Personal tools
You are here: Home Publications Cross Architecture Performance Predictions for Scientific Applications Using Parameterized Models
Document Actions

Gabriel Marin and John Mellor-Crummey (2004)

Cross Architecture Performance Predictions for Scientific Applications Using Parameterized Models

In: Proceedings of the Joint International Conference on Measurement and Modeling of Computer Systems, New York, NY, ACM.

This paper describes a toolkit for semi-automatically measuring and modeling static and dynamic characteristics of applications in an architecture-neutral fashion. For predictable applications, models of dynamic characteristics have a convex and differentiable profile. Our toolkit operates on application binaries and succeeds in modeling key aplication characteristics that determine program performance. We use these characterizations to explore the interactions between an application and a target architecture. We apply our toolkit to SPARC binaries to develop architecture-neutral models of computation and memory access patterns of the ASCI Sweep3D and the NAS SP, BT and LU benchmarks. From our models, we predict the L1, L2 and TLB cache miss counts as well as the overall execution time of these applications on an Origin 2000 system. We evaluate our predictions by comparing them against measurements collected using hardware performance counters.

by admin last modified 2008-04-30 12:20
« August 2010 »
Su Mo Tu We Th Fr Sa
1234567
891011121314
15161718192021
22232425262728
293031
 

VGrADS Collaborators include:

Rice University UCSD UH UCSB UTK ISI UTK

Powered by Plone