VGrADS: Enabling e-Science Workflows on Grids and
Clouds with Fault Tolerance

Lavanya Ramakrishnan Daniel Nurmi Anirban Mandal
Indiana University, University of California, Santa Renaissance Computing
Bloomington Barbara Institute

laramakr@cs.indiana.edu
Charles Koelbel

Rice University
chk@cs.rice.edu

Yang-Suk Kee
Oracle US Inc.
yang.seok.ki@oracle.com

nurmi@cs.ucsb.edu

Dennis Gannon
Microsoft Research
degannon@microsoft.com

Graziano Obertelli
University of California, Santa
Barbara

anirban@renci.org
T. Mark Huang

University of Houston

tihuang@tlc2.uh.edu

Kiran Thyagaraja
Rice University
kiran@rice.edu

graziano@cs.ucsb.edu

Rich Wolski
University of California, Santa
] Barbara
rich@cs.ucsb.edu

ABSTRACT

Today's scientific workflows use distributed heterogenaessurces
through diverse grid and cloud interfaces that are ofterl har
program. In addition, especially for time-sensitive cati appli-
cations, predictable quality of service is necessary aditese dis-
tributed resources. VGrADS' virtual grid execution systemES)
provides an uniform qualitative resource abstraction gviet and

Asim YarKhan
University of Tennessee,
Knoxville
yarkhan@cs.utk.edu

Dmitrii Zagorodnov
University of California, Santa
~_ Barbara
dmitrii@cs.ucsb.edu

Computing (HPC) applications to run on distributed clustdaut
only with careful tending. Applications needed low-levebgram-
ming for managing heterogeneous resources, schedulirayga-
tation and data movement, fault tolerance, and performamieg.
VGrADS set out to raise the level of programming for grid &ppl
cations.

cloud systems. We apply vgES for scheduling a set of deadline More recently, the rise of cloud computing has resulted imi-si

sensitive weather forecasting workflows. Specificallys flaper re-
ports on our experiences with (1) virtualized reservatfondatch-
queue systems, (2) coordinated usage of TeraGrid (bataheyjue

lar concerns regarding application management and progiagn
models for scientific workflows. The cloud computing moded-pr
vides on-demand immediate access to virtual machines oy-a pa

Amazon EC2 (cloud), our own clusters (batch queue) and Euca- as-you-go model. Cloud computing has evolved in support elf W

lyptus (cloud) resources, and (3) fault tolerance througbraated
task replication. The combined effect of these techniques t@

2.0 applications [3] to manage dynamic load. Cloud comjgutin
for scientific applications has certain trade-offs. Clopdsvide

enable a new workflow planning method to balance performance immediate guaranteed access to resources and customszble

reliability and cost considerations. The results pointamvim-
proved resource selection and execution management sdppar
variety of e-Science applications over grids and cloudesyst

1. INTRODUCTION

The dream of providing on-demand computing resources fanhe

ware environments through virtual machines that overcoomees
of the challenges with current shared batch queue systems- H
ever, parallel scientific codes often experience a sigmifiparfor-
mance impact. Thus, we need programmatic methods for apgplic
tions to study the suitability of different resource enwineents and
make appropriate resource decisions.

users has been discussed for over a decade under various:namewe have made substantial progress in two broad areas ofifsimpl

grid computing [15], utility computing [36], cloud comput [28],
and others. When the Virtual Grid Application DevelopmeaftS
ware (VGrADS) [25, 32, 51] project began in 2003, the statihef
art was a style of grid computing that allowed High Perforoean

Permission to make digital or hard copies of all or part o tvork for
personal or classroom use is granted without fee providatctctipies are not
made or distributed for profit or commercial advantage, hatldopies bear
this notice and the full citation on the first page. Copyrigior components
of this work owned by others than ACM must be honored. Abstrgavith
credit is permitted. To copy otherwise, to republish, totwsservers or to
redistribute to lists, requires prior specific permissiod/ar a fee.

SC09 November 14-20, 2009, Portland, Oregon, USA

(c) 2009 ACM 978-1-60558-744-8/09/11E $10.00

ing programming applications on grid and cloud systems :

e \We separated application development from resource man-
agement by providing a uniforwirtual grid abstraction atop
widely differing resources.

e We provided tools to efficiently bridge the abstraction gap,
including methods for scheduling, resource managemest, di
tributed launch, and fault tolerance.

Resource procurement and planning interfaces and statege
especially critical for time-sensitive applications. Mssale me-
terology workflows in the Linked Environments for Atmospieer

User

Portal

Workflow
Engine

Application
Service

Execution

Manager
specific protocol
based execution

(Globus) (__EC2 interfaces]
- Resources

od
Cloud

()

Workflow
Planner

resource
planning

Execution System

resource
binding

User

Portal

Workflow
Engine

Application
Service

‘ Manager

standard
execution

query
execution
plan

Virtual Grid

) (

Resources

(us EC2 intelfaces)

(b)

Figure 1: Comparison of the LEAD-VGrADS collaboration system with cyberinfrastructure production deployments.

Discovery (LEAD) [10] project are examples of such deadline
sensitive workflows. These workflows are initialized by atnéng
sensor data and consist of a number of preprocessing stfedd
data to a computation-intensive weather model. These voovkfl
require timely and coordinated access to computation ateddis-
ing workflow execution.

This paper brings together many of the results from the VG3AD
project demonstrating the effectiveness of virtual gratsstchedul-
ing LEAD workflows. In the process, it demonstrates a seasnles
merging of cloud and HPC resources in service of a scientific a
plication. It also applies advanced scheduling technidaeboth
performance improvement and fault tolerance in a realistigext.

LEAD has been run as a distributed application since itsgtion,

but VGrADS methods have opened new capabilities for regourc
management and adaptation in its execution. We presentdtie m
vation for the LEAD application and explain the effect of \AB¥S

on workflow scheduling in Section 2. We discuss VGrADS system
components and the execution flow in Section 3. This destribe
the virtual grid abstraction, including its unified managenof

2.1 LEAD Workflow Example

LEAD users access large-scale data, forecast models, afysen
and visualization tools for mesoscale meteorology throagior-

tal interface. Using the portal interface, they composend¢h and
monitorworkflows each of which consists of a set of tasks that pro-
duce and/or consume data. The need for data to be produca@ bef
it is consumed creates dependencies between the tasksowdagre
many LEAD experiments requireorkflow sets Because of the
many parameters in weather models and uncertainty in the,inp
computing an exact result is often impossible. In thesesctse
user must often run the same model many times with differant i
tial parameters to manage the accuracy of the result. Warkflo
planning in LEAD must support scheduling workflow sets witlot
characteristics: a deadlir@ when all work must be completed,
and a fractior of workflows which must complete by that dead-
line. The LEAD portal uses a workflow engine to manage the task
dependencies and execution of a workflow. That engine in turn
invokes the corresponding application service that hasviedge
about the application’s configuration and data.

For example, imagine a LEAD experiment to forecast severemst.

TeraGrid clusters and Amazon EC2 and Eucalyptus cloud, sites A workflow in this experiment might take as inputs streamiag-s

and our support for fault-tolerant scheduling workflows. tée
tail our experiments in Section 4 that demonstrate the tdegi
of the virtual grid abstraction’s new capabilities for eiSe [46]

sor data to be pre-processed and then used to launch an éasemb
of weather models. Based on the application’s requireméinés
experiment might need to finish within three hours (2= 3) to

workflows such as LEAD and show that the overhead of the system produce timely forecasts, and require 15 of 20 models to ¢etep

is low. Finally, in Sections 5 and 6 we discuss related worlt an
present our conclusions.

2. OVERVIEW

We use the LEAD cyberinfrastructure [10] as a testbed forM33
ideas. It is a modern cyberinfrastructure, with many fesgtur—
notably the use of distributed resources for workflow execut
— common to other e-Science domains [46]. In addition, LEAD
workflows are time sensitive making timely resource progwget
crucial. All this makes it an ideal choice to test the VGrADS i
frastructure. The lessons learned here are more widelycaj

to other e-Science applications and workflows [37].

