Heuristic scheduling with crude performance models based on CPU power

of the resources. In this scheme, we use the scheduling heuristics described in

this chapter, but with only crude performance models to determine the rank

values. Rank value of a component on a resource is just the relative value, or
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ratio of the CPU speed of the resource to the CPU speed of the resource having

the best MHz rating.

• HA: Heuristic scheduling with accurate performance models generated semi-

automatically. This is the workflow scheduling scheme described so far in the

chapter.

We compare the makespan of the “classesbymra” step for each scheduling strategy.

We also evaluate the load balancing capabilities of the HA strategy.

Results

Table 4.1 and Figure 4.2 show the results of comparisons of the 4 scheduling strate-

gies for the rdv data set run across the Itanium RTC and Opteron MEDUSA clus-

ters. The table shows for each scheduling strategy, the number of “classesbymra”

instances mapped to each cluster (i(R) for RTC and i(M) for MEDUSA), the num-

ber of nodes picked in each cluster by the scheduling strategy (n(R) for RTC and

n(M) for MEDUSA), the execution time in minutes at each cluster (t(R) for RTC

and t(M) for MEDUSA) and the overall makespan (MS). The results show that the

makespan obtained using the HA strategy is better than the one obtained using the

RN strategy by a factor of 2.21 and is better than the ones obtained using the HC

and RA strategies by a factor of 1.5. This shows that good makespan is attributed

to both the factors - the heuristics used and accurate relative performance models.

With either of them, we get a makespan improvement of a factor of 1.5, while using

both we obtain a makespan improvement by a factor of 2.21.



47

None
Crude
(GHz
Only)

Accurate

He
ur

is
tic

Ra
nd

om

0

200

400

600

800

1000

1200
Ti

m
e 

(m
in

)

Figure 4.2 : Comparison of different scheduling strategies

i(R) i(M) n(R) n(M) t(R) t(M) MS

Strategy (inst) (inst) (node) (node) (min) (min) (min)

HA 50 60 50 13 386 505 505

HC 58 52 50 13 757 410 757

RN 89 21 43 9 1121 298 1121

RA 57 53 34 10 762 530 762

Table 4.1 : Comparison of makespans for different scheduling strategies with rdv data
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Component i(M) i(T) n(M) n(T) t(M) t(T)

proc3d 1 0 1 0 <1min 0min

project3d 1 0 1 0 1hr. 48min 0min

proc2d 1 0 1 0 < 1min 0min

classesbymra 68 42 6 7 84hr. 30min 81hr. 41min

classalign2 379 0 6 0 45min 0min

make3d 1 0 1 0 47min 0min

proc3d 1 0 1 0 < 1min 0min

Table 4.2 : Results of EMAN workflow execution with rdv data

4.3.3 Load Balancing

Table 4.2 shows the results of the run of the rdv data on unloaded resources on the

testbed consisting of the TORC (TORC1-7) and MCKINLEY (i2-53 to 58) nodes.

The first column represents the name of the component in the linear DAG. The next

two columns denote the number of instances mapped by the workflow scheduler to the

selected clusters (i(M) for MCKINLEY and i(T) for TORC). The next two columns

denote the number of nodes chosen by the workflow scheduler in each cluster (n(M)

for MCKINLEY and n(T) for TORC). The last two columns denote the time it took

for that component to run on each cluster (t(M) for MCKINLEY and t(T)for TORC).

For the sequential and single-cluster components, the scheduler chose the best

node or cluster for execution. The interesting case is the case of the parameter sweep

step called “classesbymra”. From the execution time of the “classesbymra” step, we

can infer the following:

• The makespan of the “classesbymra” step was 84hrs. 30 minutes (the time the
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Component i(R) i(M) i(A) t(R) t(M) t(A) MS

classesbymra 29 42 39 383min 410min 308min 410min

Table 4.3 : Load balancing of the “classesbymra” instances using the HA strategy

instances finished on the MCKINLEY cluster). Since the instances at the TORC

machines finished in 81 hrs 41min, we can infer that the load was optimally

balanced across the two clusters since the granularity of a single instance is

greater than 7hrs.

• The optimal load balance is primarily due to accurate performance models and

efficient workflow scheduling. Rank of a “classesbymra” instance on a node in

MCKINLEY cluster was 5077.76 and on a node in TORC cluster was 8844.91.

Table 4.3 shows that the HA strategy achieves good load balance when “classes-

bymra” is launched across the three clusters - RTC, MEDUSA and ACRL. t(R), t(M)

and t(A) are the execution times for i(R), i(M) and i(A) instances at RTC, MEDUSA

and ACRL clusters respectively. Based on the performance models and the heuristics,

the scheduler mapped 29 instances to the 43 available RTC nodes, 42 instances to

the 14 available MEDUSA Opteron nodes and 39 instances to the 39 Itanium ACRL

nodes. The difference in execution times between any two clusters is less than the

granularity of the fastest execution time of a single instance of “classesbymra” on the

best resource. This implies that load balancing of the instances had been optimal for

this case.

Also, the relative performance models of an instance on the clusters matched

closely to the relative actual execution times on the clusters. The ratio of performance

model values for an instance on a RTC node and a MEDUSA node was 3.41 while
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Strategy i(M) i(T) n(M) n(T) t(M) t(T) MS

Heuristic 38 60 2 7 12min 42sec 11min 47sec 12min 42sec

Random 17 81 2 7 6min 3sec 15min 48sec 15min 48sec

Table 4.4 : Results for groel data with unloaded resources

the ratio of actual execution times for an instance on a RTC node and a MEDUSA

node was 3.82. The same set of values for an ACRL node and a MEDUSA node are

2.36 and 3.01 respectively.

We obtained similar results from our experiments with the smaller groel data set.

In these tests, we compared the makespan for the “classesbymra” step for heuristic

scheduling with that obtained from random scheduling. Random scheduling picks a

node randomly for the next available instance. Table 4.4 shows the results. The first

column represents the scheduling strategy used. The next two columns denote the

number of instances mapped by the workflow scheduler to the selected clusters (i(M)

for MCKINLEY and i(T) for TORC). The next two columns denote the number of

nodes chosen by the workflow scheduler in each cluster (n(M) for MCKINLEY and

n(T) for TORC). The next two columns denote the time it took for that component

to run on each cluster (t(M) for MCKINLEY and t(T)for TORC). The last column

denotes the overall makespan (MS). From these results, we can conclude that accu-

rate relative performance models on heterogeneous platforms combined with heuristic

scheduling result in good load balance of the classesbymra instances when the grid

resources are unloaded. Heuristic scheduling is better than random scheduling by 25

percent in terms of makespan length for this data set.
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Strategy i(M) i(T) n(M) n(T) t(M) t(T) MS

Heuristic 60 38 5 7 16min 41sec 7min 51sec 16min 41sec

Random 44 54 5 7 9min 38sec 10min 28sec 10min 28sec

Table 4.5 : Results for groel data with loaded resources

4.3.4 Resource Loads and Inaccurate Performance Models

The following set of results show the effect of loaded machines on the quality of

schedule. We used 5 loaded nodes from the MCKINLEY cluster and 7 unloaded

nodes from the TORC cluster for these experiments. From the results in Table 4.5,

we observe that there is uneven load balance due to loading of the MCKINLEY nodes.

Random scheduling does better because the random distribution maps more instances

to the unloaded TORC cluster which had more nodes in the universe of resources.

So, we can infer that for performance model based scheduling to work, either the

underlying set of resources should be reliable (implying advanced reservation) or the

variability of resource performance can be predicted and taken into account during

scheduling.

