
Eliciting Honest Value Information in a
Batch-Queue Environment

Andrew Mutz #1, Rich Wolski #2, John Brevik ∗3

#Department of Computer Science, University of California Santa Barbara
Santa Barbara, CA 93106

U.S.A.
1amutz@cs.ucsb.edu
2rich@cs.ucsb.edu

∗California State University, Long Beach
1250 Bellflower Blvd. Long Beach CA 90840

U.S.A.
3jbrevik@csulb.edu

Abstract— Markets and auctions have been proposed as mech-
anisms for efficiently and fairly allocating resources in a number
of different computational settings. Economic approaches to
resource allocation in batch-controlled systems, however, have
proved difficult due to the fact that, unlike reservation systems,
every resource allocation decision made by the scheduler affects
the turnaround time of all jobs in the queue. Economists refer
to this characteristic as an “externality”, where a transaction
affects more than just the immediate resource consumer and
producer. The problem is particularly acute for computational
grid systems where organizations wish to engage in service-level
agreements but are not at liberty to abandon completely the use of
space-sharing and batch scheduling as the local control policies.
Grid administrators desire the ability to make these agreements
based on anticipated user demand, but eliciting truthful reportage
of job importance and priority has proved difficult due to the
externalities present when resources are batch controlled.

In this paper we propose and evaluate the application of the
Expected Externality Mechanism as an approach to solving this
problem that is based on economic principles. In particular, this
mechanism provides incentives for users to reveal information
honestly about job importance and priority in an environment
where batch-scheduler resource allocation decisions introduce
“externalities” that affect all users. Our tests indicate that the
mechanism meets its theoretical predictions in practice and can
be implemented in a computationally tractable manner.

I. INTRODUCTION

It has long been recognized that the problem of fairly
and efficiently allocating resources on computational grids
is one that shares much with traditional problems in the
field of economics [1], [2], [3]. A variety of markets and
auctions (two broad and overlapping classes of economic
mechanisms) have been proposed to determine which jobs will
have access to which grid resources, and for how long [4], [5],
[6], [7], [8]. The advantage normally associated with using
economic mechanisms is that by providing currency-based
consequences for resource consumption, users are motivated to
avoid inefficient resource usage. Usage that can be discouraged
by such mechanisms includes, for example, low-priority jobs
being run during periods of high-demand, or processes being
run on hardware for which they are not well-suited.

One non-economic mechanism that is commonly in use
today in grid environments is the batch queue. In their simplest
form, batch queues consist of virtual lines that users wait in for
access to computational resources. Batch queues have many
strengths: they are simple to use, they produce very egalitarian
resource allocations, and they can yield a high degree of
resource utilization. They are far from perfect, however, as
they provide poor incentives for users to moderate usage
during periods of high demand. As a result, high batch queue
utilization numbers can belie hidden inefficiency as resources
are being allocated to the execution of the job at the front of
the queue, regardless of the value of the work to be performed.

In this paper, we present a scheduler that bridges this
gap between value-centric economic mechanisms and value-
agnostic batch queues. This mechanism is based on the Ex-
pected Externality Mechanism, an auction mechanism devel-
oped independently in 1979 by both Kenneth J. Arrow [9] and
by Claude dAspremont and Louis-Andre Gerard-Varet [10].
Due to this theoretical basis, we have named our scheduler
the Expected Externality Scheduler (or EES).

This paper is organized as follows. In Section II, we de-
scribe in greater depth the external nature of the participants’
preferences in a batch-queued environment. In Section III, we
discuss how our work relates to other work in this field. In
Section IV, we present the Expected Externality Mechanism
and describe how we apply its theoretical form in practice in
creating the Expected Externality Scheduler. In Section V, we
present the results of our evaluation of the scheduler. We then
conclude with a recap of our findings and a description of our
intentions for future research in this area in Section VI.