(i.e.,F = 3/4) to have acceptable confidence. It would be the work-
flow engine and application services’s job to schedule thkstao
that those constraints are met.

2.2 Virtual Grid Abstraction

Figure 1 shows a simplified view of LEAD cyberinfrastructure
both with and without VGrADS. Both versions support the same
user interface to construct and submit workflows. Howeuss, t
virtual grid abstraction (described in detail in Section 3) enables
a more sophisticated and effective scheduling of the work#ets
using the virtual grid abstraction. Originally (Figure Y)(ahe ap-
plication services interacted directly with distributeites using
specific interfaces. This led to ad-hoc resource scheduléai-

(a)
Example Workflow Set
need F=2/3

Batch Queue
(b)
Uncoordinated Schedule
Without VGrADS

Deadline D

£

Batch Queue =

(c) N
Coordinated Schedule =

With VGrADS

Cloud

Start Deadline D

Figure 2: Example scheduling of workflows.

sions distributed across different components. In turis, itiade
workflow planning and real-time adaptation extremely aading,
particularly with respect to performance and reliabiligriability.
With VGrADS (Figure 1(b)), theVirtual Grid Execution System
(vgES)provides a uniform interface for provisioning, queryinggda
controlling the resources. Similar resource abstractien® been
proposed earlier over grid systems [16, 18]. However, vg&sthe
ability to harness resources across grid and cloud sitescasred
by the application. The resources are annotated with Qofepro
ties that aid workflow planning. Thus, the standardizedrfate
enables a multi-phase workflow orchestration pipeline tarze
performance, reliability and cost considerations for aoc$etork-
flows while being agnostic to specific policies and site imma-
tations. In particular, it allows coordinating resourcesoas the
components in a workflow set, and managing fault tolerancthéo
overall workflow set. It also makes combining disparate ues®
types, including batch-queued resources (such as Teralsitrs)
and cloud computing installations (such as EC2 and Euaatypt
relatively seamless. Our implementation uses the LEAD iigbe
frastructure components to demonstrate the use of thealigtid
abstraction, but other scientific workflow systems will natet sim-
ilarly with possibly different policies in resource proeanent and
workflow planning.

2.3 Coordinated Scheduling: An Example

We use an example to illustrate the usefulness of coordirsateedul-
ing across different resource types - grids and clouds. reiga
shows a typical example of three small workflows that must be
mapped onto a resource set consisting of a batch-queueerclust
(which can handle two tasks concurrently) and a cloud resour
Each of the tasks in the workflows represents a scientific.cae
label each task with a letter (e.g., the first workflow has ga&k

Workflow
Planner

schedule W

~

DAG Fault
[Scheduler] [t0|erance] [EC2

Phase 1,2,3 Phase2,3 Phase 4

& bind

resource find

Virtual Grid
Execution System
3
58 2 8
T £ = = £
=0 s| E S
Qo
g3 H £
T o g
wL v £
a
BQP VARQ 2
@

Globus EC2 interfaces

@I Resources gB

Figure 3: Interaction of system components for resource pro
curement and planning

GT4,
Personal PBS
od
Clo

ent policies. For example, batch queue resources, cloodnmess,
and resources available through offline agreements suctvaseed
reservations can be queried and used with a single interfduss,
by using VGrADS to “reserve” a resource for the entire wonkflo
(Figure 2c), we can avoid those delays. The new schedulesmeet
the deadline even with higher initial wait times (reflectiegjuests
for longer time slots). Moreover, the global view of the camp
tation and the virtual grid allows the scheduler to use sladke
schedule to replicate the second workflow in Figure 2a fdlt fal+
erance. This is represented by the new tasks E’, F', G’, H, lan
Even if the copy of this workflow on the batch system (i.e. tee s
of crossed-out tasks) fails, the other copy can complete.

Although Figure 2 is a simplified motivating example, Seatib
will show a similar scheduling improvement on an actual LEAD
run. Thus we see that the VGrADS interface provides a single i
terface to query and manage resources enabling betterustied
of workflows to meet its constraints. Next, we detail the eyst
components of the VGrADS system supporting LEAD workflows.

3. SYSTEM COMPONENTS

Figure 3 shows the interaction of various system componéditis
first step in the workflow planning process is resource premant.
The planner triggers the activities of vgES system and metarset
of slots or a “Gantt Chart” that represents the resourcegrass

B, C and D). The graph shows the dependencies between tlge taskfor this request. This Gantt Chart is then shared betweewaile-
(e.g., tasks B and C depend on task A). Figure 2b shows a Ganttflow planner, the DAG scheduler and the fault tolerance camapb

chart (i.e., task mapping onto resources with time) wherdich
ing the tasks individually on available resources. Schaduhe
tasks individually incurs unpredictable queue waits tlatse the
deadline to be missed. In this case, each job in a batch qysue s
tem incurs an overhead in terms of queue wait time. Similanky
startup time for virtual machines in cloud systems imposesia
tial overhead. This example mirrors current day practicgystems
such as LEAD, before the advent of VGrADS.

The qualitative resource abstractions in VGrADS providedbhil-
ity to aggregate resources from disparate sources and diffder

to develop the schedule. The schedule for the workflows iserep
sented as task mappings on each of the slots. The interattiba
virtual grid execution system with the grid and cloud sites de-
scribed in greater detail in Section 3.1. While resourcesbaing
bound by vgES, the workflow planner uses a four stage planning
process to determine the schedule for the LEAD workflow sets t
meet the deadline and accuracy constraint. The workflownglan
interacts with a DAG scheduler, EC2 planner and fault toleea
sub-components to trade-off various system parametersferpe
mance, reliability and cost. Once the workflow planner deiees
the workflow plan and the resources are bound, the executgn s

tem monitors and manages the workflows. We detail the exatuti
system changes required to support workflow set orchemtrati
Section 3.3.

Thus, the integrated system is comprised of several irtiegpcom-
ponents that together provide a resource collection atisirethat
we term virtual grids. This abstraction provides methodie for
efficiently utilizing resources through intelligent wordf¥ orches-
tration, task scheduling, and fault tolerance mechaisms.

3.1 \Virtual Grid Execution System

The Virtual Grid Execution System (vgES) [23, 25] acquires r
sources and ensures their availability during time intsregpressed
by the user. vgES can be configured to draw from dedicated re-
sources, batch queue managed resources, and cloud resaarce
cessed through the Amazon Elastic Compute Cloud (Amazon RT2
or Eucalyptus [33] . Internally, vgES maintains a databasgup
lated with static information about the entire collectidii#C and
cloud resources available, and translates high level stgtier re-
source collections into the most appropriate set of realuiess

at any given time. Note that, since the provisioning andlakidt

ity chacteristics of the real resources often change owee,tthe
same abstract request made at different times may resuttiffea

ent sets of real resources being aquired that still meethibact
request constraints.

When vgES recieves a request to construct a virtual griderit p
forms a database search to find the best collection of ressuioc
provision, and returns a virtual grid abstract data stmactulhe
structure contains meta-data describing performancectaistics

of the resources, timing information on when the resourdé$e
available, and locality information about the proximity thie re-
sources to one another. This information is organized aeseetiat
can be searched to inspect resource characteristics. Itioagd
VvgES provides the view of resources in the form of a Gantttchar
that describes how the resources will be provisioned owee.ti

After a request has been accepted and a virtual grid has lbeen c
ated, vgES finally performs the task of actually provisignine re-
sources using several “drivers” for the different typesesfaurces
(described in detail below) When vgES acquires access teethe
sources, we install our own, independent version of a Pleriditch
Scheduler (PBS) compatible resource manager (Torque) k&
interfaces [24] as shown in Figure 3. Having our own resource
manager running inside each provisioned set of resourees gs
both a uniform interface and the ability to reuse a set of us=ss
for several tasks, rather than repeatedly making provisgone-
quests. Next, we describe how resource procurement iseshabl
grid and cloud sites.