The third set of results show the effect of inaccurate performance models on the

quality of schedule. We have used a rank value of 4.57 instead of 7.60 for a classes-

bymra instance on a MCKINLEY node. We kept the TORC rank value correct. We

used 6 nodes from the MCKINLEY cluster and 7 nodes from the TORC cluster. From

the results in Table 4.6, we can infer that, inaccurate relative performance models

on different heterogeneous platforms result in poor load balance of the classesbymra

instances.



52

Strategy i(M) i(T) n(M) n(T) t(M) t(T) MS

Heuristic 77 21 6 7 21min 37sec 3min 57sec 21min 37sec

Random 45 53 6 7 5min 24sec 10min 30sec 10min 30sec

Table 4.6 : Results for groel data with inaccurate performance models

4.4 Scalability of Workflow Scheduler

4.4.1 Theoretical Complexity

Let C denote the total number of components in the input workflow DAG, R denote

the total number of available resources and E denote the number of edges (depen-

dencies) in the workflow DAG. Topologically sorting the DAG takes O(C + E) time,

which is O(C2) time since E is O(C2). Calculating the rank matrices takes O(CR)

time. Running time for findBestSchedule() method is at most CR+(C− 1)R+(C−

2)R+ ...+R, which is O(C2R) when one of min-min, max-min or sufferage heuristic is

used. When the greedy heuristic is used, the running time for the findBestSchedule()

method is O(CR). Hence, the running time for the entire heuristic workflow schedul-

ing algorithm is dominated by the complexity of the findBestSchedule() method,

which is O(C2R) for the heuristic case and O(CR) for the greedy case.

4.4.2 Experimental Evaluation of Scaling of Plan-Ahead Scheduler

In order to evaluate the scalability of the Plan-ahead scheduling approaches, we plot-

ted the scheduling times for the heuristic and greedy plan-ahead workflow schedulers

for increasing number of available resources. Scheduling time is defined as the time

it takes to compute the schedule for the entire workflow in-advance.

We used the EMAN and the Montage application workflows as example workflow



53

application scenarios. We used three versions of the EMAN workflow and three ver-

sions of the Montage workflow. We obtained the different versions of each application

workflow by varying the number of parallel components at the parameter-sweep steps

of each workflow. For EMAN we used the 55-110, 110-379 and 220-440 versions,

where 55-110 version stands for 55 parallel components in the first parameter sweep

step and 110 parallel components in the second parameter sweep step. For Montage

we used the 24-51-24, 50-121-50 and 153-407-153 versions. We used the performance

model values for per component estimates of execution times. We also generated

resource and topology for varying number of resources, from about 250 resources to

about 36k resources.

Figure 4.3 and Figure 4.4 show the results for scheduler scaling for EMAN and

Montage workflows respectively. The X-axis denotes the number of available resources

and Y-axis denotes the scheduling time in seconds for the particular scheduling al-

gorithm. The scaling results show that the heuristic scheduler can take considerable

time to schedule for large resource sets. Also, the greedy scheduler is cheaper than the

heuristic scheduler because the complexity of findBestSchedule for the greedy case is

O(CR), in contrast to O(C2R) for the heuristic case.

4.5 Scheduler Applications: Incorporating Batch Queue Wait

Times

Many large scale Grid systems have batch queue front ends. This means that unlike

in case of interactive resources, which are available instantly, a job when submitted

to such Grid systems may have to wait in the batch queue, potentially for a long

time, before it can begin execution. So, the scheduler needs to be modified when the

assumption of instant resource availability no longer holds. The plan-ahead scheduler
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Figure 4.3 : Scheduler Scaling for EMAN
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Figure 4.4 : Scheduler Scaling for Montage
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as discussed in the previous sections assumes that all the resources are simultaneously

available for scheduling.

4.5.1 Workflow Scheduler Modifications

To tackle this issue of batch queues, we have incorporated point value predictions

for batch queue wait times in the scheduling smarts of the plan-ahead scheduler. We

obtain the batch queue prediction estimates from tools developed by Dan Nurmi and

Rich Wolski at UCSB. Brevik, Nurmi and Wolski[BNW05] describe the technology

to obtain these estimates.

We introduced a slight modification in the plan-ahead scheduler to incorporate

the batch queue wait times. At every scheduling step, we add the predicted time the

job has to wait in the queue to the estimated completion time for the job, ECT(j,r) in

Algorithm 4.2. We keep track of the queue wait time for each cluster and the number

of nodes that correspond to the queue wait time. With each mapping, we update the

estimated availability time for a resource (EAT(R) in Algorithm 4.2), with the queue

wait time. Once a specified number of nodes have been acquired from the batch queue

system, there is no need to wait for those nodes in the future.

The following example illustrates how batch queue wait times are incorporated in

the scheduling process for a toy workflow and resource set.

Example: Workflow Scheduling with Batch Queues

Suppose we have an input workflow DAG as in Figure 4.5 and two clusters, Cluster

0 and Cluster 1 to schedule the DAG onto. Assume the batch queue wait time for

Cluster 0 is 30 time units and the number of nodes to obtain this wait time is 1.

The batch queue wait time for Cluster 1 is 10 time units and the number of nodes

to obtain this wait time is 2. Figure 4.5 shows the state where the first level jobs in
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the DAG have been mapped. The yellow bar denotes the waiting times on the queue.

Also, the performance matrix is shown. The bars corresponding to the jobs include

both computation and communication cost from parents.

To map the job at level 2, we find the ECT of that job for all the resources and

Figure 4.6 shows that we have to incur a wait time if we want to use resources in

Cluster 0. But it so happens that the job can run 5 times faster on Cluster 0 (see

corresponding performance matrix). So, even with a larger wait time, the scheduler

maps the level 2 job to R0.

For the third level job, we need to evaluate the ECT for that job on all resources.

It turns out that, since the number of nodes to attain the 30 unit wait time for Cluster

0 is 1, we have to incur a wait time to access R1 in Cluster 0. Since, we have already

acquired the two nodes in Cluster 1 and 1 node in Cluster 0, we no longer need to

wait for them. Also the third level job is 1.5 times faster in Cluster 0 than in Cluster

1 (see performance matrix). So, the resulting schedule chosen by the scheduler is

shown in Figure 4.8.

An evaluation of application scheduling using batch queue wait times is presented

by Nurmi et al. in [NBW+].
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Figure 4.5 : Example: Workflow Scheduling with Batch Queues - Step 1
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Figure 4.6 : Example: Workflow Scheduling with Batch Queues - Step 2
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Figure 4.7 : Example: Workflow Scheduling with Batch Queues - Step 3
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Figure 4.8 : Example: Workflow Scheduling with Batch Queues - Step 4



60

Chapter 5

Middle-Out Workflow Scheduling

5.1 Drawbacks of Basic Plan-Ahead Workflow Scheduling

Although, the workflow scheduling algorithm we present in the previous chapter

achieves good load balance for the computationally intensive components in the work-

flow, it has a drawback: the traversal of the workflow DAG is from top to bottom,

irrespective of what the critical steps in the DAG are. Since components are scheduled

as they become available in the workflow, there is a chance that key computationally

intensive steps that come later in the workflow may not be mapped to their best

resource because of prohibitively high data movement costs. In other words, the so-

lution obtained may be stuck in one of the local minima, implying that a scheduling

decision taken toward the beginning of the workflow affects the scheduling decisions

for components that appear later in the workflow. Our experience shows that, in

many scientific applications, the critical steps are executed only after the data “mas-

saging” steps in the workflow are done. Hence it is highly likely that the critical step

may end up “stuck” at a sub-optimal compute resource.