II. CONTEXT AND PROBLEM

In their simplest form, batch queues are a series of jobs that
wait in line for access to resources. The jobs are prioritized
by a scheduler policy (set by the owner of the resource) but
jobs of equivalent priority are typically handled in a first-in-
first-out manner by the scheduler, and all jobs commonly have
a limitation on their running time. The resource management

1-4244-1560-8/07/$25.00  2007 IEEE 8th Grid Computing Conference291

scheme that we are presenting in this paper uses an alternative
approach. All jobs are considered in first-in-first-out order and
currency-based auction system that allows queued jobs to pay
preceeding jobs to not run. By controlling the allocation of
currency, the resource owner can control priority.

Building such a system in our target environment is difficult,
however, for two primary reasons.

Users are not Altruistic: Computational grids are com-
monly composed of federated resources from multiple insti-
tutions. The users that consume grid resources are themselves
from different institutions. In this situation, it is unrealistic to
expect users to act in a purely altruistic fashion. If we were to
simply ask each user how important their jobs were, without
any consequences for overstating the value, it would be in
their interest to reply that their jobs were maximally important.
Using such responses to make scheduling decisions would, of
course, not produce efficient results. In order to be effective,
a scheme to manage these resources must assume that users
will act in a manner that advances their own best-interests.

Batch Queues have Externalities: In order to select an
appropriate economic mechanism for a batch-queued environ-
ment, it must be observed that the decision to run the job at
the front of the queue affects all users. If the job runs, all other
jobs deeper in the queue will be delayed by the running time
of that frontmost job. When a transaction affects more than
just the resource consumer and producer, economists refer to
this effect as an externality.

A classic example is the polluting factory. The factory
produces goods and sells them to consumers, but the pollution
generated by the factory affects more than just those who buy
the product: everyone living nearby is affected by the results
of transactions in which they do not directly participate. An
economic model that does not consider these external effects
may not capture the true incentives of the participants or
accurately represent the true valuations assigned to resources.

In terms of mechanism design, this external nature of
the participants’ preferences significantly limits the space of
mechanisms for trading goods that we have at our disposal. For
example, most auction and market mechanisms in use today
don’t consider preference externalities. As a result, in some
industries, where the unconsidered preference externalities are
very strong, the government (an altruistic organization, eco-
nomically speaking) must pass legislation in order to rectify
the problems that result.

In a batch scheduling computational environment, self-
interested users and the externalities that queuing introduces
make it difficult to build a resource management system that
elicits honest information from users about job priority. Indeed
previous work indicates that users routinely provide inaccurate
information even when doing so may harm the priority given
to their own workload [11]. Our work explores a new approach
to this problem, however, which we present more fully in the
next section.

III. RELATED WORK

Previous work has documented the gains in user satisfaction
when job value is accounted for in scheduling decisions.
In [12], Chun and Culler simulate different scheduling sys-
tems that account for job value when making decisions and
find that aggregate user satisfaction can be increased by a
factor of between 2 and 14 over value-agnostic schedulers.
Additionally, in [13], Lee and Snavely show that users are
capable of expressing complex preferences when asked. The
authors surveyed users at the San Diego Supercomputer Center
about expected running times and about the value of different
turnaround times and found that while users generally have a
poor ability to predict running time, users are able to express
in great detail the value they see as a function of turnaround
time.

Many scheduling systems have been proposed to account
for this job-value information when making decisions. Some
scheduling systems rely on pricing resource reservations,
where users are promised access to future resources. In [14],
Bubendorfer et al. propose a reservation system that uses the
Generalized Vickrey Auction to price resource reservations
on computational grids. In [15], Wellman et al discuss the
strengths and weaknesses of different auction design choices as
they affect pricing generic resource reservation slots, including
in their analysis variants of Ascending Auctions and the
Generalized Vickrey Auction.

Many scheduling systems for computational clusters eschew
reservations and instead distribute resources in a spot market
where jobs compete for access to computational resources.
As with reservations, the Generalized Vickrey Auction is
commonly used: both Schnizler et al in [6] and Das et al. in
[16] use an approximated version of it for spot market distri-
bution, although they use different approximation techniques.
A similar mechanism is pursued by Lai et al. in [5], although
instead of the Generalized form they use non-combinatorial
second-price auctions. The distribution of grid resources by
commodities markets are explored for this application by
Wolski et al. in [8], where both the Tatonnement and Smale
price adjustment mechanisms are compared to auctions. An
original auction mechanism is presented by Chun et al. in [4],
where rather than bidding for complete control of a resource,
jobs are allocated to resources in proportion to the quantites
of their bids.