3.1.1 Service overlay over grid systems

Currently, most HPC sites use some form of batch schedutifig s
ware (e.g., Torque [47], Maui [27]) to manage the mappingsafru
workload to dedicated compute and storage resources. aliypic
sites configure their systems to implement a “space-sHapoly

icy, where application jobs request resources and the loptebe
software provides exclusive access to the requested Esowhen
enough capacity becomes available. When there are monerceso
requests (jobs) than there are unoccupied resourcesldeagame
jobs must wait in a queue. The amount of time that jobs wait in

uncertaintly makes effective scheduling very difficultpesially
for applications with time constraints.

To provide abstract slots for scheduling, even in the presef
batch queue delays, vgES uses an abstraction for makingtistat
cal advanced reservations called Virtual Advance Resengfor
Queues (VARQ) [31]. VARQ is in turn built on another technol-
ogy we developed, the Queue Bounds Estimation from Time Se-
ries (QBETS) [30] service, which provides statistical pcédns

of batch queue delays.

Queue Bounds Estimation. Previous studies [9, 43] of predict-
ing batch queue turnaround times have focused on the mgdelin
and prediction of batch queue wait time using point valuéissta
tics, such as the mean wait time, as the predictor for funbeyjait
times. While these statistics provide good aggregate giadi
they tend to be poor predictors for individual job wait tintkee to
the highly variable nature of the data (often spanning fivesteen
orders of magnitude when wait times are measured in secénds [
9, 43)). Instead, we predictpper bound®n those wait times. For
many scientific workflows, including LEAD, the ability to miiet

the longest timethat a job will wait in queue is enough to make
informed scheduling decisions.

Our methodology for predicting bounds on individual job temnes,
QBETS[30], uses historical job traces from over 25 sup@nmater
centers around the world which send trace updates, in rea| s
jobs are processed. We perform one trace-based simulation p
machine/queue tuple on this trace applying an automaticljod
tering algorithm, an on-line change point detection héeigriend
finally an empirical quantile prediction methodology thesults in
our final bound prediction. Functionally, our method preddis
the ability to service prediction requests in the form of twazful
functions. The first function gives a user who is about to stiam
job running onN processors for wall-clock timé/ (N,W) to a ma-
chine/queue combinatiofM, Q) an upper bound queue wait time
predictionboundwith a prediction success probability pfob.

bound= GETBOUND(M, Q,N,W, prob)

The result of this function is analogous to the stateménjob
(N,W) submitted to batch queugM, Q) has a probability(prob)

of waiting in queue no longer thafibound. While this prediction

is useful in many settings, for deadline-driven applicaside.g.
LEAD), we would rather specify the time and predict the proba
bility that the job will start before then. To do this, we cawvert
GETBOUNI() and provide the second useful prediction routine:

prob= GETPROBM, Q,N,W, bound

Although GETPROB) accurately predicts the probability that a
job will start beforebound it cannot say exactly when in that time
interval the job will execute. That is, the job could startie:
diately or one second before the deadline. While this sisffoe
scheduling individual jobs, it is problematic when we arbeziul-

ing multiple jobs with dependencies on one another. We need a
way to ensure that dependences are enforced, not justistdtes-
timates of that likelihood. To provide that capability, weild on
QBETS with virtual advance reservations.

gueue on extant HPC sites has been shown to be both sublstantia

(relative to the execution time of the jobs) and highly vialéa This

Virtual Advance Reservation. Virtual Advance Reservations for

Queues (VARQ) [31] allows us to make probabilistic advarser-
vations with no modification to the underlying site softwareoli-
cies. Our studies of time series data gathered for QBETS esthow
us that, although the queue wait time experienced by johigdyh
variable, the upper bound predictions produced by QBET Saare
more stable. Often, the predictions remain stable for dayseeks
changing only when a drastic event occurs (e.g. a deadlina fo
large user). Thus, we posit that we can legitimately makeipre
tions for future job submissions assuming that large, ptmi-
changing events are infrequent. Based on this assumpt®hawe
devised a methodology that allows us to search the time legtwe
nowand a specified future job start deadline to find the best time t
submit a job to meet the deadline. VARQ computga@bability
trajectory, in 30 second intervals, by repeated calls to the QBETS
GETPROR) routine. At each interval, we know that the job could
start immediately after being submitted, and so the execuime

of the jobW must be adjusted to cover the time to the deadline,
plus the job runtime itself. We denote this adjusted job imat
Wagj. VARQ uses GETPROS to obtain a probability prediction,
decrementingoundandW,g; by 30 seconds at each step until the

common interface to cloud resources, the driver is builtdo-c
trol virtual machine reservations through the EC2 API. \gdinis
driver, vgES may provision resources from EC2 in order totmee
deadlines if the current set of batch queue resources akelyrio
satisfy a user request.

To further augment the number of resources available tsyser
have built an open source cloud computing system called -Euca
lyptus [33] that can be run on any set of machines that support
commonly available open-source software (Linux, Xen,.dc)ca-
lyptus exports an EC2-compatible interface and therefoee/yES
driver can interact with any Eucalyptus installation justitanter-
acts with Amazon EC2. Thus, using Eucalyptus, we can tramsfo
any collection of machines into an EC2-compatible compldadc:
that can be seamlessly managed by vgES. Studies into tlabdibuit
ity of cloud computing systems for HPC application workle§ti2,

35] indicate that certain applications perform well in ¢ixig public
clouds while others require more specialized performdeatire
enhancements before they become viable HPC resource prsvid
While the public clouds are generally designed to providedgo

deadline is reached. At the end of this process, VARQ uses the performance for a wide variety of applications, we can lager

computed probability trajectory and a specified minimumcess
probability to find the latest point in time where a job can bb-s
mitted so that it will start before the specified start timading the
resources for the entire duration of the job after the deadiirives.

In a previous work [31] we showed that VARQ can successfully
make probabilistic advance reservations on large scalduption
super-computers today. Using VARQ, vgES can time subrmigsio
the queue to maximize the probability of resource arrivalfdual

grid use.

3.1.2 Cloud system overlay

Over the past few years, a number of (mostly commercial}iesti
have started selling the excess capacity of their resotihceagh
an interface that allows a user to start and control virtuatihine
images that are capable of running their applications. & helsud
computing” systems can provide substantial computinguess
to scientists and other users. While the end product of medc
systems is similar to what a user expects to get from a batwdsc
uled HPC resource, the way in which the resources are ponésli
is very different, and has unique associated costs and beriedir
example, with Amazon’s EC2 [2], which is the leading cloue re
source provider, a user submits a request for a number afavirt
machine instances (based on a common template), and expects
either have those resources provisioned “instantly” (iit few
minutes) or for the request to fail. In batch queue systeims, t
expectation is that a submitted valid job will always runéptu-
ally”. This difference adds a bit of complexity to a user whouid
like to make advance allocation requests using both typeg-of
sources in concert. In addition, another difference thaisiots the
co-scheduling of batch scheduled and cloud resources stems
the fact that batch scheduled resources typically incuisatbat is
virtual in nature (users of such systems are commonly givarda
get of node/CPU hours that they “spend” when they use ressyrc

the fact that Eucalyptus can run on local resources to peavidse
enhancements. The result for us is a specialized cloud cimgpu
installation that can utilize high performance networks;ess to
local parallel file systems, and other resources that argypizally
offered by public cloud computing systems. We feel that this
the direction that private clouds and clouds for e-Scierszewill
need to take in the future. We further argue that these axpeis
suggest that such clouds can be a viable platform for s@ieotim-
putation.

3.2 Workflow Planner

VgES interacts with different resource types and unifieouees
available with certain properties to the workflow planneor Ex-
ample, scientific workflows such as LEAD often have assigied a
locations through TeraGrid and other supercomputing cerie
well as other local cluster sites. In addition to these as=sigre-
sources, users might have access to other resources thuthaig
higher price points and are not used regularly. LEAD can us@A
zon EC2 resources that are priced differently from the Tech(@-
sources. The trade-off cost versus benefit of using highieegr
resources must be represented in the workflow planning psoce
Using vgES, we study the impact of scheduling LEAD workflow
sets on a mix of TeraGrid, local grid and cloud sites and Amazo
EC2 resources. This four phase workflow planning approadb-is
tailed in this section.