In this chapter, we propose a variant of the plan-ahead workflow scheduler that

overcomes this drawback.
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5.2 Middle-Out Approach

In order to tackle the “myopia” in the top-down plan-ahead scheduler, we propose a

middle-out approach to scheduling workflows, which traverses the workflow DAG in

a middle-out manner.

5.2.1 Intuition

The intuition behind the middle-out traversal is as follows. Some application com-

ponents in the DAG are more critical than the other steps. The critical steps may

be specified by the scientist as a part of the input workflow specification or may be

inferred from the performance models of the components. The idea is to map these

critical components in the workflow DAG first. Once we map the critical steps, we use

the mapping to assign resources to the the rest of the components, first by travers-

ing the DAG from the key level in the DAG to the root-level in the DAG and then

traversing from key-level in the DAG to the leaf-level of the DAG. The algorithm

assumes that the key compute-intensive steps are in the same level of the workflow

DAG. We describe the details of the algorithm in the following section.

5.2.2 Algorithm

The main steps in the proposed global workflow scheduling algorithm are (1) mapping

the key computational components (2) percolating the mappings for the rest of the

components by a bottom-up and top-down sweep of the DAG. The steps of the

algorithm are as follows.

1. Identify the set of critical nodes, CN in the DAG - the key computational

components. These can be either specified by the scientist or the application

writer/scientist or can be obtained from the performance model of the compo-
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nents. This algorithm works for the case where all the critical nodes are at the

same level in the workflow DAG.

2. Topologically sort the workflow DAG.

3. Heuristically schedule the critical level in the DAG.

4. Traverse the DAG from (keyLevel-1) to rootLevel. For each level, estimate

data-movement costs to children. Heuristically schedule each level.

5. Traverse the DAG from (keyLevel+1) to leafLevel. For each level, estimate

data-movement costs from parents. Heuristically schedule each level.

6. Save the schedule for the current heuristic.

7. Repeat steps 3 through 6 for each heuristic.

8. Calculate the makespan for each heuristic and output mapping that obtains the

minimum estimated makespan.

Algorithm 5.1 is the driver for the Middle-Out algorithm. findBestSchedule()

method is the same as in Algorithm 4.2 in chapter 4.

5.2.3 Theoretical Complexity

The theoretical complexity in terms of number of components, C of the workflow

DAG and number of available resources, R is as follows. If E is the number of edges

in the workflow DAG, it takes O(C + E) ≤ O(C2) to topologically sort the DAG.

Calculating the rank matrix takes O(CR) time. So, the running time of the Middle-

Out algorithm is dominated by the complexity of the findBestSchedule method, which

is O(C2R) when one of min-min, max-min or sufferage heuristic is used as shown in
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Topologically sort the DAG;

foreach heuristic do

availComponents = components at the keyLevel;

Calculate rank matrix using computational perf model;

findBestSchedule(availComponents, heuristic);

foreach level, l from keyLevel-1 to rootLevel do

availComponents = components at the l Level;

Calculate rank matrix; // Use data-Cost to children

findBestSchedule(availComponents, heuristic);

endforeach

foreach level, l from keyLevel+1 to leafLevel do

availComponents = components at the l Level;

Calculate rank matrix; // Use data-Cost from parents

findBestSchedule(availComponents, heuristic);

endforeach
endforeach

Select mapping with minimum makespan among all heuristics;

Output selected mapping;

Algorithm 5.1: Middle-Out workflow scheduling
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chapter 4. When greedy heuristic is used, the complexity of findbestSchedule method

is O(CR). This implies that the overall complexity of Middle-out algorithm for the

greedy case is O(CR) + O(C2). If the number of resources is larger than the number

of components, the complexity for the greedy case becomes O(CR).

5.3 Experimental Evaluation of Middle-Out Approach

We evaluate our Middle-Out approach by comparing it with the top-down workflow

scheduler using EMAN workflows for test cases.

5.3.1 Simulation Framework

We created different resource scenarios using 2 Opteron clusters each having 64 nodes

and 3 Itanium clusters having 64, 64 and 32 nodes. In one case, one of the Itanium

clusters was faster than the fastest Opteron cluster. We refer to this case as the “Fast

Itanium” case. In another case, the fastest Itanium cluster was slower than the fastest

Opteron cluster. We refer to this case as the “Slow Itanium” case. Here, faster or

slower is in terms of MHz rating of the nodes in the clusters.

As far as network connectivity is concerned, we generated three scenarios. In one

case, the network connectivity between the 2 Opteron clusters was better than the

average network connectivity between the rest of the clusters. We refer to this scenario

as the “Opt close” case. In the second case, the network connectivity between the two

Opteron clusters was similar to the average network connectivity between the rest of

the clusters. We refer to this scenario as the “Opt normal” case. In the third case,

the network connectivity between the 2 Opteron clusters was worse than the average

network connectivity between the rest of the clusters. We refer to this scenario as

the “Opt far” case. The network connectivity is in terms of bandwidth and latency
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between the clusters.

So, for each workflow DAG, we had 6 resource scenarios resulting from all combi-

nations of network connectivities and speed of the Itaniums.

5.3.2 Benchmark DAGs

For each resource scenario, we ran the middle-out and top-down schedulers for three

versions of the EMAN workflow DAG that had 110 components for the first parameter

sweep level and 379 components for the second parameter sweep step. The three

versions correspond to three Communication-to-Computation Ratios (CCR): 0.1 for

the compute-intensive case, 10 for the data-intensive case and 1 for the case where we

have the same average computation time and communication time. We constructed

the three versions using the resource scenarios and performance models.

5.3.3 Results

Figure 5.1 shows the results for the case where CCR=0.1, the compute-intensive

case. The X-axis denotes values of three types of Opteron connectivity and the Y-

axis denotes the simulated makespan. The left sub-figure is the “Fast Itanium” case

while the right sub-figure is the “Slow Itanium” case. For each connectivity, the left

bar denotes the makespan with the middle-out scheduler and the right-bar denotes

the makespan obtained with the top-down scheduler. The results show that in the

“Fast Itanium” case, the top-down scheduler “got stuck” at the Itanium clusters,

while the middle-out scheduler scheduled the key step on both the Opteron clusters.

Incidentally, for EMAN, the Opteron nodes are about three times faster than Itanium

nodes for the compute-intensive step, while the ratio is less skewed for the preliminary

steps. The top-down scheduler schedules the higher levels at the Itanium cluster and

fails to move the computation to the Opteron clusters (which are way faster for
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the compute-intensive step) because of communication costs. However, with worse

Opteron connectivities, the gain due to middle-out scheduling disappears. In the

“Slow Itanium” case, gain from middle-out scheduling is not significant because the

top-down scheduler “got lucky” as it scheduled the higher levels to the Opteron

clusters, which were also the best for the key step.

Opt close Opt normal Opt far
0

1000

2000

3000

4000

5000

6000
CCR:0.1 Fast Itanium "Got stuck"

Opteron Clusters’ Connectivity

S
im

ul
at

ed
 M

ak
es

pa
n

Middle−Out
Top−down

Opt close Opt normal Opt far
0

1000

2000

3000

4000

5000

6000
CCR:0.1 Slow Itanium "Got lucky"

Opteron Clusters’ Connectivity

S
im

ul
at

ed
 M

ak
es

pa
n

Middle−Out
Top−down

Figure 5.1 : Middle-Out vs. Top-Down: CCR 0.1

Figure 5.2 shows the results for the case where CCR=1. The results are similar

to the case of CCR=0.1 for the “Fast Itanium” case. For the “Slow Itanium” case,

the top-down scheduler “got lucky” and the middle-out scheduler paid more data

movement costs with worse Opteron connectivities.