Rather than distributing these resources as reservation slots
or on a spot market, this paper focuses on an auction scheme
that can be used in a batch-queued environment. The applica-
tion of pricing mechanisms to batch queues has been pursued
before. In [12], Chun et al. compare traditional, value-agnostic
queuing systems to a scheme that reorders jobs in the queue
based on bids. In [7], Stoica et al. use a first-price auction to
determine which job in a ready list will run, and then use a
combination of those bids and price prediction to determine
how much participants pay.

Much work has preceded ours in the application of eco-
nomic mechanisms to the allocation of grid resources. Our

292

work is novel, however, in the that we treat the queueing
externalities in the system as a significant factor that must
be directly accounted for in the auction mechanism we are
using. Our work is also novel in that we believe it to be the
first application of the Expected Externality Mechanism to the
allocation of computer resources.

IV. MECHANISM DESCRIPTION

As discussed in Section II, our Expected Externality
Scheduler maintains the first-in-first-out semantics of a non-
prioritizing batch queue and relies on the allocation of cur-
rency to set priorities. On submission, a job is placed at the
back of the queue. The user submitting the job specifies to the
resource management system currency-based parameters that
indicate the priority of the job. Whenever the resource becomes
available, the scheduler considers running the frontmost job
and decides, based on that job’s specified priority information
and the information associated with all jobs deeper in the
queue, to either run the job or to discard the job and consider
the next in line.

In order for this priority mechanism to make this decision
effectively, the priority information supplied by the users must
be accurate. To do this, we employ the Expected Externality
Mechanism, a general auction mechanism developed indepen-
dently in 1979 by both Kenneth J. Arrow [9] and by Claude
dAspremont and Louis-Andre Gerard-Varet [10]. We use this
result to design a batch-scheduling queuing protocol in which
users express the value of their job in terms of a “bid” when
the job is enqueued. Each user is either subsequently charged
currency when her job is ultimately run or receives a payment
(compensating for externalities) if the bid was insufficient
to allow the job to run. These charges and payments are
computed in a very specific fashion, so that the following
properties hold.

Users see the greatest benefit when they accurately
specify the value of their jobs: As discussed previously, it
is essential that the mechanism guarantees that it is in the
best interests of a participant to honestly reveal her value
information. The Expected Externality Mechanism appeals to
game theory to prove that its use guarantees this property,
although the nature of this guarantee takes a specific form.
In game-theoretic terms, the strongest form of this guarantee
would be if honesty was a dominant strategy, meaning honesty
was an optimal strategy to employ, regardless of the strategies
employed by the other users participating in the system.
The Expected Externality Mechanism, however, provides a
slightly weaker form of guarantee – one where truth-telling
is a Nash-optimal strategy, meaning it is an optimal strat-
egy to employ if other participants are also reporting their
preferences honestly. While truth revelation as a dominant
strategy is clearly desirable, practically we know of no market
mechanism at present that is able to achieve it in a setting
where externalities exert as strong an influence as they do in
a resource service queue. We discuss how a scheduler can
implement an Expected Externality Mechanism while staying
at a Nash-optimal equilibrium.

Payments are zero-sum: In order for participants to
be able to accurately specify the value the jobs they are
submitting, it is important that there not be large inflows
or outflows of currency in the system. The balanced-budget
property provided by this mechanism avoids this problem by
assuring us that the total amount of currency in the system
remains constant over time.

Payments are computed using a computationally tractable
algorithm : Many auction mechanisms in this space require
the solution of NP-Hard problems in order to compute the
payments and allocation. Such a requirement is clearly an
unacceptable characteristic for a mechanism that is to be
deployed in a high-performance computing environment.