The workflow planning approach we describe here specifitatly

gets deadline-sensitive workflows such as LEAD. Howevedifie

ferent phases of the workflow planning approach can be apfie
other workflows which might be less time-sensitive.

3.2.1 Resource Procurement
Each resource site is queried for a certain number of proce$sr

where public cloud offerings such as Amazon EC2 charge usersthe time duration from now till the deadline. Our workflow bes-

based on resource usage using real currency. Balancing difes
ferent charging models during a resource scheduling phasehe
taken into account and can be complex, depending on thetnigigc
of the user.

In vgES, we have built a “cloud resource” driver that has alaim
interface to the previously discussed QBETS/VARQ batchugue
driver. Since Amazon EC2 is currently the best specified aostm

tration has two goals: to meet the specified deadline andistdne
the maximum number of workflows in the given time such as to in-
crease the probability that at least the minimum requiredkfiaws
complete by the deadline. Thus, we pick an aggressive resour
request policy (with no cost constraints) querying all siter the
maximum duration. Once a minimal set of resources are dlajla
the workflow planner instructs vgES to “bind” the resourdes. (
appropriate mechanisms are used to start the procuremtiret iad-

sources on grid and cloud sites). Resource availabilityhiriig de-
layed due to batch queue wait times or the virtual machimtugta
overhead. Once resources become available vgES sets up appr
priate application software. The multi-phase planningcpss is
initiated in parallel.

3.2.2 Phase 1: Minimal Scheduling

The goal of this stage of the pipeline is to schedule the minim
fraction of workflows required on regular resource sites. (iwe
do not use Amazon EC2 in this phase). We implement a sim-
ple probabilistic DAG scheduler. The DAG scheduler tragsrthe
DAG bottom-up and assigns deadlines for the tasks given &-wor
flow deadline. Subsequently the tasks are sorted by deafdline
the scheduling phase. Each task T has a duratiand must be
scheduled no earlier thaarliestStartTimend must finish no later
thanlatestFinishTime The DAG scheduler finds a task mapping
on each of the slots returned by vgES for a particular tasks&u
quently all task mappings that meet the task deadline asdemed
for selection and the best success probability mappingléstes.
Data transfer times are accounted for when finding a task imgpp
that can meet a deadline. For any task in a workflow, the pibityab
that it will succeed depends on the resource on which it iedch
uled as well as the probability of its parent tasks finishiiighen
two tasks are scheduled on independent resource slotsptiodir
abilities are independent and the probability of a task ésjdint
probability of its parent and itself. However, in a slot abstion,

if a Task T and its parents are scheduled on the same resdotce s
then the Task T has the same probability of finishing as itkesta
parent. The process is repeated for all tasks in the workifctive
minimum fraction of workflows cannot be scheduled at thigsta
the planner exits with an error. The probability of a workflosm-
pleting is the minimum of the success probability of all tedldes.

3.2.3 Phase 2: Fault Tolerance Trade-off

In the trade-off stage we compare scheduling additionakflaws
with increasing the fault-tolerance of one or more taskbesiched-
uled minimum fraction of workflows. We compare the success
probability of the minimum fraction of workflows completiras

the criteria for picking the scheduling at this stage. Phbiliges

of tasks completing are computed using the failure probglnf

the resources and the probabilities of its parent tasks. @atain

a queue of tasks from the scheduled workflows that are sosted b
their probability of completion. We compare:

1. a schedule from scheduling additional workflow from the
workflow set, and

2. a schedule where a ta3k from the sorted queue of tasks
of the scheduled workflow from Phase 1 is replicated one or
more times on available resources.

The workflow planner interacts with a fault tolerance comgrgn
to determine if a task should implement replication in theosel
case. For this implementation, the fault tolerance compbima-
plements replication based fault-tolerance techniquesd®ase
the probability of success for each workflow task. Given the ¢
rent mapping of tasks on a Gantt chart of available resodate s
with corresponding reliability characteristics, each kitmw task is
replicated on additional slots to increase the probabilitguccess
of a task to the desired success probability. This in turneiases
the workflow success rate and hence potentially increasefsat-
tion of workflows that need to finish by a given deadline.

The fault-tolerance techniques determine the mappingeofepli-
cated tasks on the available slots and return the mappingeto t
planner. During this mapping process, we use simple tedlsiq
based on joint-probabilities derived from success prdiasi of
tasks on slots. For each task, a window of replication isrd@teed
by the planner, which constrains the replicated tasks t-after
and end-before particular time based on task dependenties.
fault tolerance mapping process tries to fit a task on thdahlei
slots in that replication window based on the expected peidioce
characteristics of the task (number of cpus required andazd
execution times derived from performance models). If tis& fas
on a slot, the success probability of the task increases. nlee
success probability reaches the desired level during ¢piscation
process, the mapping of the replicated tasks is returndtbtplan-
ner. It should be noted that the fault tolerance techniquag mot
be able to reach the desired success probability by rejglicat all
cases. In such cases, the workflow planner is responsibbdéog-
ing system parameters (e.g. less compact Gantt chart,adit
resources) and iteratively using the fault tolerance tegles.

The schedule that yields the higher success probability fizese
two approaches is selected and this step is repeated tiflditanal
workflows can be scheduled or all tasks in the origMatorkflows
have been checked to see if fault tolerance can be applied.

3.2.4 Phase 3: Additional Scheduling

The goal of this phase is to use the available space on ttefelot
any other scheduling. If any workflows in the set have not been
scheduled in the earlier step, an attempt is made to schtéthde.

If any tasks have not been checked for fault tolerance in &ne e
lier step, an attempt is made to replicate those tasks teaserits
success probability.

3.2.5 Phase 4: EC2 Scheduling

Finally, the planner uses Amazon EC2 as a backup resoure to d
termine if additional replication on this higher-pricecdoerrce can
increase the success probability of individual tasks. AonagC2

is the prevailing example of cloud systems. The cloud masted$
itself well to adaptive load conditions albeit at a slighilgher cost
model. This makes it an ideal choice for using as a overflow re-
source site for LEAD workflows to meet application requirerse

This orchestration approach enables us to study (a) the-uts
between replicating certain tasks in the workflow, (b) thelioa-
tions of using Amazon EC2 as a overflow resource for scientific
workflows. We use specific policies (e.g., Amazon EC2 as over-
flow resource) in this implementation but the multi-phasekfiow
planning is configurable for other use cases and policy elsdi0].

3.3 Execution Manager

Workflow engines execute workflows based on DAG dependen-
cies. However when considering workflow sets the executian p
might include execution dependencies on other workflonskgda
that might be scheduled to run on the same resources. Thus we
need execution level support for workflow set execution otssl
that respects the order of the DAG and other workflow taskedsch
uled on the same slot.

We implemented a simple slot exection ordering mechanistinan
Execution Manager (shown in Figure 1b). This ordering mecha
nism submits jobs to the slot execution batch queue systémy us
the schedule. When the execution manager receives a jobdksh

to see if all tasks that are scheduled on the slot beforeabistave
been submitted. If not all tasks scheduled before this haen b
submitted the task is saved in a pending queue for later &recu
Events in the system such as job submission and job completio
trigger a thread that checks the elements in the pendingeqteeu
see if a task might now be ready to run. This ordering mechanis
is sufficient to sequence task execution on slots as per therge
ated schedule. However this ordering mechanism is not ceteipl
resistant to failures. If an earlier task fails to arriveaakt will be
stuck in the pending queue till it is rectified. Thus, the oimfp

sents (scheduled) time, and vertical height representseuiwf
processors (up to 32). The color bands at the bottoms of tagks
resent the task state (e.g. green for running, gray for cetag).
Here, the scheduler mapped many single-processor tagksdiito
the workflows to utkeuca (a Eucalyptus cloud). It assigned th
WRF models to the larger batch queue clusters (mayhem,- kitty
hawk, and mercury). One model was replicated (on mercury and
EC?2) for fault tolerance. As it happened, one replica (oncomst
marked with the red band) did fail but the run met the overaiti-c
straints.

mechanism depends on an external mechanism such as the moni-

toring system to diagnose errors and rectify it.