Figure 5.3 shows the results for the case where CCR=10, the communication-

intensive case. The results are similar to the case of CCR=1. Because of higher

communication costs due to a high value of CCR, the difference in makespans get

amplified.

The performance of the middle-out algorithm is sensitive to the characteristics of

workflow and the underlying resource characteristics. Using the middle-out approach

doesn’t always guarantee a better makespan.
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Figure 5.2 : Middle-Out vs. Top-Down: CCR 1
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Chapter 6

Comparison with Dynamic Workflow Scheduling

Approach

In this chapter, we compare plan-ahead, whole workflow scheduling (like the one

described in chapter 4) with dynamic, task-based workflow scheduling. The plan-

ahead strategy schedules the entire workflow in-advance while the dynamic strategy

schedules the jobs locally in the workflow only when they are available for execution.

6.1 Dynamic/Online vs Static Scheduling Strategies

6.1.1 Online “Task-Based” Algorithm

Online, task-based approach algorithms (TBA) only reason about the tasks or jobs

that are ready to run at any given instant. These algorithms make local decisions

about which job to send to which resource. In these algorithms, scheduling events

occur at various points during the execution of the workflow. At every scheduling

event, the available jobs are scheduled and then the scheduler waits till those jobs

finish and a new set of jobs are ready to be scheduled and executed. For example,

consider the workflow in Figure 6.1, where file F1 is available initially and so only job

J1 is available for scheduling. Once J1 finishes, jobs J2 to J3 form the set of available

jobs. These jobs are selected for scheduling one at a time using a local selection

heuristic.

For every set of available jobs, we apply the widely-used min-min heuristic [Tra01]

to study task-based approaches. Min-min runs in polynomial time but produces
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Figure 6.1 : Example workflow for task-based algorithm

efficient schedules and has been evaluated for many different situations involving

independent/non-communicating tasks. However, it does not guarantee an optimal

mapping. We define some terms that will be used to describe the algorithm. We

assume that the estimation of execution time of a particular job on a particular

resource is accurate. These time estimates can be obtained using different kinds

of performance modeling techniques, e.g. analytical or historical. For every (job,

resource) pair we define the following quantities:

• The Estimated Execution Time EET(j,r) is defined as the time the resource

r will take to execute the job j from the time the job starts executing on the

resource.

• The Estimated Availability Time EAT(j,r) is defined for every resource as the

time at which the resource r will become free to perform job j (i.e. the time at

which it will have finished executing all the jobs before j in its queue).

• The File Availability Time FAT(j,r) is defined as the earliest time by which all

the files required by the job j are available at the resource r.
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• The Estimated Completion Time ECT(j,r) is the time at which job j would

complete execution at resource r.

ECT (j, r) = EET (j, r) + max(EAT (j, r), FAT (j, r)) (6.1)

At every scheduling instant, we use the the min-min heuristic (that uses the ECT

attribute described) to schedule the ready jobs (ones with dependencies satisfied) and

execute them on the chosen resources. We do this until all jobs in the workflow are

done. Algorithm 6.1 summarizes the online task-based algorithm.

6.1.2 Static “Workflow-Based” Algorithm

Algorithms that reason about the whole workflow rather than the set of available jobs

are classified as workflow-based allocation algorithms (WBAs). In this approach all

the jobs in the workflow are mapped a priori to resources in order to minimize the

makespan of the whole workflow. If changes in the environment occur, remapping may

be necessary. Mapping the entire workflow avoids potential myopia in the scheduler,

as is the case with task-based approaches, which only considers available jobs. The

workflow-based algorithm described in the next section is a slight modification of

the plan-ahead strategy described in chapter 4. This algorithm uses a randomized

min-min heuristic instead of the vanilla min-min heuristic for scheduling jobs at the

current level. Also, since randomization is used, the final schedule for the entire

workflow is obtained by iteratively scheduling the entire workflow a number of times

and then choosing the schedule that gives minimum makespan.

Randomized min-min

The randomized min-min is a local search algorithm for workflow allocation based on

generalized GRASP procedure (Greedy randomized adaptive search) [RR02], which
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while all Jobs not finished EXECUTION do

Find availJobs = jobs with every parent finished;

Schedule(availJobs);

endwhile

procedure Schedule(availJobs)

while all availJobs not SCHEDULED do

foreach job, j do

foreach resource, r do

Calculate ECT(j,r);

endforeach

Find min(ECT(j,r) over all R;

endforeach

Find min(min(ECT(j,r)) over all J;

Schedule and run j;

Update EAT(j,r);

endwhile

Algorithm 6.1: Dynamic, task-based workflow scheduling algorithm

has been shown to be effective for job-shop scheduling [fJSS01]. In this approach, we

execute the algorithm a number of times to find a good mapping of jobs to resources

for a given workflow. The main difference is that WBA creates and compares many

alternative whole workflow schedules before the final schedule is chosen, while TBA

compares partial schedules among the available tasks as the workflow is executed. On

each iteration, the algorithm constructs a schedule. Each run of the allocation algo-

rithm computes the tasks whose parents have already been scheduled on each pass,
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and considers every possible resource for each such task. For each (task, resource)

pair, the algorithm computes the increase to the current makespan of the workflow

if the task is allocated to this resource. Let I-min be the lowest increase found and

I-max be the largest. The algorithm picks one pair at random from those whose in-

crease I is less than I-min + α (I-max - I-min) for some width parameter α, 0 ≤ α ≤ 1

and continues until all tasks are allocated. The width parameter α determines how

much variation is allowed each time a candidate workflow allocation is constructed.

When α = 0, each iteration of the algorithm is identical to the plan-ahead algorithm

using min-min described in chapter 4. When α = 1, each iteration is random. The

algorithm for our workflow-based approach is shown in Algorithm 6.2.

6.2 Experimental Evaluation

We compared Algorithm 6.1 and 6.2. We picked Montage as the example application.

Chapter 3 has a description of the Montage application workflow DAG.

6.2.1 Simulation Framework

We investigated the performance of the two approaches using a Grid simulator built

over the popular network simulator NS-2 [ns2]. We use NS to estimate the aver-

age bandwidths between the resources and as a discrete event simulator. We briefly

describe the simulator and our experimental setup. The Grid simulator models re-

sources, bandwidths of links connecting different resources, jobs and files being trans-

ferred as separate objects. This provides a fairly simple testbed for comparing the

performances of scheduling algorithms for Grids, in which the underlying Grid infras-

tructure can be changed very easily. For example, we can easily change the number of

resources, their individual computational power, the bandwidths of the links connect-
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repeat

concreteWF = CreateMapping(workflow);

if concreteWF has less makespan than bestConcreteWF then

bestConcreteWF = concreteWF;

endif
until until time limit is reached;

procedure CreateMapping(workflow)

while all jobs in workflow not SCHEDULED do

Find availJobs = unmapped jobs with every parent mapped;

Map(availJobs);

endwhile

procedure Map(availJobs)

while all availJobs not SCHEDULED do

foreach job, j do

foreach resource, r do

Calculate ECT(j,r);

endforeach

Calculate min(ECT(j,r));

endforeach

I-min = min(min(ECT(j,r)); I-max = max(min(ECT(j,r));

availPairs = all pairs (j’, r’) such that

makespan increase ≤ I-min + α(I-max - I-min);