A. Job Priority Model

Our scheduler uses two currency-based parameters to indi-
cate job priority: the value of the work to be performed, and
the tolerance of the user towards delay in total turnaround time.
We will refer to these parameters as v and d, respectively. Both
v and d are specified in terms of a cluster-specific currency
that has been allocated by the administrators of the resource. In
addition to this value information, the user indicates a maximal
running time of the job, r.

The value parameter, v, is simply the amount of currency
that the user would be willing to pay in order to have the
job executed. High-value jobs have a low likelihood of being
discarded by the mechanism when they reach the front of the
queue.

The delay tolerance parameter, d, represents how eager
a user is to have other preceding jobs discarded by the
mechanism. This parameter can be thought of as being in units
of currency-per-second, where the amount of dissatisfaction
that is experienced by that user by waiting x seconds is x ∗ d.
The presence of many jobs in the queue with high delay
tolerance parameters would mean a high likelihood of jobs
being discarded by the mechanism.

The decision function that determines whether to run or
discard jobs takes all three parameters into account. When
considering whether to run job i, that is at the head of the
queue it computes:

a = vi (1)
b =

∑

j "=i

dj ∗ ri (2)

κ∗(a, b) =
{

discards, a < b
runs, a ≥ b

(3)

If a ≥ b, job i is run by the scheduler. Otherwise, job i is
discarded and the next job in the queue is considered.

B. Payment Function

After determining whether or not to run the frontmost job,
the Expected Externality Mechanism is employed to determine
the appropriate payments. The payment mechanism uses in-
formation about the statistical distribution of user parameter

293

values in this computation. Following the notation of [17],
the payment of each job i is as follows:

(
1

I − 1

) ∑

j "=i

Es−j




∑

l "=j

u(sl, κ
∗(tj , s−j))



 (4)

−Es−i




∑

j "=i

u(sj , κ
∗(ti, s−i))



 (5)

where for a job l at the front of the queue,

u(sl, κ
∗(tj , s−j)) =

{
vl, κ∗(tj , s−j) = runs
0, κ∗(tj , s−j) = discards

(6)

and for any job l not at the front of the queue,

u(sl, κ
∗(tj , s−j)) =

{
−dl ∗ ri, κ∗(tj , s−j) = runs

0, κ∗(tj , s−j) = discard
(7)

In this expression, κ∗ is the decision function described in
Formula 3. tm is the parameter stated by job m (in the case of
the frontmost job, this is the v, for all other jobs this is d). In
this expression, Es−j (x) refers to taking the expected value of
x over the possible parameter announcements of all jobs other
than j. In this sense, tm and sm are variables of similar type,
the difference being that tm is the actual announced parameter
of user m, whereas sm is the parameter corresponding to job
m that is drawn during the expected value computation. I is
the number of jobs in the queue. The function u quantifies the
amount that a user is affected by the allocation decision κ∗ in
terms of currency.

In our implementation, we use a Monte-Carlo sampling
method for numerically evaluating the expected value com-
putation. To do this, we repeatedly draw samples from the
parameter distribution associated with each user and use those
parameters to evaluate the expression inside the expected
value. We then take the arithmetic mean of the result produced
by each draw as the expected value. The number of samples
necessary to produce an acceptable level of accuracy is a
question that is discussed further in Section V-B. Because
the expected value computation appears in both terms of the
payment function, and because there are no nested expected
value expressions, we would expect the running time of the
algorithm to scale O(n) linearly as we increase the number
of samples we draw when evaluating these expressions. In
Section V-B, we show results that confirm this performance
feature.

We expect the computation of the payment function to scale
O(n3) cubically as we increase the number of jobs in the
queue. This is because the allocation decision κ∗ (Formula 3)
scales linearly with the number of jobs, and its computation is
inside two nested loops whose size also scale linearly with the
number of jobs. In Section V-B, we show results that confirm
this expectation.

Because the Expected Externality Mechanism requires the
knowledge of the statistical distribution of users value in-
formation, any system that employs the mechanism would
need to know this information. This can be done in practice
by the scheduler. The scheduler can exploit the fact that
truthful revelation of each job’s value is a Nash equilibrium,
and retain historical information on each user’s preferences.
This scheduler can then use this historical data to determine
the statistical distribution of participants’ preferences. The
Expected Externality Mechanism assumes that while users are
not aware of other user’s announced parameters, users are
aware of the distribution of these parameters. As such, it would
be appropriate for a deployed system to make this distribution
information publicly available to all users in the system.