4. EVALUATION

The integrated system demonstrates a powerful resourtmebs
tion over grid and cloud systems that can be used by workflaw-pl
ning mechanisms for predictable service guarantees. Tloissa
even deadline-sensitive applications such as LEAD to runam
dedicated machines. However, it is important to understiaadif-
ferent parameters of the system and the tradeoffs withiegisys-
tems. We present results that (a) demonstrate acceptadibead
of vgES in executing LEAD workflows on a distributed system
(Section 4.1), (b) compare our approach to traditional aggines
using historical data from batch queue systems (Section 4wl
(c) explore via simulation the parameters that impact thé fal-
erance (Section 4.3).

Workflows. We submit eight LEAD workflows which are ready to
run in five minutes from the start of the experiment. The datae

use for the each of the LEAD workflows is a small regional weath
forecast and takes about 90 minutes to complete. The first few
steps of the workflow take a few minutes on single processuis a
the weather forecasting model (WRF [29]) takes over an hodr a
fifteen minutes on 16 processors. The constraint on the veavkf
set is that at least one must complete by a deadline of 2 hbach

of the experiments was repeated between 10 to 15 times.

Testbed. The experiments in Sections 4.1 and 4.2 use the same
testbed containing batch and cloud resources. The softeaare
sists of an Apache ODE workflow engine, the workflow planner
service, the vgES code base and associated databases. sThe
tributed infrastructure consists of batch queue systematrRENCI

/ University of North Carolina Chapel Hill (kittyhawk), Uvérsity

of California Santa Barbara (mayhem), and NCSA TeraGrid{me
cury); Eucalyptus-based cloud resources at University aidton
(uheuca), University of Tennessee Knoxville (utkeucajy &ni-
versity of California Santa Barbara (ucsbeuca); and Amaz6a
(ec2). For this set of experiments we obtained advanceadvaese
tions on the mercury and kittyhawk clusters.

Section 4.3 uses a different set-up. That testbed condiateidual
machine where our entire software stack is hosted. As weitlesc
in Section 4.3.1, the virtual machine allows us to vary syspa-
rameters (e.g. reliability) to study their impact on faolerance..

Visual representation. All the experiments we describe began as
demonstrations at the SC08 conference. To give a feel foexthe
periments, Figure 4 shows a screen shot from one run. (Faytpl
backs of several cases can be found on the web [48].) This run
scheduled 5 of the 8 workflows distributed across the sixuess.

The slot on each resource is represented by a backgroundegtey
angle. Each colored rectangle represents one task, arslftask

the same workflow have the same color. Horizontal lengtherepr

di

4.1 Infrastructure timing metrics

In this section we study the performance of our integratetiesy.

We present the event timeline of the system and compare the re
source binding parameters.

4.1.1 Resource Binding

7 25
£
= -
1
c 1
< 20 ! 1
(=) 1
£ |
e |
35 15 | | E
3
e
3
o 10 1 K o b
9] i K K
2 i k< b3
= ! £ 9%
S ! K 9%
= i K &
c 5k | K k]]
S 1 i K 195%
9 H | o 95
= ! : K 39
o : % K 9%
3 2 B &
A 0 <] X o
N x £ > I o o
3} = o 3} o
@ Q 3 =1 =4 >
& < e 9] [} o
> B @ o < X~
2 © 7 S]
k=1 £ 1S 8 =
= =1
Machines

Figure 5: Binding time

Figure 5 shows the average time required for binding eacheof t
sites over nine to thirteen runs. The error bars show themnuini

and the maximum values seen in the experiments. The bateh sys
tems (kittyhawk, mayhem and mercury) take less time to set up
than the cloud sites in our setup since we have reservatiqriade

at the batch sites (kittyhawk and mercury) or the system dasr
loads (mayhem) and hence there is no wait time. The Eucalyptu
clouds (uheuca, ucsbeuca, utkeuca) and Amazon EC2 gragsacc
to resources immediately but have a set-up overhead sipoérth

tual machines need to be booted with the image. EC2 and uheuca
take longer since they boot 16 nodes at each site. There is som
variation in the bind time at Amazon EC2, kittyhawk and meycu
that is the result of runtime characteristics such as theé twathe
machine. In this graph, we see that the overheads from clood ¢
puting are slightly higher than from batch systems. Howeklier
overhead on all sites is less than 25 minutes, which is aabkpt

for workflows such as LEAD which run for a number of hours.

4.1.2 Eventtimeline

Figures 6 and 7 show a snapshot of an experiment timelineseThe
experiments were repeated a number of times and are refeeasab
shown in our archive [48]. Figure 6 shows the timeline of tlap
ning phase of the orchestration. Each line on the graph septe
the duration of a particular event where the ends of the iigafy

the start and end time of the event. In the first step, the plann

mayhem

kittyhawk

mercury

utkeuca

Figure 4: Scheduling an actual LEAD workflow set using VGrADS

queries VvgES. Once a set of slots is determined to be suffj¢hen
binding process starts on all the sites in parallel. Whikelind-
ing is in progress, the planner queries bandwidth acrogmab of
sites and launches the phased workflow planning. The fowsgsha
take only a few seconds and complete well before the resqueoce
curement is complete. The resource procurement duratinesva
by site, but resources are ready within 20 minutes. Oncedhe r
sources are ready, the workflows begin execution (FigurelrY).
this snapshot workflow1 failed and hence finished early. &iko
workflows completed by the deadline of 2 hours as expectedsdh
figures demonstrate the effectiveness of our approach eusiting
workflow sets across distributed resource sites.

We also compared the start and end times of execution witetho
predicted by the scheduler. The scheduler underestimatiddy

13 to 22 minutes. The cause of this is that the slots retured b
VvgES do not consider the overheads associated with resptoee
curement and set-up. A simple work-around might be to assume
a maximum overhead to the start time of the slots. But in thg lo
term, we need need better prediction mechanisms returnegesfy
interfaces, as well as support for dynamic and staggerecligre

to maximize slot utilization.

4.2 Deadline scheduling

Table 1 compares our scheduler with other strategies falishea
scheduling of workflows on a TeraGrid node. We use histologs
from the batch systems to find average wait times for jobdairto
the tasks in our workflow. In all cases, the queue variahidityig-
nificant and strategies that do not appear to meet the deanlight
work at some times. For all the cases, “resource bindingieste-
lay to begin computing, whether it is due to waiting in a queue
overhead for virtual machine startup. The best case timeising
with an advanced reservation, thus avoiding any wait timewH
ever, this requires requesting the reservation far in azianhich

20
% 15 —
£
€
S 10} .
[}
E
F 5t R
I} + * + *
O; IIIII
%EX%MMN(GIHNO’)V
] 2 5 8 8 9 9 w W w w
$ 2533329326090 09
O%>‘m5305§<<<<
®» g £ 3 8 2z 3 = £ £ &
g._y(b(b?ao%n.n.n.n_
2 vz 2z ¢ 2 Z2 %
>z z £ =
3 £ oo £ o g @
zZ 2 z z o Z
= Z F @ 2 o
o g =

Events

Figure 6: Time line of the planning phase of a run

is not always practical. Without reservations, currentays like
LEAD, insert tasks into a batch queue only when all their pred
cessors are complete (as Figure 2b showed). This incuratexpe
waits in the queue, which the table shows to be more than the ac
tual execution time and causes the workflow to miss the deadli
Another strategy would be to submit a large job for an entioekw
flow — corresponding to a virtual grid slot — which would runeon
or more workflows. As the table shows, even submitting a sing|
workflow in this way may not meet the deadline. In fairness, we
should note that, according to our data, this strategy wsutdeed
about half the time based on the distribution of queue waies.
Requesting separate slots for six workflows (the numberdsdad

by our orchestration approach) is worse, and running aliteig-

120

80 .
60 |- .
40 .
20 .