(j*,r*) = random choice from availPairs;

map(j*,r*); Update EAT(j*,r*);

endwhile

Algorithm 6.2: Randomized min-min, “workflow-based” algorithm
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ing them, etc. Figure 6.2 shows the basic architecture of the simulator. We model

resources as sites containing one or more hosts, where jobs are executed, and storage

objects, where data and program files are stored. A site acts as an entry point for jobs

to be executed and also manages the fetching of files from storage units. After a job

is received, the site submits the job on a compute resource within its pool that has

minimum job queue length. The site is created on top of NS’s node as an application

agent capable of transferring packets between them. We model the hosts with first-

come-first-serve queues. The DAG Monitor module manages information specific to

different workflows. It receives a workflow in the form of a DAG. Depending upon the

preferences set, we used different scheduling strategies to map jobs to the sites. The

Grid Monitor (GM) is the central module of the simulator, coordinating the activities

of the other modules. It receives jobs from the DAG Monitor and passes them to the

sites/resources where the job is to be executed. It interacts with the NS scheduler

for setting events such as transfers, job start and finish times, etc. and handles the

events when they are due. The GM keeps track of all the sites created and the files

they contain and the jobs that are scheduled on them.

We used a simple network of 6 fully connected sites for all experiments in this

chapter, with each site having a single host and storage unit. The hosts can have the

same or different computational speeds resulting in a homogeneous or heterogeneous

case respectively. A set of initially available files at each site is specified for each

workflow. It is assumed by the schedulers that the initial files are available from at

least one site. In our model, we assume that any number of files can be transferred in

parallel without affecting the bandwidths of the connecting links and computational

powers of corresponding sites. We estimated bandwidths by simulating a large amount

of data transfers on the topology used on NS.
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Figure 6.2 : Architecture of Grid Simulator

6.2.2 Experimental Design

We conducted several experiments in order to compare the two scheduling approaches

using workflows drawn from the Montage astronomy application [ea04]. These work-

flows have a basic structure shown in chapter 3, but are varied in the number of

jobs at each horizontal level. We assigned the job compute times at a level using

a distribution for given mean and a variance of 10%. We varied the mean for each

level. We modeled all files produced by jobs at same level to have the same size.

We conducted all the experiments on the Grid simulator and with the host topology

described in the previous section. In the simulator, we varied the relative time to

perform computational jobs versus file transfers to explore different conditions for
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scheduling. For the same workflows we multiplied job compute times with a factor

called compute factor (CF) and file sizes with data multiplying factor (DF) in order

to obtain different workflows. We refer to workflows whose file transfer times domi-

nate job compute times as data-intensive (where CF is relatively small compared with

DF). Workflows whose job compute times dominate file transfer times are termed as

compute-intensive (where CF is relatively large compared with DF). We used two

different resource scenarios, one in which all resources have the same computational

power (homogeneous) and one with different computational powers (heterogeneous).

We ran the workflow-based algorithm with a time limit of 200 seconds. Although in

WBA α can be varied to find best possible solution in the specified time limit, in

our experiments we fixed the value of α to 0.005 as we observed this yielded the best

solution in most cases.

6.2.3 Results

We compared the makespan of the allocation found using the task-based approach

of Algorithm 6.1 with that found using the workflow-based approach of Algorithm

6.2 and a random allocation for a workflow with 1185 job Montage workflow for (a)

homogeneous and (b) heterogeneous resource scenarios.

Figure 6.3 compares the makespan of TBA and WBA for homogeneous and het-

erogeneous platforms and data-intensive case. Figure 6.4 compares the same for the

compute-intensive case. The results show that WBA produces schedules with lower

makespan for the data-intensive cases compared to TBA. The ratio of makespan of

TBA to the makespan of WBA ranges from 1.47 to 2.04 for the data-intensive cases.

There is almost no difference for compute-intensive cases. We also compared the

performance of these algorithms for smaller Montage workflows with 57 and 739 jobs

with similar results. One of the most important reasons for the difference in perfor-
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Figure 6.3 : Makespan of TBA vs WBA for data-intensive scenario

mance of the two algorithms in this domain is the ability to pre-position the data

using WBA. Transfer of a large file can begin immediately after it is created because

the destination is known before the file is created. In TBA, transfer cannot begin

until the consuming job is scheduled, which is only done after the last parent job has

been scheduled. In the Montage workflows, the files transferred between the mPro-

ject and mBackground jobs are typically large, and can be transferred simultaneously

with the execution of the mDiff and mFitplane jobs in WBA.

Figure 6.5 compares the makespan of random, WBA and TBA for homogeneous

and heterogeneous platforms for the data-intensive scenario. The results show that

both the workflow and task-based approaches outperform a random allocation algo-

rithm by a factor ranging from 6 to 11. Figure 6.6 shows that WBA and TBA both

perform much better than random allocations in compute-intensive cases with hetero-

geneous resources, but the difference is far less marked with homogeneous resources.

The effect of uncertain estimates on quality of schedule and a new local selection

heuristic are presented Blythe et al. [BJD+05].
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Figure 6.4 : Makespan of TBA vs WBA for compute-intensive scenario
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Chapter 7

Scalable Workflow Scheduling

One of the drawbacks of the one step plan-ahead workflow scheduler is the time-

complexity of the scheduling algorithm. This poses scaling problems in large Grid

resource environments consisting of thousands of resources.

In this chapter, we propose two approaches to tackle the scalability problem. In

the first approach, we run the expensive plan-ahead scheduler on a pruned resource set

so that the scheduler doesn’t go through all individual nodes. We prune the universe

of resources either using simple heuristics for resource selection or through intelligent

pruning using virtual Grid descriptions. The first section describes this approach in

detail. The second approach is to modify the workflow scheduler to schedule the

workflows directly onto abstract resource classes like clusters and not onto individual

nodes in the clusters. We envision that in future, the Grid will have “manageable”

number of abstract resource classes, though there may be thousands of nodes in the

entire resource set.

7.1 Scalable Workflow Scheduling using Virtual Grids

Scheduling of applications onto Grid platforms poses new challenges and has been

studied for many relevant application classes. One distinguishing feature of Grid

platforms is the large number of individual resources, with current systems comprising

thousands of individual devices and future systems comprising tens of thousands of

devices and beyond. Such large numbers of resources pose many scalability problems
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(e.g., resource discovery, resource monitoring). In this section we specifically address

the scalability of the scheduling algorithm itself: how can one compute an application

schedule in a short amount of time while considering a large number of potential

resources? Although most scheduling heuristics exhibit polynomial time complexity,

their running time can be prohibitive when used for computing a schedule over a large

resource environment.

Although the resource environment may contain large numbers of resources, all

taken into consideration when computing a schedule, typically only a small subset

of these resources is used for running the application. In essence, most scheduling

heuristics typically perform implicit resource selection: the set of resources used by the

application emerges from the computation of the schedule. In this section, we improve

the scalability of the scheduling process by performing explicit resource selection: we

decouple resource selection from scheduling.

7.1.1 Virtual Grids - vgDL and vgES

A fundamental challenge for Grid applications is to describe and obtain appropri-

ate resources to enable efficient, high performance execution. This is challenging

from many standpoints, including the definition of an appropriate abstraction to

describe resource needs, the difficulty of finding appropriate resources quickly in

an environment that may contain tens or hundreds of thousands of resources, and

interacting with diverse, autonomous resource managers that implement their own

resource management and access policies. The typical approach is for the applica-

tion to provide a resource description written in some language, and for the sys-

tem to return a list of matching resources that can be used by the application

[RLS98, LYFA02, RLS03, LF04].