C. Scheduler Protocol

A batch scheduler implementing this mechanism works as
follows. Users are provided with some allocation of currency
that represents the cumulative priority of the work they are
authorized to run on a machine relative to other users 1. When
a job is submitted, as part of its submission script it must
specify its value, its delay tolerance, and its running time.
Once submitted, these values cannot be changed and the job
cannot be cancelled until it is considered for execution.

Each job waits in the queue as the jobs in front of it are
considered for execution. During this time, its d parameter is
used in determining whether to run the job that is currently at
the front of the queue, as described in Formula 3. Whenever
the resource becomes available, the allocation decision func-
tion given by Formula 3 is evaluated for the frontmost job. If,
as described in Section IV-A, a ≥ b, the frontmost job runs
and the job’s owner pays out currency to other users as defined
by Equation 4. Otherwise, the frontmost job is cancelled, and
no currency changes hands. The user of the discarded job is
then free to resubmit (possibly changing the bid for the job).
One important observation is that jobs that are cancelled did
accrue wealth from the period of time they spent in the queue,
as each job that ran during that period paid currency to all
queue residents.

In our current implementation, we restrict the number of
nodes requested by a job to be the same for every job in
the queue. This restriction is due to the fact that for the
theoretical guarantees of the Expected Externality Mechanism
to hold, the allocation function κ∗ must be solved optimally.
Allowing jobs of multiple sizes can yield allocation functions
that cannot be solved optimally in polynomial time. While
this requirement may be overly restrictive for some practical
settings, in most workloads, a histogram of node counts
typically shows that a large fraction of jobs require a power
of 2 number of processors. It may be that by restricting the
number of queues servicing a machine to one for each power

1This method of prioritization is currently practiced at many computing
centers where users apply for allocations of node-hours that they can then
“spend” by running jobs over some fixed time period. When a job is executed,
the product of its time and the number of nodes it uses are decremented from
the allocation account.

294

of 2 we have achieved a more practically appealing solution
that approximates the optimal method in polynomial time.
Additionally, we are currently investigating ways to allow jobs
of multiple sizes in a single queue in the Expected Externality
Scheduler. A first step we plan to take is to maintain the first-
in-first-out characteristics of the current scheduler, and to only
allow separate jobs concurrent access to resources if they do
not require re-ordering of the queue. This change would only
introduce modifications to Formula 7, as the effects of running
a given job on the turnaround time of other jobs would be more
complex.

The Expected Externality Scheduler protocol has two im-
portant properties. First, truth revelation is a Nash equilibrium
which means that any user’s optimal strategy is to reveal her
true information regarding each job as long as all other users in
the system do so as well. To assure this property so that users
are continually induced to reveal their true job characteristics,
the system must start in a state where all users (perhaps altru-
istically) reveal their true information so that deviation from
this strategy subsequently is not in any user’s best interest. We
believe this condition can be realized practically by starting it
(e.g. after a scheduler restart, preventive maintenance, etc.)
with a set of jobs that are determined ahead of time to report
their values accurately. These jobs might belong to specially
trusted users or to the administrative body itself which often
has work it wishes to run, and also has an incentive to see the
scheduler remain in a Nash equilibrium.

Secondly, the overall system is budget-balanced, in other
words, the sum of all payments is zero. This property is useful
because it assures the center that its intended prioritization
among different users can be realized by the initial currency
allocation. Currency may change hands temporarily, invert-
ing priorities in the same way that lower-priority jobs must
sometimes be allowed run before higher-priority submissions
in order to avoid starvation. Over time, however, the currency
does not inflate nor deflate, thus preserving its power over
prioritization.

Theoretical proofs of the Expected Externality Mechanism’s
budget balance and truth revealing properties can be found
in [17]. In the next section, we demonstrate these properties
empirically.