Time (in mins)

workflow2
workflow3
workflow4
workflow5
workflow6

workflow1 (failed)

Events

Figure 7: Time line of workflow execution

quires nearly 6 hours to complete. The vgES system queriés mu
liple sites and the workflow planner then schedules the wosis]
across these distributed sites. By opportunistically priog re-
sources at multiple sites, vgES is able to complete exatutigix
workflows by the deadline inspite of the overheads.

4.3 Fault tolerance exploration

The workflow planner interacts with the fault-tolerance poment

to determine if and where a task needs to be replicated teaser
the fault-tolerance of a given workflow. In this section, wale

uate these fault-tolerance techniques under varying resdslot)

reliability conditions.

4.3.1 Experimental Setup

For each experiment, we generate a Gantt chart for a gives tim
window for replication. The Gantt chart is randomly popatht
with slots with random numbers of available processorskeguc
from a given set of possibilities. The slots have (a) a basat tH"
probability (‘slotUpProb’) with a random distribution of@und
0.1 (slotUpProht rand() x 0.1), which determines the probability
with which the slot would be available once the slot has been a
quired, and (b) a fixed “Slot Acquire" probability (‘slotABgob’),
which determines the probability of acquiring a slot fronaitable
resources at a site. The combination of ‘slotAcqProb’ atatUp-
Prob’ determines the probability of task completion on thlat.
We execute an initial mapping process (using the DAG scleeplul
of a LEAD workflow onto the Gantt chart slots. We then invoke th
fault-tolerance component to potentially replicate a Vloxk task
in order to increase the current success probability of akk by
an amount denoted by the ‘Reliability increment’. In othards,
‘Reliability increment’ is the difference between curreamd de-
sired success probability for the given task. We vary ‘Rulity
increment’ from O1 to 05 in steps of Q.. If the increment value
results in a desired success probability of more than 1, \getpe
the difference between 1 and current success probabiliiy.fault-
tolerance component either returns a set of slots to rapli€the
desired reliability is obtained, or reports failure. Theplication
factor” is the number of added slots required to reach theeates
success probability for the given task. We run 25 trials fartein-
crement, ‘slotUpProb’ and ‘slotAcgProb’ combination. Wefide
the “replication success rate” as the ratio of number oficafibn

Replication success rate : slotAcqProb=0.7
12

=&=slotUpProb = 0.5
=#=s|otUpProb = 0.6
#=slotUpProb = 0.7
=>¢=slotUpProb = 0.8
=#=slotUpProb = 0.9
®=slotUpProb = 1.0

Replication success rate

0.05 0.1 0.15 0.2 025 0.3 035 04 045 05

Reliability increment

Figure 9: Replication success rate for different slot relidilities

success outcomes to the total number of trials for a case répliv
cation factors and high replication success rates areatdsir

4.3.2 Results

Figures 8(a) -8(c) show the distributions of replicationtfas for
different reliability increments for different combinatis of ‘slotAc-
gProb’ and ‘slotUpProb’. Figure 8(a) shows low-relialyiliesources,
implying low values of ‘slotAcqgProb’ and ‘slotUpProb’ @). We
observe that beyond a increment value &, @eplication fails for
all Gantt charts. For lower increments, replication fastoange
between 1 to 5. The number of replication failures increagés
increasing increments. Figure 8(b) shows medium-religtslots
(‘slotAcgProb’ = 06 and ‘slotUpProb’ = 6). We observe that
there are fewer replication failures and lower median ogpidn
factors than in the low reliability case. Most cases up toreme-
ment of 03 have a replication factor of 4 or less. Figure 8(c) shows
the case where the slots have good reliabilities (‘slotAogPand
base ‘slotUpProb’ values of.8). Here, we observe that there are
even fewer replication failures and lower median replarafactors
than the medium reliability case. The majority of cases up te-
liability increment of 04 have a replication factor of 3 or less. We
have run other scenarios with different increments andsilizbil-
ities and the results are similar.

We can infer from these observations that increasing riétiam-
crements increases the median replication factor and timéeuof
cases of replication failures, implying that replicati@chniques
would be effective for moderate reliability increments. vém also
infer that higher reliability of slots results in smaller di@n repli-
cation factors and fewer replication failures.

Figure 9 shows the replication success rate for differelbig-
ity increments for ‘slotAcgProb’=@ and different values of base
‘slotUpProb’. We observe that replication success rateedses
as reliability increment increases. Also, the successfai'emore
rapidly for lower ‘slotUpProb’ values. We have made simdaser-
vations for other combinations of ‘slotAcqProb’ and ‘siqtrob’.
The rate of decrease of replication success rate incredtieslev
creasing reliabilities of slots. We believe that incregshe number
of trials would smooth out some of the curves. From theserebse
vations, we infer that lower reliability increments and heg slot
reliabilities are desirable in order to increase the repiin suc-
cess rate.

5. RELATED WORK

Type Resource Set Planning (s) Resource | Execution| Total
Binding Time (s) | time (s)
(s)
Batch queue execution time with adl-mercury (1 workflow) * - 5,224 5,224
vanced reservation (1.45 hrs)
Batch queue execution time in curreptmercury - 5,711 5,224 10,935
systems (1 workflow) (3.04hrs)
Batch queue single slot executignmercury - 2,200 5,224 7,424
time (1 workflow) (2.06 hrs)
Batch queue single slot executignmercury - 2,830 5,224 8,054
time (6 workflows) (2.24 hrs)
Batch queue single slot executignmercury - 14,530 5,224 19,754
time (8 workflows) (5.49 hrs)
VvgES Mix of batch and cloud| 183 * 1,017 5,693 6,893
resources (from ex- | (1.93 hrs)
ecution)

* TeraGrid users must request advanced reservations adledmurs before start of run.

Table 1: Comparison of planning, resource availability oveheads and execution time using various methodoligies to Bedule work-
flows/sets. The numbers in italics are projections from higirical data for similar sized jobs. The execution times (exept the vgES
run) are part of our performance model

Number of samples

5
|
o

I | /

i -~ - /
= : - p

Replication Failure
Replication factor = 8
Replication factor =7
Replication factor = 6
Replication factor = 5
Replication factor = 4

- ; Replication factor = 3
Replication factor = 2

0.1 + - Replication factor = 1

0.2 03 0a
. 0.5

Reliability increment

(a) (slotAcgProb=0.4, slotUp

Number of samples
" 5 & 13 "

0.1

Prob=0.4)

0.2

0.3 04

Reliability increment

Number of samples

0.4

Reliability increment

(b) (slotAcgProb=0.6, slotUpProb=0.6)

0.5

Replication Failure
Replication factor = 8
Replication factor =7

Replication factor = 6
Replication factor =5
Replication factor = 4

Replication factor = 3
Replication factor = 2

Replication factor = 1

(c) (slotAcgProb=0.8, slotUpProb=0.8)

0.5

(J
1 - g
- %
r‘l. Replication factor = 7
) Replication factor = 6

|

i Replication Failure

- Replication factor = 8

Replication factor =5
Replication factor = 4

- Replication factor = 3
Replication factor = 2

/" Replication factor = 1

Figure 8: Distribution of replication factors for slots wit h low reliability (a), medium reliability (b), high reliability (c)

This work focuses on various aspects of cyberinfrastrectexe-
cution management, resource provisioning, workflow plagmind
fault tolerance. However, there is no prior work that ingegs grid
and cloud sites through a single provisioning mechanismang
enabling execution of workflow sets with deadline and acoura
constraints. We provide a summary of related work that have-c
mon features with different aspects of our research.

Execution systems. Grid and cloud tools such as Globus [18],
Apache Hadoop [19], and Virtual Workspaces/Nimbus [22]-pro
vide mechanisms to manage execution in distributed andeckd
environments. However, application- and QoS-based reecs-
lection is not possible with these tools. VvgES provides glsin
interface to query and manage execution across distrilmited
based on QoS properties of the resources. The idea of cergain
or glidein has been used before in different projects to gamso-
visioned resources [17, 38, 45]. Similarly, workflow engirte.g.,
Taverna [34], Kepler [1], Pegasus [8]) provide executievel sup-
port for managing workflows on distributed resources [46jur O
approach uses similar support for each workflow but also gesa
multiple workflows.