For the purpose of explicit resource selection, we use concepts from the VGrADS
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project [vgr], which provides combined resource selection and binding, embodied in a

“Virtual Grid” (VG) abstraction [CCKH05, KLH+05]. In contrast with traditional

low-level resource description and selection systems (e.g. [ea02]) that focus on individ-

ual, quantitative resource characteristics, the VG provides a high-level, hierarchical

abstraction of the resource collection that is needed by an application. The appli-

cation specifies its resource needs using a high-level language, vgDL (Virtual Grid

Description Language), and the Virtual Grid Execution System (vgES), finds and

allocates appropriate resources for the application. A VG, which is really an active

entity (i.e., runtime object) that is the instantiation of the desired resource collection,

is returned to the application. The application can then use the VG to find specific

information about the allocated physical resources, to deploy application components,

and to modify or evolve the resource collection. vgES uses efficient search techniques

[KLH+05] based on resource classification in a relational database. In what follows,

we only describe features of vgDL relevant for explicit resource selection.

The vgDL language uses high-level resource abstractions that correspond to what

Grid application programmers typically use to organize their applications portably

across many different resource environments. vgDL was designed based on a detailed

study of half a dozen real-world applications [LBC99, lea]. This study showed that

in order to design for performance (and to manage complexity) portably, application

developers typically use three simple resource abstractions to aggregate individual re-

sources. Consequently, vgDL contains three resource aggregates, distinguished based

on homogeneity and network connectivity: (1)LooseBag – a collection of heteroge-

neous nodes with poor connectivity; (2)TightBag – a collection of heterogeneous

nodes with good connectivity; (3)Cluster – adding homogeneity, a well-connected set

of nodes with identical (or nearly so) individual resource attributes. Each aggregate

specifies a range for its size (i.e., number of elements). A user can specify constraints
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on attributes of individual elements within the aggregate (e.g., clock rate, processor

architecture, memory, etc.), or constraints on aggregate attributes (e.g., total aggre-

gate memory, total aggregate disk space). Aggregates can be nested (e.g., a LooseBag

of Cluster) to arbitrary depth. vgDL has been used to express resource abstractions

for over half a dozen Grid applications, and appears to be sufficient for all of the

applications we have studied to date.

An important aspect of vgDL is that many of the characteristics of vgDL descrip-

tions are qualitative. In our analysis of application needs, we found that detailed

quantitative specifications are often a distraction, and as such cause resource speci-

fications to be fragile when moving to new resource environments. In view of this,

vgDL provides four operators that define network connectivity: close, far, highBW,

and lowBW. These composers indicate coarse notions of network proximity in terms

of latency and bandwidth. A particular implementation will use specific quantita-

tive values as definitions for these operators, as appropriate for distribution of Grid

resources, and changing as technology advances. Applications that require detailed

quantitative resource information for the resources they obtain can query Grid infor-

mation services [WSH99, FFK+97] for the resources in a VG once it has been instan-

tiated. With these aggregates and network operators, an application can structure

the specification of its resource environment in top-down fashion and decorate compo-

nents with constraints when desired. In addition to constraints, applications can also

express resource preference by using a scalar rank function: a user-defined expression

of basic arithmetic operators, resource attribute and resource aggregate attribute val-

ues that define a scalar value that represents the quality of that resource set for the

applications request. Because the vgDL requests are hierarchical, a specification may

include multiple ranking functions (one at each level in each subcomponent). Com-

pared to other systems [RLS98, LYFA02, RLS03, LF04], the vgDL ranking functions
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provide significant flexibility, allowing combination of multiple attributes in complex

fashion easily.

Given that (1) vgDL makes it possible to specify high-level, qualitative resource

requirements easily and (2) vgES system can perform fast resource selection in large-

scale resource environments, the VGrADS project provides and ideal foundation for

decoupling resource selection from application scheduling.

7.1.2 Decoupled Approach: Scheduling in Large Scale Grids

In some cases, scheduling algorithms map at least one task to each resource, for in-

stance when resources are roughly identical, application tasks are independent, and

the number of tasks is larger than the number of resources. However, when there

are many heterogeneous resources and/or when the application has less concurrent

tasks than there are resources, many resources are unused. This is a common case

when scheduling scientific applications onto large-scale Grid platforms, with current

platforms comprising multiple thousands of resources and future platforms envisioned

to comprise tens of thousands of resources and beyond. In fact, most applications use

only a very small fraction of all available resources. We say that in such cases, the

scheduling algorithm performs implicit resource selection. The problem is that, on

platforms that comprise this many resources, the time to run even a polynomial-time

heuristic can be prohibitive (especially if the algorithm takes into account communi-

cation of data over network links), making application scheduling unscalable.

A solution to address this scalability problem consists of decoupling resource se-

lection from application scheduling. In a first phase, one performs explicit resource

selection. In a second phase, one performs scheduling on the selected resources rather

than on the whole resource universe. The key point here is that a decoupled approach

makes it possible to compute schedules faster, by several orders of magnitude, making
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application scheduling scalable to large-scale platforms. In fact, this decoupling may

make it possible to run expensive scheduling algorithms on the explicitly selected

resources.

Several straightforward approaches exist for selecting resources explicitly (for in-

stance random selection), and we examine a few in the rest of this section. We claim

that using a system such as vgES to perform explicit resource selection makes it pos-

sible to achieve schedules that are comparable in quality to the ones obtained when

letting the scheduling algorithms perform implicit resource selection over the whole

resource universe, at dramatically higher scalability. In our approach, the sched-

uler issues a vgDL specification to the vgES system, which quickly finds (and binds)

matching physical resources, and a VG is returned. The scheduler then extracts

from the VG precise information about the physical resources and runs its scheduling

algorithm considering only these resources.

While decoupling resource selection from scheduling in large-scale systems as de-

scribed above clearly improves scalability, a key question is: what is the impact of

decoupled resource selection and scheduling on the quality of the resulting schedule?

In the following sections, we study decoupled resource selection and scheduling in the

context of workflow applications in large-scale Grid environments. We use several

versions of the EMAN and Montage workflows as example workflow applications.

7.1.3 Scheduling Algorithms

While our decoupling approach is applicable to any scheduling algorithm, we chose to

apply two workflow scheduling algorithms to evaluate our approach. We use a sim-

ple greedy workflow scheduling scheme and a substantially more expensive heuristic

workflow scheduling scheme as in chapter 4. We understand that different schedul-

ing algorithms scale differently and hence chose these two representative algorithms
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having differing costs. We apply the two scheduling schemes on (a) the universe

of available resources and (b) the set of resources obtained using explicit resource

selection for instances of EMAN and Montage DAGs.

7.1.4 What VG to ask for?

In the scenario of decoupled resource selection and scheduling, a key question is what

to ask for for the initial resource selection. From our experience, there are mainly a

few resource abstractions most applications ask for. The job is to then generate an

appropriate vgDL description of the required resources.

Structure of the VG

The structure of the required VG is an important concern because it has to “match”

well with the application structure. For example a “LooseBag” of nodes is a poor

resource requirement description for a very tightly coupled computation. Inferring

the structure of an application automatically is an interesting and important research

question. For our scenario of workflow applications, we already know the structure

of the application from the DAG representation of the application. For our cases

of EMAN and Montage the abstraction that looks most suitable is a “LooseBag” of

“TightBag” of nodes. We already know that the set of available components at a

given point in the workflow are embarrassingly parallel or parameter sweep steps.