V. EVALUATION

In this section, we detail our efforts to verify that the appli-
cation of the Expected Externality Mechanism to the problem
of batch-scheduling produces the properties predicted by its
theoretical formulation. To do so, we resort to simulation, not
because we have not been able to construct a batch queue
simulator that implements the scheduling protocol described
in Subsection IV-C, but because it is not possible to investigate
these properties empirically without first investigating them
(thoroughly) in simulation. At present, most centers respon-
sible for administering large-scale batch-controlled resources
are primarily concerned with the maximization of two met-
rics: resource utilization, and user contentment. As they are
not tasked with forwarding computer science research as a

primary mandate, they are understanably reluctant to explore
new approaches, particularly when those new approaches will
impact user experience as directly as ours will. Thus until our
Expected Externality Scheduler has been successfully vetted
by the knowlegable research community and also has produced
a set of compelling simulation results, it is unlikely that a fully
empirical test using a “live” machine and user community will
be possible. In this section, we attempt to lay the foundation
upon which such a test could be justified.

Theory of Expected Externality predicts that the running
time of the mechanism will scale as O(n3) where n is the
number of jobs in the queue. This running time is also
influenced by how thoroughly we numerically compute the
expected value expressions in the mechanism, and theory
predicts that the running time should scale O(n) linearly as
we increase the number of draws in this computation. In
Subsection V-B, we show that our testing verifies both of these
predictions.

In addition to the performance predictions, users in the
Expected Externality Scheduler should find that honest rev-
elation of the value of their jobs is a Nash equilibrium.
Empirically demonstrating that this is the case across all
possible combinations of user preferences is not feasible,
however, all of our randomly selected simulations did show
this to be the case. In Subsection V-C, we present one such
example verifying the optimality of the truth-telling strategy.

A. Testing Environment

The following experiments were conducted on a quad-
processor Intel Xeon running at 3.2 ghz with 1GB of RAM.
The operating system was Debian Linux version 1:3.3.5-13.
The simulator was written in the Java programming language
and was compiled and run with Sun Microsystem’s java
distribution version 1.4.2-03.

B. Performance

As mentioned above, we expect to see an O(n3) cubic
relationship between the execution time of the Expected Exter-
nality Scheduler and the number of jobs currently waiting in
the batch queue. Figure 1 depicts the results of our experiments
to test this. The solid line connects the data points that we
measured as we increased the number of jobs in the queue.
The dashed line is an overlaid cubic function (y = 0.5947 ∗
x3 + 3424.42) that tightly fits the data with a Root Mean
Square Error of 4549.13. From the figure, as we increase the
number of jobs waiting in the queue, the running time of the
algorithm scales in a manner consistent with that predicted by
theory.

Some readers may notice that, while the results scale well,
the absolute amount of execution time required is quite high
(to compute the payments with 244 queued jobs, the simulator
ran for over two hours). It is important to note that this absolute
execution time depends on the granularity of the expected
value computations being performed. The tests in Figure 1
were done with very fine-grained expected value computation

295

0 50 100 150 200 250

Number of Queued Participants

0

2x106

4x106

6x106

8x106

C
o
m

p
u
ta

ti
o
n
 T

im
e
 i
n
 M

ill
is

e
c
o
n
d
s

Fig. 1. Demonstration of the O(n3) running time of the mechanism

and performed 1000 draws from the associated distribution for
each of such computations.

In Figure 2, we demonstrate that this execution time can be
reduced by choosing a more coarse-grained level of expected
value computation. We tested the amount of time required
by the mechanism on a simulated queue of 32 jobs as we
scaled the degree of granularity. Each data point in the graph
represents the execution time for each granularity level of
expected value computation. The figure clearly shows a linear
relationship between the number of draws and the resulting
execution time.

This reduced granularity does not come without conse-
quences, however. In Figure 3, we show the relationship
between the expected value granularity level and the degree to
which the payments in the system balance out. Each dot in the
graph is the budget discrepancy divided by the total magnitude
of payments in the system. As described in Section IV, one
of the advantages of the Expected Externality Mechanism is
that the sum of the payments in the system is zero. As we
reduce the granularity, and as a result the accuracy, of these
computations, the consequence is a greater degree of budget
imbalance. In this example, we found a budget discrepancy
of 7% when we used a very coarse-grained number of 8
draws. The discrepancy continued to drop to below 1% for
1024 draws and appears to asymptotically approach 0% as we
increase this granularity further.