Resource Provisioning. The problem of provisioning resources
in HPC systems has been well studied and a variety of tecasiqu
have been investigated within the context of HPC and Grid-com
puting [14]. Most systems in operation today rely on batceum
ing software [27, 47] to implement a space-sharing polidyere
applications are given exclusive access to the resouraasgdex-
ecution. This so called “best-effort” strategy is sufficiéor ap-
plications that do not have strict deadlines, but resultsaird-to-
predict application execution times due to highly variableeue
wait times. Several works have attempted to solve this pralidy
developing methodologies for predicting wait times. Dowié]
develops a strategy for modelling remaining job executiores
in order to predict when similar jobs will have access todree-
sources. Smith et al. [43] presents a template-based agptoa
categorize and predict job wait times based on the use of dam
wait times experienced by each category of jobs. These wwtks
vide good predictions for collections of jobs, but reporgkaerror
ranges when used to predict individual job wait times. Nuemi
al. [6, 30] provide an approach to batch queue wait time ptiofi
that results in probabilistic upper bound predictions tieate been
shown to produce accurate bound predictions for indivigilas.

For users who require a more concrete constraint on apiplcat
execution completion times, some research has exploragsthef
advance reservations in HPC job schedulers. However, alaewer
searchers have shown that the introduction of advancevetgsrs
into HPC scheduling systems can result in significant deeréa
site utilization [20, 44]. For this reason, most sites doprovide a
general advance reservation facility to the user community

Workflow planning. Workflow planning techniques today are fo-
cused on scheduling individual DAGs and do not consideretee r
tionship between DAGs and constraints associated withdsding

a set of workflows [5, 32, 51]. Various DAG scheduling aldamits
have been proposed for grid environments for optimizingover
parameters [26, 42, 50]. However, they have neither attednut
orchestrate multiple workflows as required in our applarathor
balance performance and reliability.

Fault Tolerance. There are several techniques for fault-tolerance
[11] of single parallel SPMD applications running on HPC-sys

tems, which include FT-MPI [13] and LA-MPI [4]. Reed et all[4
identify reliability challenges for large-scale HPC systeand pro-
vide adaptive techniques for failure detection (using granfince
contracts) and runtime adaptation for MPI applicationse Tdult-
tolerance methods discussed in this paper leverage thuglesiite
techniques to distributed grid/cloud systems.

One of the prevalent methods for fault-tolerance on contjmutal
grid systems is simple retry, as in Condor-G [17] and Gridsol
[49]. The application is resubmitted on a resource in casa of
failure. In Condor DAGMan [7] and Pegasus [5], in case of & fai
ure, the remaining portion of the workflow (the rescue DAG) is
re-executed. Kandaswamy et al. [21] evaluates migratiGeda
techniques for fault-tolerance of workflow tasks on gridanfkr-
ishnan et al. [39] uses performability to capture degraderdop-
mance from varying resource reliability for scheduling dadlt
tolerance of workflows. In this paper, we use replicationedas
fault-tolerance techniques based on resource (slot)oikfiaand
application performance models.

6. CONCLUSION

Programming grid and cloud systems for e-Science workflovds a
managing QoS in these environments is challenging. VGrADS’
virtual grid abstraction simplifies these tasks, unifyingriflow
execution over batch queue systems (with and without aeehnc
reservations) and cloud computing sites (including Amagz@?
and Eucalyptus). This paper details the vgES implememtaifo
virtual grids and their use in fault tolerant workflow plangiof
workflow sets with time and accuracy constraints. Our expenits
show the efficiency of the implementation and the effectssnof
the overall approach. Taken together, this provides anlieigab
technology for executing deadline-driven, fault-tolenaorkflows.
The integrated cyberinfrastructure from the LEAD and VGI&\D
system components provides a strong foundation for nexénggion
dynamic and adaptive environments for scientific workflows.

7. ACKNOWLEDGEMENTS

Research in the VGrADS project was supported by the National
Science Foundation (NSF) through grant #0331645. Accel$geto
LEAD infrastructure (both hardware and software) was suggo

by NSF through grant #0331594. Access to TeraGrid nodes was
supported by NSF under award #0122296. The authors woudd als
like to thank the LEAD and VGrADS teams for feedback and sup-
porting infrastructure. The authors would like to dedidhis paper

to the memory of Ken Kennedy, who led the VGrADS project from
its inception to his untimely death.

8. ADDITIONAL AUTHORS
9. REFERENCES

[1] 1. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludsclaed
S. Mock. Kepler: An Extensible System for Design and Executf
Scientific Workflows, 2004.
[2] Amazon Elastic Compute Cloud (Amazon EC2).
http://aws.amazon.com/ec2/.
M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz,
A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin, |. Stoicada
M. Zaharia. Above the Clouds: A Berkeley View of Cloud
Computing. Technical Report UCB/EECS-2009-28, EECS
Department, University of California, Berkeley, Feb 2009.
R. T. Aulwes, D. J. Daniel, N. N. Desai, R. L. Graham, L. D.
Risinger, M. A. Taylor, T. S. Woodall, and M. W. Sukalski.
Architecture of la-mpi, a network-fault-tolerant mpiarallel and
Distributed Processing Symposium, Internatioriall 5b, 2004.

(3]

(4]

(5]

(6]

[7]
(8]

9]

[20]

[11]

[12]

[13]

[14]
[15]

[16]

[17]

(18]

[19]
[20]

[21]

[22]

(23]

[24]

[25]

J. Blythe, S. Jain, E. Deelman, Y. Gil, K. Vahi, A. Mandahd

K. Kennedy. Task scheduling strategies for workflow-based
applications in grids. INEEE International Symposium on Cluster
Computing and the Grid (CCGrid 2009EEE Press, 2005.

J. Brevik, D. Nurmi, and R. Wolski. Predicting bounds ameging
delay for batch-scheduled parallel machinesPtaceedings of
PPoPP 2006March 2006.

Condor Team. Dagman metascheduler —
http://www.cs.wisc.edu/condor/dagman.

E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, &hV

K. Blackburn, A. Lazzarini, A. Arbree, R. Cavanaugh, and

S. Koranda. Mapping abstract complex workflows onto grid
environmentsJournal of Grid Computing1(1):25—-39, 2003.

A. Downey. Predicting queue times on space-sharingligara
computers. IrProceedings of the 11th International Parallel
Processing Symposiypril 1997.

K. K. Droegemeier, D. Gannon, D. Reed, B. Plale, J. Aldege

T. Baltzer, K. Brewster, R. Clark, B. Domenico, S. Graves)dseph,
D. Murray, R. Ramachandran, M. Ramamurthy, L. Ramakrishnan
J. A. Rushing, D. Weber, R. Wilhelmson, A. Wilson, M. Xue, and
S. Yalda. Service-Oriented Environments for Dynamically
Interacting with Mesoscale Weath@omputing in Science and
Engg, 7(6):12—-29, 2005.

E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. JohnsoA
survey of rollback-recovery protocols in message-passystems.
ACM Comput. Sury34(3):375-408, 2002.

C. Evangelinos and C. Hill. Cloud Computing for ParbSeientific
HPC Applications: Feasibility of running Coupled
Atmosphere-Ocean Climate Models on Amazon E@#fo,
2(2.40):2—-34, 2008.

G. E. Fagg, E. Gabriel, G. Bosilca, T. Angskun, Z. Chen,

J. Pjesivac-Grbovic, K. London, and J. Dongarra. Extenttiegmpi
specification for process fault tolerance on high perforcean
computing systems. IRroceedings of the International
Supercomputer Conference (ICS) 20B4imeur, 2004.