Since they are not communicating heavily, a “LooseBag” of “TightBag” of nodes

seems to the ideal abstraction for the Montage and EMAN workflows. We want to

mention that the structure of the VG to ask for is very application specific. Hence,

potentially different vgDLs will be generated for other applications.
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Type of resources

It is also possible to ask for specific types of resources in the vgDL description. Our

approach is based on the types of resources for which we have performance models.

Since most scheduling algorithms rely on some form of expected execution times for

resources, the type of resources for which that information is available seems to be a

good criteria for pruning the resource set. Randomly projected expected execution

times may result in poor makespans in practice (as we see in chapter 4 and 6). An

issue is what if we don’t have accurate performance models. In that case, we can

substitute them with simple static models like MHz ratings with potential loss of

accuracy of makespan.

Number of resources

The other key element in the vgDL description is to specify a bound on the number

of required resources. Potentially, we can ask for the universe of resources. But, then

that does not show any value of intelligent resource selection and won’t decrease the

cost to schedule. Our approach is to use a simple static scheme based on the structure

of the DAG. For the number of resources to ask for, we ask for N resources where N

as the maximum width of any parallel phase in the input DAG. This seems to be a

simple upper bound.

7.1.5 Evaluation

The results of the experiments confirm the hypothesis of better scalability of the de-

coupled approach over the one-step approach, where (selection + scheduling) time for

the decoupled approach is only a fraction of the scheduling time for the one-step ap-

proach. The results also show that, for a wide variety of computation-communication
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characteristics of DAGs (from EMAN and Montage), the turnaround time (makespan

+ scheduling time) for the decoupled approach is much less than that for the one-step

approach. For communication intensive DAGs, the maximum gain was about 66%.

For DAGs with relatively balanced communication and computation, the gain was

about 50% on average. Zhang et al. [ZMC+06] present the experiments and results

in detail.

7.2 Scheduling onto Abstract Resource Classes

The scheduling algorithms described so far schedule the workflow components onto

individual nodes on the available Grid resource set. As explained earlier, this causes a

scaling problem for the scheduler in large resource environments. In the last section,

we solved the scaling problem by restricting the size of the universe for the scheduler.

Another approach to tackle the scaling problem is to schedule directly onto abstract

resource classes like clusters. An abstract resource class is defined as an aggregate

of nodes like “Clusters”, “TightBags”, “LooseBags” etc. This approach implies that

the scheduler, instead of going over all nodes in the resource set, goes over only the

available resource classes. This particular scheduling problem can be formulated as

follows.

7.2.1 Problem Formulation

The input to the scheduler is the workflow DAG with a restricted structure. We

restrict the workflow DAG to have identical nodes at each logical level. By identical,

we mean that nodes in the same level perform the same conceptual function (gen-

erally corresponding to same component executable) with potentially different input

data sets (of similar size). This is very typical for many scientific workflows as in
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EMAN and Montage, where the workflow consists of several parallel sweep steps in a

sequence. From the resource side, the input is a set of available clusters. Each of the

available clusters have attributes like the number of nodes, architecture, CPU speed

of the nodes, available memory per node etc. It is also assumed that the network

connectivity (latency and bandwidth) between the available clusters is known. It is

also assumed that per-node performance models for each component are known for

each cluster. The desired output from the scheduler is to find the mapping for each

DAG level, i.e. for each level we have to find the number of instances mapped to each

cluster (resulting in an eventual mapping for the whole DAG). The objective is to

minimize the makespan at each level of the workflow DAG. We model the problem

as follows.

7.2.2 Abstract Modeling

For each DAG level, we are given N instances of the parallel component. We have

M clusters available to map them to. There are r1, r2, ...rM nodes in the M clusters,

i.e. cluster Ci has ri nodes. t1, t2, ...tM are the per node rank values for each of the

M clusters. The rank values incorporate both the computation and communication

costs. The aim is to find a partition (n1, n2, ...nM) of N with n1 + n2 + ...nM = N

such that the overall completion time for the level is minimized. The output is ni,

the number of instances mapped to each cluster Ci.

The analytical method to solving this problem is to find the solution for the

following min-max problem.

min
partitions:pi=[ni]

(max
i

(tid
ni

ri

e)) (7.1)

However, there is no obvious, easy analytical solution to this equation because of the

discrete nature of the problem. Any analytical solution has to search the space of



90

partitions of N , which in general is a large space. So, we resorted to a simple intuitive,

iterative approach to solving this problem.

7.2.3 Iterative DP Approach

The idea is to iteratively map an instance onto a cluster by keeping track of the

number of instances already mapped to the cluster and which “round” the cluster

is at in the mapping process. The next instance is mapped to the cluster that ob-

tains minimum increment in the current makespan. This is akin to distributing the

instances to clusters. Note that whenever a cluster goes to the next “round” meaning

ri instances have been mapped to Ci since the last “round”, the makespan for that

cluster makes a jump by ti and stays there until ri instances are mapped to Ci in the

current round. Every instance is tentatively mapped to each cluster and the cluster

that results in minimum makespan increase is chosen for the instance. This goes on

until all instances are mapped. The algorithm follows.

Algorithm

The following algorithm, Algorithm 7.1, implements the iterative DP (Dynamic Pro-

gramming) approach to find the mapping. For each cluster, p the following are main-

tained: round(p) to keep track of the current round for the cluster, numMapped(p)

to keep track of the number of instances mapped to the cluster and makespan(p) to

keep track of the makespan for each cluster. In order to map the entire workflow, this

algorithm needs to be executed for each topological level of the workflow.

Complexity

The theoretical complexity of this scheduling algorithm for a given level in the work-

flow is O(#instances ?#clusters). Hence, overall complexity for the entire workflow
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foreach instance, i do

foreach cluster, j do

Tentatively map i to j;

Record makespan for each j by taking care of round(j);

endforeach

Find cluster, p with minimum makespan increase;

Map i to p;

Update round(p), numMapped(p) and makespan(p);

endforeach

Algorithm 7.1: Scheduling onto Clusters

is
∑

level(l) O(#instances(l) ? #clusters).

7.2.4 Experimental Evaluation

In order to evaluate the scalability of the Cluster-Level Scheduler, we compared the

scheduling time of the Cluster-Level scheduler with the one-step workflow scheduler

(both greedy and heuristic versions). Scheduling time is defined as the time it takes

to compute the schedule for the entire workflow in-advance. We also compare the

makespan generated by the Cluster-Level scheduler with the one generated by the

one-step scheduler (both greedy and heuristic versions).

We used the EMAN and the Montage application workflows as example workflow

application scenarios. We used three versions of the EMAN workflow and three ver-

sions of the Montage workflow. We obtained the different versions of each application

workflow by varying the number of parallel components at the parameter-sweep steps

of each workflow. For EMAN we used the 55-110, 110-379 and 220-440 versions,

where 55-110 version stands for 55 parallel components in the first parameter sweep



92

Number of Clusters 10 25 50 75 100 250 500 1000

Number of Nodes 258 996 2104 2144 3168 8550 19050 36061

Table 7.1 : Number of Clusters and Nodes

step and 110 parallel components in the second parameter sweep step. For Montage

we used the 24-51-24, 50-121-50 and 153-407-153 versions. We used the performance

model values for per component estimates of execution times.

The resource model is based on a tool that generates populations of representative

compute clusters [KCC04]. This tool uses empirical statistical models of cluster char-

acteristics (e.g., number of processors, processor architecture, processor clock rate)

obtained from a survey of 114 real-world clusters. Table 7.1 shows the summary

of number of clusters and the total number of nodes in each set of clusters. The

largest resource set consisted of 1000 clusters with about 36k nodes. We executed the

scheduler on a 900MHz Itanium node.