We see this performance tradeoff as a strength of the system.
The expected value granularity level provides a tunable param-
eter that allows us to trade payment accuracy for increased
performance.

C. Honest Preference Revelation

In the Section IV, we described how the Expected Exter-
nality Mechanism provides theoretical guarantees that honest
preference revelation is a Nash equilibrium, meaning that it is
an optimal strategy if all other participants are being honest.
In order to demonstrate empirically that our mechanism has
this property, we created simulated queues and explored the
expected payoff for many different preference declarations.

0 1000 2000 3000 4000

Number of Draws

0

20000

40000

60000

80000

E
x
e

c
u
ti
o
n
 T

im
e
 (

m
s
)

Fig. 2. Execution time with respect to the number of expected value draws

0 1000 2000 3000 4000

Number of Draws

0.01

0.02

0.03

0.04

0.05

0.06

0.07

B
u
d
g
e
t
Im

b
a
la

n
c
e

Fig. 3. Budget imbalance with respect to the number of expected value
draws

In each case, our results show that expected payoff was
maximized when users honestly declared their preferences.

Figure 4 shows an example of one such run. We created a
participant at the front of the queue whose preferences were
defined by the parameter 129.8 (meaning the value of the job
that was submitted). We then found the expected payoff that
the participant would see from randomly selected groups of
other participants for each of many declared types. As depicted
in the graph, all other non-honest declarations lead to either
a comparable or lesser expected payoff for the participant in
question. Each small dot in the graph indicates one expected
value computation, the large dot indicates the average of the
black dots for each declaration.

Figure 5 is a similar graph for a participant further back in
the queue. The participant’s actual quantification of how much
they dislike waiting an additional hour is 48.9, but we explore
the payoff seen when declaring many different values. Similar
to Figure 1, no other declaration produces a higher expected
payoff.

As a result, both of these participants see no value from
being dishonest, and in this example honesty is a Nash
equilibrium.

296

0 50 100 150 200 250 300 350

Possible Type Announcements (actual is 129.8)

-120

-100

-80

-60

-40

-20
E

x
p
e
c
te

d
 P

a
y
o
ff

Fig. 4. Expected payoff for the user at the front of the queue

20 40 60 80 100

Possible Type Announcements (actual is 48.9)

-10

-8

-6

-4

-2

0

2

4

E
x
p
e
c
te

d
 P

a
y
o
ff

Fig. 5. Expected payoff for a queued participant

VI. CONCLUSION

In this paper we have documented our efforts to account
for the externalities that affect users in batch queued envi-
ronments. As described in Section II, decisions made about
scheduling a job will affect all other users in the batch queue.
In order to deploy an economic mechanism to govern batch
queues, we need to select one that appropriately accounts
for these externalities. In selecting the Expected Externality
Mechanism, we are able to build a scheduler that handles
these externalities while providing computational tractability,
balanced budgets and properly incentivizes users to honestly
reveal the value of the work being performed. Additionally, we
showed through simulation that the aforementioned properties
are not only predicted in theory, but are provided in practice.

We are planning to continue our work in this area. As
discussed in Section IV-C, we are investigating how best
to allow jobs requesting different numbers of nodes to be
handled by the same queue. Because the theoretical guarantees
provided by the Expected Externality Mechanism require the
allocation function κ∗ to be solved optimally, expanding this
functionality while retaining the current scheme’s computa-
tional tractability is not easy. We do have ideas on how to do
this, however, and plan to build and evaluate a version of this
scheduler with those features.

In addition to improving the feature set of the scheduler,
we plan to deploy the scheduler in the real world and observe
how it behaves with real users. Game theory predicts that

users will honestly reveal the priority information of their jobs,
but humans do not always act completely rationally. Only
by measuring a live, deployed system can we determine if
the scheduler lives up to its theoretical predictions about user
behavior.