D. G. Feitelson and L. Rudolpfarallel Job Scheduling: Issues and
Approachespages 1-18. Springer-Verlag, 1995.

I. Foster and C. Kesselmahhe Grid2 Morgan Kauffmann
Publishers, Inc., 2003.

J. Frey, T. Tannenbaum, M. Livny, |. Foster, and S. Teeck
Condor-g: A computation management agent for multi-ingahal
grids. 10th IEEE International Symposium on High Performance
Distributed Computing (HPDC-10 '01p0:0055, 2001.

J. Frey, T. Tannenbaum, M. Livny, |. Foster, and S. Teeck
Condor-g: A computation management agent for multi-ingahal
grids. Cluster Computing5(3):237-246, 2002.
Globus.http://www.globus.org/.
Hadoophttp://hadoop.apache.org/core.

F. Heine, M. Hovestadt, O. Kao, and A. Streit. On the iotpe
reservations from the grid on planning-based resource gesment.
In International Workshop on Grid Computing Security and
Resource Management (GSRM) at IC@&ges 155-162, Atlanta,
USA, 2005. Springer.

G. Kandaswamy, A. Mandal, and D. A. Reed. Fault toleeaacd
recovery of scientific workflows on computational gridsA&8GRID
'08: Proceedings of the 2008 Eighth IEEE International Sgpsipm
on Cluster Computing and the Grid (CCGRIpgges 777-782,
Washington, DC, USA, 2008. IEEE Computer Society.

K. Keahey, T. Freeman, J. Lauret, and D. Olson. Virtuatkgpaces
for scientific applications. I8ciDAC Conference2007.

Y.-S. Kee and C. Kessleman. Grid resource abstraction,
virtualization, and provisioning for time-targeted applions. In
ACM/IEEE International Symposium on Cluster Computing tired
Grid (CCGrid08) May 2008.

Y.-S. Kee, C. Kessleman, D. Nurmi, and R. Wolski. Enagli
personal clusters on demand for batch resources using cditymo
software. Ininternational Heterogeneity Computing Workshop
(HCWO08) in conjunction with IEEE IPDPSQ8pril 2008.

Y.-S. Kee, K. Yocum, A. A. Chien, and H. Casanova. Impnovgrid
resource allocation via integrated selection and bindimg.
International Conference on High Performance Computingtwérk,

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

Storage 2006.

G. Malewicz. Parallel scheduling of complex dags undweertainty.
In Proceedings of the 17th Annual ACM Symposium on Parallel
Algorithms(SPAA)pages 66—75, 2005.

Maui scheduler home page —
http://www.clusterresources.com/products/maui/.

G. V. Mc Evoy and B. Schulze. Using clouds to address grid
limitations. INMGC '08: Proceedings of the 6th international
workshop on Middleware for grid computingages 1-6, New York,
NY, USA, 2008. ACM.

J. Michalakes, J. Dudhia, D. Gill, T. Henderson, J. Ktem

W. Skamarock, and W. Wang. The Weather Reseach and Forecast
Model: Software Architecture and PerformanBeoceedings of the
11th ECMWF Workshop on the Use of High Performance Computing
In Meteorology October 2004.

D. Nurmi, J. Brevik, and R. Wolski. QBETS: Queue bounds
estimation from time series. Rroceedings of 13th Workshop on Job
Scheduling Strategies for Parallel Processing (with ICS0udne
2007.

D. Nurmi, J. Brevik, and R. Wolski. VARQ: Virtual advaac
reservations for queueBroceedings 17th IEEE Symp. on High
Performance Distributed Computing (HDP,G008.

D. Nurmi, A. Mandal, J. Brevik, C. Koelbel, R. Wolski, dn

K. Kennedy. Evaluation of a workflow scheduler using intéegla
performance modelling and batch queue wait time prediction
Proceedings of SC’'Qlampa, FL, 2006. IEEE.

D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S.r8an,

L. Youseff, and D. Zagorodnov. The eucalyptus open-source
cloud-computing system. 18th International Symposium on Cluser
Computing and the Grid (CCGrid) - to appea009.

T. Oinn, M. Greenwood, M. Addis, M. N. Alpdemir, J. Fesri

K. Glover, C. Goble, A. Goderis, D. Hull, D. Marvin, P. Li, Potd,
M. R. Pocock, M. Senger, R. Stevens, A. Wipat, and C. Wroe.
Taverna: Lessons in Creating a Workflow Environment for the L
Sciences: Research ArticléSoncurr. Comput. : Pract. Exper.
18(10):1067-1100, 2006.

M. Palankar, A. lamnitchi, M. Ripeanu, and S. Garfiniginazon S3
for science grids: a viable solution? Rroceedings of the 2008
international workshop on Data-aware distributed compgtipages
55-64. ACM New York, NY, USA, 2008.

H. Qian, E. Miller, W. Zhang, M. Rabinovich, and C. E. Wil
Agility in virtualized utility computing. InVTDC '07: Proceedings of
the 3rd international workshop on Virtualization techngjoin
distributed computingpages 1-8, New York, NY, USA, 2007. ACM.
L. Ramakrishnan and D. Gannon. A survey of distribteakflow
characteristics and resource requirements. TechnicarRéR671,
Department of Computer Science, Indiana University, Indja
September 2008.

L. Ramakrishnan, L. Grit, A. lamnitchi, D. Irwin, A. Yuarefendi,
and J. Chase. Toward a Doctrine of Containment: Grid Hostiitig
Adaptive Resource Control. Froceedings of the ACM/IEEE
SC2006 Conference on High Performance Computing, Netngrki
Storage and AnalysisNovember 2006.

L. Ramakrishnan and D. A. Reed. Performability modgfior
scheduling and fault tolerance strategies for scientificflons. In
HPDC '08: Proceedings of the 17th international symposium o
High performance distributed computingages 23-34, New York,
NY, USA, 2008. ACM.

L. Ramakrishnan and D. A. Reed. Predictable qualityerfise atop
degradable distributed systems.Journal of Cluster Computing
2009.

D. A. Reed, C.-d. Lu, and C. L. Mendes. Reliability clealjes in
large systemd-uture Generation Computer Systerig(3):293-302,
2006.

R. Sakellariou, H. Zhao, E. Tsiakkouri, and M. Dikaiako
Scheduling workflows with budget constraints. In S. GoHaiad

M. Danelutto, editorsintegrated Research in GRID Computjng
CoreGRID, pages 189-202. Springer-Verlag, 2007.

W. Smith, V. E. Taylor, and I. T. Foster. Using run-timeegictions to
estimate queue wait times and improve scheduler perforendnc
IPPS/SPDP '99/JSSPP '99: Proceedings of the Job Scheduling

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

Strategies for Parallel Processingages 202—-219, London, UK,
1999. Springer-Verlag.

Q. Snell, M. Clement, D. Jackson, and C. Gregory. Théoperance
impact of advance reservation meta-schedulingtinWorkshop on
Job Scheduling Strategies for Parallel Processipgges 137-153,
2000.

B. Sotomayor, K. Keahey, and |. Foster. Combining batebcution
and leasing using virtual machines.Hiigh Performance Distributed
Computing (HPDC)2008.

1. J. Taylor, E. Deelman, D. B. Gannon, and M. Shielderkflows
for e-Science: Scientific Workflows for Gri@&pringer, December
2006.

Torque home pagekttp://www.clusterresources.com/
pages/products/torque-resource-manager.php.

VGrADS Demo Sitehttp://vgdemo.cs.rice.edu/vgdemo/
archives. jsp?display=whitelist.

A. YarKhan, J. Dongarra, and K. Seymour. Gridsolve: €kelution
of network enabled solver. IRroceedings of the 2006 International
Federation for Information Processing (IFIP) Working Cerénce
2006.

J. Yu and R. Buyya. Scheduling scientific workflow apations with
deadline and budget constraints using genetic algoritiStientific
Programming 14(3-4):217-230, 2006.

Y.Zhang, A. Mandal, H.Casanova, A. Chien, Y. Kee, K. Kedy,
and C. Koelbel. Scalable Grid Application Scheduling vic®épled
Resource Selection and SchedulingSirth IEEE International
Symposium on Cluster Computing and the Grid (CCGRID'06)
IEEE, May 2006.