The network model is as follows. Conforming to the results in [LS01], we generated

end-to-end latencies between compute clusters according to a Normal distribution.

We set the mean of this distribution to 100ms, conforming to the results in [Mea04]

and we confine the latencies from 1 to 200ms. For the network bandwidths, we set

the connection within a cluster as 1000Mb/s and all the inter connection between

clusters range from 10Mb to 100Mb/s. These numbers are primarily based on results

listed in [YSI05, DAH+04]. Furthermore, we ensure that the higher the latency the

lower the bandwidth.
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Comparison with one-step plan-ahead scheduler

Figure 7.1 shows the results of the scheduler scaling experiments for the three EMAN

workflows and figure 7.2 shows the results of the scheduler scaling experiments for the

three Montage workflows. The X-axis denotes the number of available clusters and

Y-axis denotes the scheduling time in seconds for the particular scheduling algorithm.

From the results, we can infer that the Cluster-Level scheduler outperforms the others

on large Grids with much better scaling. This is because the Cluster-Level scheduler

is linear on the number of clusters, not on the number of nodes in the clusters. The

results from Figure 7.3 verify the same for a given workflow (EMAN 220-440 in this

case). This is true for all the workflows we tested.

Figure 7.4 and Figure 7.5 show the turnaround time (makespan + scheduling

time) for Montage and EMAN DAGs when using the heuristic, greedy and Cluster-

Level schedulers for varying number of available clusters. The results show that the

Cluster-Level scheduler has the minimum turnaround time for all cases, because of

reduced scheduling time. Also the quality of makespan doesn’t suffer for the EMAN

DAGs. For Montage DAGs, the makespan is about 27% more (on average) than that

obtained using the heuristic scheduler.
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Figure 7.1 : Cluster-Level vs. One-Step (greedy and heuristic) for EMAN
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Figure 7.2 : Cluster-Level vs. One-Step (greedy and heuristic) for Montage
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Chapter 8

Conclusions

In this dissertation we describe several techniques for scheduling scientific application

workflows onto heterogeneous, distributed Grid systems. The objective of this work

has been to automate the scheduling process for application workflows and achieve

good turnaround times for the workflows as well by effective and efficient scheduling.

To achieve this objective, the research leading to this dissertation resulted in

designing and implementing techniques to schedule workflows.

• We developed new strategies for scheduling and executing workflow applications

on Grid resources. Workflow scheduling is based on heuristic scheduling strate-

gies that use application component performance models. These strategies were

applied in the context of executing EMAN, a Bio-imaging workflow application,

on the Grid.

The results of the experiments show that our strategy of performance model

based, in-advance heuristic workflow scheduling results in 1.5 to 2.2 times better

makespan than other existing scheduling strategies for the studied application.

This strategy also achieves optimal load balance across the different Grid sites

for this instance of the application. We have also shown that machine loads and

inaccurate performance models have an adverse affect on the quality of schedule

and hence the performance of the application.

In order to make the scheduling tool applicable to HPC systems with batch

queue front ends, we modified the scheduler to take into account the batch
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queue wait times in order to take scheduling decisions.

• We proposed a new middle-out scheduling heuristic to address the myopia of

the top-down scheduler. Middle-out scheduling schedules the key components

of the workflow first and then propagates the mapping bottom up and top

down. The results of this heuristic show that, in some cases where the top-

down scheduler gets stuck to a non-optimal resource, the middle-out scheduler

chooses the better resources. In some other cases, the performance from the

resulting schedule depends on network connectivities.

• We compared the plan-ahead scheduling strategy to existing task-based, on-

line/dynamic strategies to workflow scheduling. The results from the experi-

ments with the Montage application workflows show that, the global workflow

based plan-ahead scheduler outperforms the dynamic/task-based scheduler for

the data-intensive Montage workflows. The difference is negligible for compute

intensive workflows. Both the workflow based and task based approaches out-

perform random scheduling strategies by an order of magnitude, as large as

11.

• We presented scalable workflow scheduling techniques for future Grids, which

may consist of hundreds of thousands of resources. The first technique is based

on a decoupled approach of explicit resource pruning using virtual grids and

then scheduling onto the pruned resource set. The decoupled strategy results

in better turnaround time than the one-step approach for EMAN and Montage

workflows with varying computation/communication characteristics. The sec-

ond technique schedules the workflows directly onto abstract resource classes

like clusters instead of individual resources. The results show directly schedul-

ing onto clusters improves the scheduling time by orders of magnitude because
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the Cluster-level scheduler is linear on the number of clusters.

8.1 Future Work

The work presented in this thesis is only a step toward making Grid programming

easier and efficient. It opens up research on various interesting related problems.

8.1.1 Short and Medium Term

Currently, the XML description of the input application workflow is created by hand.

To make programming for the Grid easier, we need tools to discover the application

workflow from the application code. Sophisticated program analysis techniques need

to be employed to output the application workflow from the application code. As

a side effect of this, it would then be possible to generate vgDL queries for a given

workflow automatically.

Increasingly, programs are being written in scripting languages like Matlab and

Python. Other than the ease of use of these languages, glue code can be written

very easily in these languages to tie up several application pieces to make up a whole

application. Incidentally, the next port of EMAN happens to be a have a Python

interface where scientists can glue together core EMAN components using Python.

Generating application workflows from a piece of code written in Matlab or Python

is an interesting problem and warrants research. If that is possible, it will be a step

closer to our vision of easing the job of the end scientist. All these combined can

produce a more end-to-end tool for Grid programming.

Several workflow optimizations like pipelining two steps of the workflow or fusing

nodes in the workflow can be employed. Pipelining will enable a subsequent step in

the workflow to start as soon as a segment of data is created on the parents of the
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component. This can have an impact on the turnaround time of the application.

The issue of scheduling multiple DAGs is also an important research problem.

This problem arises when the scheduler receives multiple workflows to be executed on

the same set of available resources from a single or multiple users. How the scheduler

prioritizes and selects resources in this scenario is an interesting problem.

8.1.2 Long Term

The work in this thesis has concentrated on optimizing only one metric of performance

- the application makespan or turnaround time. In the future, one may need to

optimize other criteria like throughput, resource utilization, real-time deadlines etc.

It may also be required to optimize a combination of these metrics.

The issue of fault-tolerant workflow execution is an important research problem.

This problem arises when the execution of large workflows have to be interrupted

or stopped for some reason - failure of the nodes, disk crash etc. There need to be

strategies to start the workflows again from the point where it had left off. One

needs to deal with issues of identifying these failure points (maybe by monitoring and

check-pointing) and rescheduling the workflows.

Economic scheduling is a new area of research. When Grid economies are consid-

ered, time is not the only entity we are concerned with. New scheduling techniques

need to be developed when “cost to use a particular resource” is a concern. One

may trade a very fast expensive machine for a slower cheaper machine in this sce-

nario. Scheduling workflows from a combined standpoint of economics and time is an

important research problem.

In the long term, the scheduler needs to deal with information from various re-

source management systems, systems having advanced reservations and other vagaries

of co-allocation.
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The advent of new architectural features like multi-core processors, reconfigurable

chips and in-the-box heterogeneity of supercomputers poses new challenges in terms

of developing or modifying existing scheduling tools that take advantage of these new

features. Implications of these new architectures on scheduling tools (or programming

tools in general) need to be investigated.
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