REFERENCES

[1] J. F. Kurose and R. Simha, “A microeconomic approach to optimal
resource allocation in distributed computer systems,” IEEE Transactions
on Computers, vol. 38, no. 5, pp. 705–717, 1989.

[2] I. E. Sutherland, “A futures market in computer time,” Communications
of the ACM, vol. 11, no. 6, pp. 449–451, June 1968.

[3] C. A. Waldspurger, T. Hogg, B. A. Huberman, J. O. Kephart, and W. S.
Stornetta, “Spawn: A distributed computational economy,” IEEE Trans.
on Software Engineering, vol. 18, no. 2, pp. 103–117, February 1992.

[4] B. N. Chun and D. E. Culler, “Market-based proportional resource
sharing for clusters,” Computer Science Division, University of
California at Berkeley, Tech. Rep. CSD-1092, January 2000. [Online].
Available: http://citeseer.ist.psu.edu/chun99marketbased.html

[5] K. Lai, B. A. Huberman, and L. Fine, “Tycoon: A distributed market-
based resource allocation system,” 2004.

[6] B. Schnizler, D. Neumann, D. Veit, and C. Weinhardt, “A multiattribute
combinatorial exchange for trading grid resources,” in Proceedings of
the Research Symposium on Emerging Electronic, 2005.

[7] I. Stoica, H. Abdel-Wahab, and A. Pothen, “A microeconomic scheduler
for parallel computers,” in Proceedings of the International Parallel
Processing Symposium (IPPS) ’95 Workshop on Job Scheduling Strate-
gies for Parallel Processing, Santa Barbara, CA, USA, 1994. [Online].
Available: http://citeseer.ist.psu.edu/stoica94microeconomic.html

[8] R. Wolski, J. S. Plank, J. Brevik, and T. Bryan,
“Analyzing market-based resource allocation strategies for the
computational grid,” International Journal of High Performance
Computing Applications, vol. 15, pp. 258–281. [Online]. Available:
http://citeseer.ist.psu.edu/wolski00analyzing.html

[9] K. J. Arrow, Economics and Human Welfare. Academic Press, 1979,
pp. 23–39.

[10] C. d’Aspremont and L.-A. Gerard-Varet, Aggregation and Revelation
of Preferences. North Holland Publishing Company, 1979, ch. On
Bayesian Incentive Compatible Mechanisms, pp. 269–288.

[11] C. Lee, Y. Schwartzman, J. Hardy, and A. Snavely, “Are user runtime
estimates inherently inaccurate,” in Proceedings of Workshop on Job
Scheduling Strategies for Parallel Processing, June 1994.

[12] B. N. Chun and D. E. Culler, “User-centric performance analysis
of market-based cluster batch schedulers,” in Proceedings of the 2nd
IEEE International Symposium on Cluster Computing and the Grid,
Berlin, Germany, May 2002. [Online]. Available: http://berkeley.intel-
research.net/bnc/papers/ccgrid02.pdf

[13] C. B. Lee and A. Snavely, “On the user-scheduler dialogue: Studies
of user-provided runtime estimates and utility functions,” vol. 20, pp.
495–506.

[14] K. Bubendorfer, K. Chard, P. Komisarczuk, and A. Desai, “Fine grained
resource reservation and management in grid economies,” in Proceed-
ings of The 2005 International Conference on Grid Computing and
Applications, 2005.

[15] M. P. Wellman, W. E. Walsh, P. R. Wurman, and J. K. MacKie-Mason,
“Auction protocols for decentralized scheduling,” Games and Economic
Behavior, vol. 35, no. 1-2, pp. 271–303, 2001. [Online]. Available:
http://citeseer.ist.psu.edu/383290.html

[16] A. Das and D. Grosu, “Combinatorial auction-based protocols for
resource allocation in grids,” in Proceedings. 19th IEEE International
Parallel and Distributed Processing Symposium, 2005.

[17] V. Krishna and M. Perry, “Efficient mechanism design,” 1998, working
paper. [Online]. Available: http://ratio.huji.ac.il/dp/dp133.pdf

297

